# Author: Roman Janík # Script for creating a CoNLL format of my dataset from text files and Label Studio annotations. # import argparse import json import os from nltk.tokenize import word_tokenize, sent_tokenize def get_args(): parser = argparse.ArgumentParser(description="Script for creating a CoNLL format of my dataset from text files and Label Studio annotations.") parser.add_argument("-s", "--source_file", required=True, help="Path to source Label Studio json annotations file.") parser.add_argument("-o", "--output_dir", required=True, help="Output dir for CoNLL dataset splits.") args = parser.parse_args() return args def fix_quotes(sentence): return map(lambda word: word.replace('``', '"').replace("''", '"'), sentence) def process_text_annotations(text, annotations): entity_types_map = { "Personal names": "p", "Institutions": "i", "Geographical names": "g", "Time expressions": "t", "Artifact names/Objects": "o" } sentences = sent_tokenize(text, language="czech") sentences_t = [fix_quotes(word_tokenize(x, language="czech")) for x in sentences] sentences_idx = [] start = 0 for i, c in enumerate(text): if not c.isspace(): start = i break for sentence in sentences_t: sentence_idx = [] for word in sentence: end = start + len(word) sentence_idx.append({"word": word, "start": start, "end": end, "entity_type": "O"}) for i, _ in enumerate(text): if end + i < len(text) and not text[end + i].isspace(): start = end + i break sentences_idx.append(sentence_idx) for n_entity in annotations: begin = True done = False for sentence_idx in sentences_idx: for word_idx in sentence_idx: if word_idx["start"] >= n_entity["start"]\ and (word_idx["end"] <= n_entity["end"] or (not text[word_idx["end"]-1].isalnum()) and len(word_idx["word"]) > 1) and begin: word_idx["entity_type"] = "B-" + entity_types_map[n_entity["labels"][0]] begin = False if word_idx["end"] >= n_entity["end"]: done = True break elif word_idx["start"] > n_entity["start"] and (word_idx["end"] <= n_entity["end"] or (not text[word_idx["end"]-1].isalnum() and text[word_idx["start"]].isalnum())): word_idx["entity_type"] = "I-" + entity_types_map[n_entity["labels"][0]] if word_idx["end"] >= n_entity["end"]: done = True break elif word_idx["end"] > n_entity["end"]: done = True break if done: break conll_sentences = [] for sentence_idx in sentences_idx: conll_sentence = map(lambda w: w["word"] + " " + w["entity_type"], sentence_idx) conll_sentences.append("\n".join(conll_sentence)) conll_sentences = "\n\n".join(conll_sentences) return conll_sentences def main(): args = get_args() print("Script for creating a CoNLL format of my dataset from text files and Label Studio annotations." "Script goes through page text files and their annotations json record. " "Output CoNLL dataset file is saved to output directory.") with open(args.source_file, encoding="utf-8") as f: annotations = json.load(f) print("Starting documents processing...") with open(os.path.join(args.output_dir, "poner.conll"), "w", encoding="utf-8") as f: for page in annotations: page_text_path = page["text"].replace("http://localhost:8081", "../../../datasets/poner1.0/data") with open(page_text_path, encoding="utf-8") as p_f: page_text = p_f.read() processed_page = process_text_annotations(page_text, page["ner"]) f.write(processed_page + "\n\n") print("Annotations are processed.") if __name__ == '__main__': main()