--- language: - ar configs: - config_name: default data_files: - split: Amiri path: Amiri/*.csv - split: Sakkal_Majalla path: Sakkal_Majalla/*.csv - split: Arial path: Arial/*.csv - split: Calibri path: Calibri/*.csv - split: Scheherazade_New path: Scheherazade_New/*.csv features: text: dtype: string tags: - dataset --- ### Dataset Description This dataset is designed for training and evaluating Optical Character Recognition (OCR) models for Arabic text. It is an extension of an open-source dataset and includes text rendered in multiple Arabic fonts (Amiri, Sakkal Majalla, Arial, Calibri and Scheherazade New). The dataset simulates real-world book layouts to enhance OCR accuracy. ### Dataset Structure The dataset is divided into five splits based on font name (Sakkal_Majalla, Amiri, Arial, Calibri, and Scheherazade_New). Each split contains data specific to a single font. Within each split, the following attributes are present: - **image_name**: Unique identifier for each image. - **chunk**: The text content associated with the image. - **font_name**: The font used in text rendering. - **image_base64**: Base64-encoded image representation. ### How to Use ```python from datasets import load_dataset import base64 from io import BytesIO from PIL import Image # Load dataset with streaming enabled ds = load_dataset("xya22er/text_to_image", streaming=True) print(ds) # Load the dataset # Iterate over a specific font dataset (e.g., Amiri) for sample in ds["Amiri"]: image_name = sample["image_name"] chunk = sample["chunk"] # Arabic text transcription font_name = sample["font_name"] # Decode Base64 image image_data = base64.b64decode(sample["image_base64"]) image = Image.open(BytesIO(image_data)) # Show the image (optional) image.show() # Print the details print(f"Image Name: {image_name}") print(f"Font Name: {font_name}") print(f"Text Chunk: {chunk}") # Break after one sample for testing break ``` # OCR Dataset Generation Pipeline To create your own dataset, you can use the following repository: [text2image](https://github.com/riotu-lab/text2image).