Datasets:
Size:
10B<n<100B
| annotations_creators: | |
| - no-annotation | |
| language_creators: | |
| - crowdsourced | |
| pretty_name: SuperWikiImages-7M | |
| task_categories: | |
| - image-classification | |
| - image-to-text | |
| - text-to-image | |
| - image-to-image | |
| task_ids: | |
| - language-modeling | |
| - masked-language-modeling | |
| source_datasets: | |
| - original | |
| multilinguality: | |
| - multilingual | |
| language: | |
| - af | |
| - ar | |
| - ast | |
| - az | |
| - be | |
| - bg | |
| - bn | |
| - ca | |
| - ce | |
| - cs | |
| - cy | |
| - da | |
| - de | |
| - el | |
| - en | |
| - eo | |
| - es | |
| - et | |
| - eu | |
| - fa | |
| - fi | |
| - fr | |
| - gl | |
| - he | |
| - hi | |
| - hr | |
| - hu | |
| - hy | |
| - id | |
| - it | |
| - ja | |
| - ka | |
| - kk | |
| - ko | |
| - la | |
| - lt | |
| - lv | |
| - mk | |
| - ms | |
| - my | |
| - nl | |
| - nn | |
| - 'no' | |
| - pl | |
| - pt | |
| - ro | |
| - ru | |
| - sh | |
| - sk | |
| - sl | |
| - sr | |
| - sv | |
| - ta | |
| - tg | |
| - th | |
| - tr | |
| - uk | |
| - ur | |
| - uz | |
| - vi | |
| - zh | |
| size_categories: | |
| - 10B<n<100B | |
| configs: | |
| - config_name: default | |
| data_files: | |
| - split: train | |
| path: | |
| - "chunk_00/*.tar" | |
| - "chunk_01/*.tar" | |
| - "chunk_02/*.tar" | |
| - "chunk_03/*.tar" | |
| # Dataset Card for SuperWikiImage (SWI) | |
|  and Wikipedia's globe logo.") | |
| *Waifu to catch your attention.* | |
| ## Dataset Details | |
| ### Dataset Description | |
| Off from the presses of *SuperWikipedia-NEXT* comes *SuperWikiImage*: A **~15TiB** (~7 Million) collection of images from wikipedia. | |
| - **Curated by:** KaraKaraWitch | |
| - **Funded by:** Recursal.ai | |
| - **Shared by:** KaraKaraWitch | |
| - **Language(s) (NLP):** Many. Refer to the data below for a list of languages. | |
| - **License:** Mixed. Refer to lower section on licensing | |
| ### Dataset Sources [optional] | |
| <!-- Provide the basic links for the dataset. --> | |
| - **Source Data:** [https://dumps.wikimedia.org/other/enterprise_html/](https://dumps.wikimedia.org/other/enterprise_html) (Images are scraped from wikimedia commons) | |
| ### Supported Tasks and Leaderboards | |
| Anything to deal with images such as image to text, text to image, image to image and many more are supported. | |
| ### Languages | |
| We have selected the following Wikipedia's: | |
| <details> | |
| <summary>List of Wikipedia's</summary> | |
| <pre> | |
| af.wikipedia.org | |
| ar.wikipedia.org | |
| ast.wikipedia.org | |
| az.wikipedia.org | |
| be.wikipedia.org | |
| bg.wikipedia.org | |
| bn.wikipedia.org | |
| ca.wikipedia.org | |
| ce.wikipedia.org | |
| cs.wikipedia.org | |
| cy.wikipedia.org | |
| da.wikipedia.org | |
| de.wikipedia.org | |
| el.wikipedia.org | |
| en.wikipedia.org | |
| eo.wikipedia.org | |
| es.wikipedia.org | |
| et.wikipedia.org | |
| eu.wikipedia.org | |
| fa.wikipedia.org | |
| fi.wikipedia.org | |
| fr.wikipedia.org | |
| gl.wikipedia.org | |
| he.wikipedia.org | |
| hi.wikipedia.org | |
| hr.wikipedia.org | |
| hu.wikipedia.org | |
| hy.wikipedia.org | |
| id.wikipedia.org | |
| it.wikipedia.org | |
| ja.wikipedia.org | |
| ka.wikipedia.org | |
| kk.wikipedia.org | |
| ko.wikipedia.org | |
| la.wikipedia.org | |
| lt.wikipedia.org | |
| lv.wikipedia.org | |
| min.wikipedia.org | |
| mk.wikipedia.org | |
| ms.wikipedia.org | |
| my.wikipedia.org | |
| nl.wikipedia.org | |
| nn.wikipedia.org | |
| no.wikipedia.org | |
| pl.wikipedia.org | |
| pt.wikipedia.org | |
| ro.wikipedia.org | |
| ru.wikipedia.org | |
| sh.wikipedia.org | |
| simple.wikipedia.org | |
| sk.wikipedia.org | |
| sl.wikipedia.org | |
| sr.wikipedia.org | |
| sv.wikipedia.org | |
| ta.wikipedia.org | |
| tg.wikipedia.org | |
| th.wikipedia.org | |
| tr.wikipedia.org | |
| uk.wikipedia.org | |
| ur.wikipedia.org | |
| uz.wikipedia.org | |
| vi.wikipedia.org | |
| zh-min-nan.wikipedia.org | |
| zh.wikipedia.org | |
| zh-yue.wikipedia.org | |
| </pre> | |
| *`.wikipedia.org`* extensions have been added for your convenience. | |
| </details> | |
| ### Selection of Wikipedia | |
| We deem a particular Wikipedia language as high quality if: | |
| 1. Has a total article count of `>100,000`. | |
| 2. Has a `Depth > 5.1`. | |
| *Depth is calculated using the following equation:* | |
| `depth = (article_edits / total_pages) * ((total_pages - articles) / articles) ** 2` | |
| This formula is directly taken from [list of Wikipedias.](https://meta.wikimedia.org/wiki/Wikipedia_article_depth) | |
| ### Filtering | |
| No extensive filtering is done compared to superwiki-next. | |
| The process is as follows: | |
| 1. We iterate over dump files to retrieve all the figures in a dataset | |
| 2. We selectively remove figures in wikipedia that does not end with `(".jpeg", ".jpg", ".png")` | |
| 3. Deduplicate by filename matching | |
| 4. Prune all images that do not have at least 1 language describing the image. | |
| 5. Download from wikipedia (Slow) | |
| 6. Compile into webdataset. | |
| For data keys, refer to the usage example. | |
| ## Usage Example | |
| The dataset can be loaded with webdataset. Do note that there are multiple extensions to check: `jpg`, `jpeg` or `png`. They have not been reconverted to preserve the original file from wikimedia commons. | |
| ```py | |
| import webdataset as wds | |
| # The dataset is compatible with WebDataset format. Example... | |
| tar_root = "... chunk_00/wiki_images-0000.tar" | |
| hf_dataset = wds.WebDataset(str(tar_root)).decode("pil") | |
| for i in hf_dataset: | |
| print(i) | |
| # Prints something like this: | |
| # { | |
| # "__key__": "Liam Neeson Deauville 2012 2", | |
| # "__url__": "v2_SuperWikiFigures/hf_data/chunk_00/wiki_images-0000.tar", | |
| # "jpg": "<PIL.Image.Image image mode=RGB size=566x800 at 0x7FCB939A05E0>", | |
| # "__local_path__": "v2_SuperWikiFigures/hf_data/chunk_00/wiki_images-0000.tar", | |
| # "json": { | |
| # "url": "https://upload.wikimedia.org/wikipedia/commons/f/fe/Liam_Neeson_Deauville_2012_2.jpg", | |
| # "lang": { | |
| # "az": "Liam Nison Oskar Şindler rolu üçün seçilmişdi.", | |
| # "no": "Liam Neeson", | |
| # "es": "Liam Neeson", | |
| # "el": "Λίαμ Νίσον, Α' Ανδρικός Ρόλος", | |
| # "ru": "Актер Лиам Нисон озвучил священника Отца Шона в шестнадцатом сезоне сериала.", | |
| # "pl": "Liam Neeson - odtwórca roli Qui-Gona", | |
| # "kk": "фильмде Оскар Шиндлер рөлін ойнаған Лиам Нисон (2012)", | |
| # "de": "Liam Neeson, Darsteller des Oskar Schindler", | |
| # "bn": "শিন্ডলার্স লিস্ট চলচ্চিত্রের মুখ্য অভিনেতা লিয়াম নিসন", | |
| # "ast": "Liam Neeson (semeya de 2012) interpreta a Oskar Schindler.", | |
| # "id": "Liam Neeson, pemenang Aktor Terbaik", | |
| # "tr": "Liam Neeson (2012 yılındaki fotoğrafı) filmde Oskar Schindler olarak yer alıyor.", | |
| # "pt": "Liam Neeson", | |
| # "it": "Liam Neeson", | |
| # "vi": "Liam Neeson (ảnh năm 2012) thủ vai Oskar Schindler.", | |
| # "cs": "Liam Neeson vítěz v kategorii nejlepší herec", | |
| # "uk": "Ліам Нісон", | |
| # "fi": "Liam Neeson Deau\xadvillen elo\xadkuva\xadfestivaaleilla 2012.", | |
| # "en": "Liam Neeson, Best Animated Voice Performance winner", | |
| # "sv": "Liam Neeson (i bilden från 2012) gjorde rollen som Oskar Schindler i filmen.", | |
| # }, | |
| # }, | |
| # } | |
| break | |
| ``` | |
| ## Licensing | |
| It's complicated. We have retrieved a jsonl including the licenses to the individual images in the pre-pass to the dataset. | |
| The latest time the license was retrieved was `2024-09-28 00:56 UTC` | |
| The dataset includes only the following permitted licenses: | |
| <details> | |
| <pre> | |
| permits = [ | |
| "attribution", | |
| "cc by", | |
| "cc sa", | |
| "cc-by", | |
| "cc0", | |
| "C0 1.0", | |
| "fal", | |
| "Nagi BY SA", | |
| "No restrictions", | |
| "pdm-", | |
| "public domain", | |
| "Share Alike", | |
| "dl-de/by-2-0", | |
| "dl-de/zero-2-0", | |
| # ...Software licenses? | |
| "AGPL", | |
| "apache", | |
| "APSL", | |
| "Artistic 2.0", | |
| "bsd", | |
| "BSL", | |
| "CeCILL", | |
| "EPL", | |
| "FWL", | |
| "GFDL", | |
| "gpl", | |
| "lgpl", | |
| "LPL", | |
| "LPPL", | |
| "mit", | |
| "MPL ", | |
| "NetHack GPL", | |
| "OFL", | |
| "OGL", | |
| "OPL 3.0", | |
| "OSPL", | |
| "PostgreSQL License", | |
| "WTFPL", | |
| "ZLIB", | |
| # Streetmaps | |
| "ODbL", | |
| "OS OpenData", | |
| "Geoportal", | |
| "DGA Map", | |
| # Data | |
| "StatCanOpen", | |
| "CDDL", | |
| "EdictGov-India", | |
| "GODL-India", | |
| "KOGL Type 1", | |
| "KOGL Type-1", | |
| "KoreaGov", | |
| "LGACDMX", | |
| "Licence Ouverte", | |
| "OGDL", | |
| "정보공유라이선스 2.0: 허용", | |
| # Unsure. | |
| "copyrighted free use", | |
| "Open data", | |
| ] | |
| </pre> | |
| </details> | |
| Images which licenses are unclear, are banknotes or in the following blacklisted licenses are removed. | |
| ``` | |
| blacklist = [ | |
| # "ECB deicsions", | |
| # "ECB decisions", | |
| "Use permitted by the BOI, Currency Department", | |
| "Flora License", | |
| "<b>Alice 2 End User License Agreement", | |
| "Resolution restricted-by-sa", | |
| ] | |
| ``` | |
| Scripts used to process the files have been included. They are similar to the SuperWikiNEXT-32B dataset. | |
| ### Dataset Curators | |
| KaraKaraWitch. (I typically hangout in PygmalionAI discord, sometimes EleutherAI and now HF discord. If something is wrong, `@KaraKaraWitch` on discord.) | |
| I'd be happy if you could spread the word and recommend this dataset for your use cases. `:)` | |
| ## BibTeX Citation | |
| ```tex | |
| @ONLINE{superwikiimg, | |
| title = {SuperWikiImages}, | |
| author = {KaraKaraWitch, recursal.ai}, | |
| year = {2024}, | |
| howpublished = {\url{https://huggingface.co/datasets/recursal/SuperWikiImage-7M}}, | |
| } | |
| ``` | |
| ## Recursal's Vision | |
| > To make AI accessible to everyone, regardless of language, or economical status | |
| This is the collective goal of the `RWKV Open Source foundation` and `Recursal AI`, the commercial entity who backs it. | |
| We believe that AI should not be controlled by a select few individual organization. And that it should be made accessible regardless if you are rich or poor, or a native speaker of english. | |
| ### About RWKV | |
| RWKV is an Open Source, non profit group, under the linux foundation. Focused on developing the RWKV AI architecture, in accordence to our vision. | |
| The RWKV architecture scales efficiently and economically. As an RNN & Transformer hybrid, it is able to provide the performance similar to leading transformer models, while having the compute and energy efficiency of an RNN based architecture. | |
| You can find out more about the project, and latest models, at the following | |
| - [https://blog.rwkv.com](https://blog.rwkv.com) | |
| - [https://wiki.rwkv.com](https://wiki.rwkv.com) | |
| ### About Recursal AI | |
| Recursal AI, is the commercial entity built to provide support for RWKV model development and users, while providing commercial services via its public cloud, or private-cloud / on-premise offerings. | |
| As part of our vision. Our commitment, is to ensure open source development and access to the best foundational AI models and datasets. | |
| The following dataset/models provided here, is part of that commitment. | |
| You can find out more about recursal AI here | |
| - [https://recursal.ai](https://recursal.ai) | |
| - [https://blog.recursal.ai](https://blog.recursal.ai) |