Datasets:

Modalities:
Tabular
Text
Formats:
csv
ArXiv:
Libraries:
Datasets
pandas
zhujiem commited on
Commit
4f8de9b
·
1 Parent(s): 3385bae

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +36 -0
README.md ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Criteo_x4
2
+
3
+ + **Dataset description:**
4
+
5
+ The Criteo dataset is a widely-used benchmark dataset for CTR prediction, which contains about one week of click-through data for display advertising. It has 13 numerical feature fields and 26 categorical feature fields. Following the setting with the [AutoInt work](https://arxiv.org/abs/1810.11921), we randomly split the data into 8:1:1 as the training set, validation set, and test set, respectively.
6
+
7
+ The dataset statistics are summarized as follows:
8
+
9
+ | Dataset Split | Total | #Train | #Validation | #Test |
10
+ | :--------: | :-----: |:-----: | :----------: | :----: |
11
+ | Criteo_x4 | 45,840,617 | 36,672,493 | 4,584,062 | 4,584,062 |
12
+
13
+
14
+ - Criteo_x4_001
15
+
16
+ In this setting, we follow the winner's solution of the Criteo challenge to discretize each integer value x to ⌊log2(x)⌋, if x > 2; and x = 1 otherwise. For all categorical fields, we replace infrequent features with a default ``<OOV>`` token by setting the threshold min_category_count=10. Note that we do not follow the exact preprocessing steps in AutoInt, because this preprocessing performs much better. We fix **embedding_dim=16** as with AutoInt.
17
+
18
+ - Criteo_x4_002
19
+
20
+ In this setting, we follow the winner's solution of the Criteo challenge to discretize each integer value x to ⌊log2(x)⌋, if x > 2; and x = 1 otherwise. For all categorical fields, we replace infrequent features with a default ``<OOV>`` token by setting the threshold min_category_count=2. We fix **embedding_dim=40** in this setting.
21
+
22
+
23
+ + **Source:** https://www.kaggle.com/c/criteo-display-ad-challenge/data
24
+ + **Download:** https://huggingface.co/datasets/reczoo/Criteo_x4/tree/main
25
+ + **Repository:** https://github.com/reczoo/Datasets
26
+
27
+ + **Used by papers:**
28
+ - Weiping Song, Chence Shi, Zhiping Xiao, Zhijian Duan, Yewen Xu, Ming Zhang, Jian Tang. [AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks](https://arxiv.org/abs/1810.11921). In CIKM 2019.
29
+
30
+ + **Check the md5sum for data integrity:**
31
+ ```bash
32
+ $ md5sum train.csv valid.csv test.csv
33
+ 4a53bb7cbc0e4ee25f9d6a73ed824b1a train.csv
34
+ fba5428b22895016e790e2dec623cb56 valid.csv
35
+ cfc37da0d75c4d2d8778e76997df2976 test.csv
36
+ ```