aitek230telu
commited on
Code for generate proper dataset
Browse files- Create Datasets.ipynb +1447 -0
Create Datasets.ipynb
ADDED
@@ -0,0 +1,1447 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"nbformat": 4,
|
3 |
+
"nbformat_minor": 0,
|
4 |
+
"metadata": {
|
5 |
+
"colab": {
|
6 |
+
"provenance": []
|
7 |
+
},
|
8 |
+
"kernelspec": {
|
9 |
+
"name": "python3",
|
10 |
+
"display_name": "Python 3"
|
11 |
+
},
|
12 |
+
"language_info": {
|
13 |
+
"name": "python"
|
14 |
+
}
|
15 |
+
},
|
16 |
+
"cells": [
|
17 |
+
{
|
18 |
+
"cell_type": "code",
|
19 |
+
"source": [
|
20 |
+
"# Mengunduh dataset MovieLens 100k\n",
|
21 |
+
"!wget -q https://files.grouplens.org/datasets/movielens/ml-100k.zip\n",
|
22 |
+
"!unzip -q ml-100k.zip\n",
|
23 |
+
"\n",
|
24 |
+
"# Mengunduh dataset MovieLens 1M\n",
|
25 |
+
"!wget -q https://files.grouplens.org/datasets/movielens/ml-1m.zip\n",
|
26 |
+
"!unzip -q ml-1m.zip\n",
|
27 |
+
"\n",
|
28 |
+
"# Mengunduh dataset MovieLens Metadata\n",
|
29 |
+
"!unzip -q movies_metadata.zip"
|
30 |
+
],
|
31 |
+
"metadata": {
|
32 |
+
"colab": {
|
33 |
+
"base_uri": "https://localhost:8080/"
|
34 |
+
},
|
35 |
+
"id": "kqom8x_fb61t",
|
36 |
+
"outputId": "cccfb8ce-aada-4a9c-e03d-f3e05258dab9"
|
37 |
+
},
|
38 |
+
"execution_count": 32,
|
39 |
+
"outputs": [
|
40 |
+
{
|
41 |
+
"output_type": "stream",
|
42 |
+
"name": "stdout",
|
43 |
+
"text": [
|
44 |
+
"replace ml-100k/allbut.pl? [y]es, [n]o, [A]ll, [N]one, [r]ename: A\n",
|
45 |
+
"replace ml-1m/movies.dat? [y]es, [n]o, [A]ll, [N]one, [r]ename: A\n"
|
46 |
+
]
|
47 |
+
}
|
48 |
+
]
|
49 |
+
},
|
50 |
+
{
|
51 |
+
"cell_type": "markdown",
|
52 |
+
"source": [
|
53 |
+
"## Load Dataset Movielens\n",
|
54 |
+
"Dataset ini harus terdiri dari tiga file master yaitu\n",
|
55 |
+
"1. Users yang berisikan user_id, gender, age, occupation, zip_code\n",
|
56 |
+
"2. Movies yang berisikan movie_id, title, genres, is_adult, original_language, original_title, overview, popularity, release_date, revenue, runtime, vote_average, dan vote_count.\n",
|
57 |
+
"3. Ratings yang berisikan user_id, movie_id, rating, dan timestamp"
|
58 |
+
],
|
59 |
+
"metadata": {
|
60 |
+
"id": "GWFqG_HXbvQI"
|
61 |
+
}
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"cell_type": "code",
|
65 |
+
"source": [
|
66 |
+
"import pandas as pd\n",
|
67 |
+
"import numpy as np\n",
|
68 |
+
"from sklearn.model_selection import train_test_split"
|
69 |
+
],
|
70 |
+
"metadata": {
|
71 |
+
"id": "qI07ntK6dAmy"
|
72 |
+
},
|
73 |
+
"execution_count": 177,
|
74 |
+
"outputs": []
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"cell_type": "code",
|
78 |
+
"source": [
|
79 |
+
"# Memuat data\n",
|
80 |
+
"ratings = pd.read_csv('ml-100k/u.data', sep='\\t', names=['user_id', 'movie_id', 'rating', 'timestamp'])\n",
|
81 |
+
"users = pd.read_csv('ml-100k/u.user', sep='|', names=['user_id', 'gender', 'age', 'occupation', 'zip_code'])\n",
|
82 |
+
"movies = pd.read_csv('ml-100k/u.item', sep='|', encoding='ISO-8859-1', header=None, names=['movie_id', 'title', 'release_date', 'imdb_url'], usecols=[0,1,2,4])"
|
83 |
+
],
|
84 |
+
"metadata": {
|
85 |
+
"id": "p_Al0TLpcuYN"
|
86 |
+
},
|
87 |
+
"execution_count": 178,
|
88 |
+
"outputs": []
|
89 |
+
},
|
90 |
+
{
|
91 |
+
"cell_type": "code",
|
92 |
+
"source": [
|
93 |
+
"# Memuat data\n",
|
94 |
+
"ml1_movies = pd.read_csv('ml-1m/movies.dat', sep='::', encoding='ISO-8859-1', header=None, names=['movie_id', 'title', 'genres'], usecols=[0,1,2])\n",
|
95 |
+
"ml1_movies.head(1)"
|
96 |
+
],
|
97 |
+
"metadata": {
|
98 |
+
"colab": {
|
99 |
+
"base_uri": "https://localhost:8080/",
|
100 |
+
"height": 0
|
101 |
+
},
|
102 |
+
"id": "-Umv6xZFjK_H",
|
103 |
+
"outputId": "3e789a07-5b10-4026-d26d-fce92496dba3"
|
104 |
+
},
|
105 |
+
"execution_count": 179,
|
106 |
+
"outputs": [
|
107 |
+
{
|
108 |
+
"output_type": "stream",
|
109 |
+
"name": "stderr",
|
110 |
+
"text": [
|
111 |
+
"<ipython-input-179-e71d00712615>:2: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n",
|
112 |
+
" ml1_movies = pd.read_csv('ml-1m/movies.dat', sep='::', encoding='ISO-8859-1', header=None, names=['movie_id', 'title', 'genres'], usecols=[0,1,2])\n"
|
113 |
+
]
|
114 |
+
},
|
115 |
+
{
|
116 |
+
"output_type": "execute_result",
|
117 |
+
"data": {
|
118 |
+
"text/plain": [
|
119 |
+
" movie_id title genres\n",
|
120 |
+
"0 1 Toy Story (1995) Animation|Children's|Comedy"
|
121 |
+
],
|
122 |
+
"text/html": [
|
123 |
+
"\n",
|
124 |
+
" <div id=\"df-0121428d-a55a-4066-834d-e387ad094c88\" class=\"colab-df-container\">\n",
|
125 |
+
" <div>\n",
|
126 |
+
"<style scoped>\n",
|
127 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
128 |
+
" vertical-align: middle;\n",
|
129 |
+
" }\n",
|
130 |
+
"\n",
|
131 |
+
" .dataframe tbody tr th {\n",
|
132 |
+
" vertical-align: top;\n",
|
133 |
+
" }\n",
|
134 |
+
"\n",
|
135 |
+
" .dataframe thead th {\n",
|
136 |
+
" text-align: right;\n",
|
137 |
+
" }\n",
|
138 |
+
"</style>\n",
|
139 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
140 |
+
" <thead>\n",
|
141 |
+
" <tr style=\"text-align: right;\">\n",
|
142 |
+
" <th></th>\n",
|
143 |
+
" <th>movie_id</th>\n",
|
144 |
+
" <th>title</th>\n",
|
145 |
+
" <th>genres</th>\n",
|
146 |
+
" </tr>\n",
|
147 |
+
" </thead>\n",
|
148 |
+
" <tbody>\n",
|
149 |
+
" <tr>\n",
|
150 |
+
" <th>0</th>\n",
|
151 |
+
" <td>1</td>\n",
|
152 |
+
" <td>Toy Story (1995)</td>\n",
|
153 |
+
" <td>Animation|Children's|Comedy</td>\n",
|
154 |
+
" </tr>\n",
|
155 |
+
" </tbody>\n",
|
156 |
+
"</table>\n",
|
157 |
+
"</div>\n",
|
158 |
+
" <div class=\"colab-df-buttons\">\n",
|
159 |
+
"\n",
|
160 |
+
" <div class=\"colab-df-container\">\n",
|
161 |
+
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-0121428d-a55a-4066-834d-e387ad094c88')\"\n",
|
162 |
+
" title=\"Convert this dataframe to an interactive table.\"\n",
|
163 |
+
" style=\"display:none;\">\n",
|
164 |
+
"\n",
|
165 |
+
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n",
|
166 |
+
" <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n",
|
167 |
+
" </svg>\n",
|
168 |
+
" </button>\n",
|
169 |
+
"\n",
|
170 |
+
" <style>\n",
|
171 |
+
" .colab-df-container {\n",
|
172 |
+
" display:flex;\n",
|
173 |
+
" gap: 12px;\n",
|
174 |
+
" }\n",
|
175 |
+
"\n",
|
176 |
+
" .colab-df-convert {\n",
|
177 |
+
" background-color: #E8F0FE;\n",
|
178 |
+
" border: none;\n",
|
179 |
+
" border-radius: 50%;\n",
|
180 |
+
" cursor: pointer;\n",
|
181 |
+
" display: none;\n",
|
182 |
+
" fill: #1967D2;\n",
|
183 |
+
" height: 32px;\n",
|
184 |
+
" padding: 0 0 0 0;\n",
|
185 |
+
" width: 32px;\n",
|
186 |
+
" }\n",
|
187 |
+
"\n",
|
188 |
+
" .colab-df-convert:hover {\n",
|
189 |
+
" background-color: #E2EBFA;\n",
|
190 |
+
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
|
191 |
+
" fill: #174EA6;\n",
|
192 |
+
" }\n",
|
193 |
+
"\n",
|
194 |
+
" .colab-df-buttons div {\n",
|
195 |
+
" margin-bottom: 4px;\n",
|
196 |
+
" }\n",
|
197 |
+
"\n",
|
198 |
+
" [theme=dark] .colab-df-convert {\n",
|
199 |
+
" background-color: #3B4455;\n",
|
200 |
+
" fill: #D2E3FC;\n",
|
201 |
+
" }\n",
|
202 |
+
"\n",
|
203 |
+
" [theme=dark] .colab-df-convert:hover {\n",
|
204 |
+
" background-color: #434B5C;\n",
|
205 |
+
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
|
206 |
+
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
|
207 |
+
" fill: #FFFFFF;\n",
|
208 |
+
" }\n",
|
209 |
+
" </style>\n",
|
210 |
+
"\n",
|
211 |
+
" <script>\n",
|
212 |
+
" const buttonEl =\n",
|
213 |
+
" document.querySelector('#df-0121428d-a55a-4066-834d-e387ad094c88 button.colab-df-convert');\n",
|
214 |
+
" buttonEl.style.display =\n",
|
215 |
+
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
|
216 |
+
"\n",
|
217 |
+
" async function convertToInteractive(key) {\n",
|
218 |
+
" const element = document.querySelector('#df-0121428d-a55a-4066-834d-e387ad094c88');\n",
|
219 |
+
" const dataTable =\n",
|
220 |
+
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
|
221 |
+
" [key], {});\n",
|
222 |
+
" if (!dataTable) return;\n",
|
223 |
+
"\n",
|
224 |
+
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
|
225 |
+
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
|
226 |
+
" + ' to learn more about interactive tables.';\n",
|
227 |
+
" element.innerHTML = '';\n",
|
228 |
+
" dataTable['output_type'] = 'display_data';\n",
|
229 |
+
" await google.colab.output.renderOutput(dataTable, element);\n",
|
230 |
+
" const docLink = document.createElement('div');\n",
|
231 |
+
" docLink.innerHTML = docLinkHtml;\n",
|
232 |
+
" element.appendChild(docLink);\n",
|
233 |
+
" }\n",
|
234 |
+
" </script>\n",
|
235 |
+
" </div>\n",
|
236 |
+
"\n",
|
237 |
+
"\n",
|
238 |
+
" </div>\n",
|
239 |
+
" </div>\n"
|
240 |
+
],
|
241 |
+
"application/vnd.google.colaboratory.intrinsic+json": {
|
242 |
+
"type": "dataframe",
|
243 |
+
"variable_name": "ml1_movies",
|
244 |
+
"summary": "{\n \"name\": \"ml1_movies\",\n \"rows\": 3883,\n \"fields\": [\n {\n \"column\": \"movie_id\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1146,\n \"min\": 1,\n \"max\": 3952,\n \"num_unique_values\": 3883,\n \"samples\": [\n 1365,\n 2706,\n 3667\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"title\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 3883,\n \"samples\": [\n \"Ridicule (1996)\",\n \"American Pie (1999)\",\n \"Rent-A-Cop (1988)\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"genres\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 301,\n \"samples\": [\n \"Action|Adventure|Comedy|Horror\",\n \"Romance|Western\",\n \"Action|Adventure|Children's|Comedy\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
|
245 |
+
}
|
246 |
+
},
|
247 |
+
"metadata": {},
|
248 |
+
"execution_count": 179
|
249 |
+
}
|
250 |
+
]
|
251 |
+
},
|
252 |
+
{
|
253 |
+
"cell_type": "code",
|
254 |
+
"source": [
|
255 |
+
"# Menggabungkan kolom 'genres' dari ml1_movies ke movies berdasarkan 'movie_id'\n",
|
256 |
+
"movies = movies.merge(ml1_movies[['movie_id', 'genres']], on='movie_id', how='left')\n",
|
257 |
+
"# Extract year from title\n",
|
258 |
+
"movies[[\"title\", \"year\"]] = movies[\"title\"].str.extract('(.*)\\((\\d+)\\)')\n",
|
259 |
+
"# Remove trailing whitespace from title\n",
|
260 |
+
"movies[\"title\"] = movies[\"title\"].str.strip()\n",
|
261 |
+
"ml1_movies = ml1_movies.iloc[0:0]"
|
262 |
+
],
|
263 |
+
"metadata": {
|
264 |
+
"id": "SIMv7RJdlV84"
|
265 |
+
},
|
266 |
+
"execution_count": 180,
|
267 |
+
"outputs": []
|
268 |
+
},
|
269 |
+
{
|
270 |
+
"cell_type": "code",
|
271 |
+
"source": [
|
272 |
+
"ml_meta_movies = pd.read_csv('movies_metadata.csv', low_memory=False)\n",
|
273 |
+
"ml_meta_movies.head(1)"
|
274 |
+
],
|
275 |
+
"metadata": {
|
276 |
+
"colab": {
|
277 |
+
"base_uri": "https://localhost:8080/",
|
278 |
+
"height": 0
|
279 |
+
},
|
280 |
+
"id": "zf-ApwFIldKw",
|
281 |
+
"outputId": "24de81f0-6af8-4b9a-c264-91d55ecc47ef"
|
282 |
+
},
|
283 |
+
"execution_count": 181,
|
284 |
+
"outputs": [
|
285 |
+
{
|
286 |
+
"output_type": "execute_result",
|
287 |
+
"data": {
|
288 |
+
"text/plain": [
|
289 |
+
" adult belongs_to_collection budget \\\n",
|
290 |
+
"0 False {'id': 10194, 'name': 'Toy Story Collection', ... 30000000 \n",
|
291 |
+
"\n",
|
292 |
+
" genres \\\n",
|
293 |
+
"0 [{'id': 16, 'name': 'Animation'}, {'id': 35, '... \n",
|
294 |
+
"\n",
|
295 |
+
" homepage id imdb_id original_language \\\n",
|
296 |
+
"0 http://toystory.disney.com/toy-story 862 tt0114709 en \n",
|
297 |
+
"\n",
|
298 |
+
" original_title overview ... \\\n",
|
299 |
+
"0 Toy Story Led by Woody, Andy's toys live happily in his ... ... \n",
|
300 |
+
"\n",
|
301 |
+
" release_date revenue runtime spoken_languages \\\n",
|
302 |
+
"0 1995-10-30 373554033.0 81.0 [{'iso_639_1': 'en', 'name': 'English'}] \n",
|
303 |
+
"\n",
|
304 |
+
" status tagline title video vote_average vote_count \n",
|
305 |
+
"0 Released NaN Toy Story False 7.7 5415.0 \n",
|
306 |
+
"\n",
|
307 |
+
"[1 rows x 24 columns]"
|
308 |
+
],
|
309 |
+
"text/html": [
|
310 |
+
"\n",
|
311 |
+
" <div id=\"df-d8591515-3aef-458e-9707-9fb81eb55634\" class=\"colab-df-container\">\n",
|
312 |
+
" <div>\n",
|
313 |
+
"<style scoped>\n",
|
314 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
315 |
+
" vertical-align: middle;\n",
|
316 |
+
" }\n",
|
317 |
+
"\n",
|
318 |
+
" .dataframe tbody tr th {\n",
|
319 |
+
" vertical-align: top;\n",
|
320 |
+
" }\n",
|
321 |
+
"\n",
|
322 |
+
" .dataframe thead th {\n",
|
323 |
+
" text-align: right;\n",
|
324 |
+
" }\n",
|
325 |
+
"</style>\n",
|
326 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
327 |
+
" <thead>\n",
|
328 |
+
" <tr style=\"text-align: right;\">\n",
|
329 |
+
" <th></th>\n",
|
330 |
+
" <th>adult</th>\n",
|
331 |
+
" <th>belongs_to_collection</th>\n",
|
332 |
+
" <th>budget</th>\n",
|
333 |
+
" <th>genres</th>\n",
|
334 |
+
" <th>homepage</th>\n",
|
335 |
+
" <th>id</th>\n",
|
336 |
+
" <th>imdb_id</th>\n",
|
337 |
+
" <th>original_language</th>\n",
|
338 |
+
" <th>original_title</th>\n",
|
339 |
+
" <th>overview</th>\n",
|
340 |
+
" <th>...</th>\n",
|
341 |
+
" <th>release_date</th>\n",
|
342 |
+
" <th>revenue</th>\n",
|
343 |
+
" <th>runtime</th>\n",
|
344 |
+
" <th>spoken_languages</th>\n",
|
345 |
+
" <th>status</th>\n",
|
346 |
+
" <th>tagline</th>\n",
|
347 |
+
" <th>title</th>\n",
|
348 |
+
" <th>video</th>\n",
|
349 |
+
" <th>vote_average</th>\n",
|
350 |
+
" <th>vote_count</th>\n",
|
351 |
+
" </tr>\n",
|
352 |
+
" </thead>\n",
|
353 |
+
" <tbody>\n",
|
354 |
+
" <tr>\n",
|
355 |
+
" <th>0</th>\n",
|
356 |
+
" <td>False</td>\n",
|
357 |
+
" <td>{'id': 10194, 'name': 'Toy Story Collection', ...</td>\n",
|
358 |
+
" <td>30000000</td>\n",
|
359 |
+
" <td>[{'id': 16, 'name': 'Animation'}, {'id': 35, '...</td>\n",
|
360 |
+
" <td>http://toystory.disney.com/toy-story</td>\n",
|
361 |
+
" <td>862</td>\n",
|
362 |
+
" <td>tt0114709</td>\n",
|
363 |
+
" <td>en</td>\n",
|
364 |
+
" <td>Toy Story</td>\n",
|
365 |
+
" <td>Led by Woody, Andy's toys live happily in his ...</td>\n",
|
366 |
+
" <td>...</td>\n",
|
367 |
+
" <td>1995-10-30</td>\n",
|
368 |
+
" <td>373554033.0</td>\n",
|
369 |
+
" <td>81.0</td>\n",
|
370 |
+
" <td>[{'iso_639_1': 'en', 'name': 'English'}]</td>\n",
|
371 |
+
" <td>Released</td>\n",
|
372 |
+
" <td>NaN</td>\n",
|
373 |
+
" <td>Toy Story</td>\n",
|
374 |
+
" <td>False</td>\n",
|
375 |
+
" <td>7.7</td>\n",
|
376 |
+
" <td>5415.0</td>\n",
|
377 |
+
" </tr>\n",
|
378 |
+
" </tbody>\n",
|
379 |
+
"</table>\n",
|
380 |
+
"<p>1 rows × 24 columns</p>\n",
|
381 |
+
"</div>\n",
|
382 |
+
" <div class=\"colab-df-buttons\">\n",
|
383 |
+
"\n",
|
384 |
+
" <div class=\"colab-df-container\">\n",
|
385 |
+
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-d8591515-3aef-458e-9707-9fb81eb55634')\"\n",
|
386 |
+
" title=\"Convert this dataframe to an interactive table.\"\n",
|
387 |
+
" style=\"display:none;\">\n",
|
388 |
+
"\n",
|
389 |
+
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n",
|
390 |
+
" <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n",
|
391 |
+
" </svg>\n",
|
392 |
+
" </button>\n",
|
393 |
+
"\n",
|
394 |
+
" <style>\n",
|
395 |
+
" .colab-df-container {\n",
|
396 |
+
" display:flex;\n",
|
397 |
+
" gap: 12px;\n",
|
398 |
+
" }\n",
|
399 |
+
"\n",
|
400 |
+
" .colab-df-convert {\n",
|
401 |
+
" background-color: #E8F0FE;\n",
|
402 |
+
" border: none;\n",
|
403 |
+
" border-radius: 50%;\n",
|
404 |
+
" cursor: pointer;\n",
|
405 |
+
" display: none;\n",
|
406 |
+
" fill: #1967D2;\n",
|
407 |
+
" height: 32px;\n",
|
408 |
+
" padding: 0 0 0 0;\n",
|
409 |
+
" width: 32px;\n",
|
410 |
+
" }\n",
|
411 |
+
"\n",
|
412 |
+
" .colab-df-convert:hover {\n",
|
413 |
+
" background-color: #E2EBFA;\n",
|
414 |
+
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
|
415 |
+
" fill: #174EA6;\n",
|
416 |
+
" }\n",
|
417 |
+
"\n",
|
418 |
+
" .colab-df-buttons div {\n",
|
419 |
+
" margin-bottom: 4px;\n",
|
420 |
+
" }\n",
|
421 |
+
"\n",
|
422 |
+
" [theme=dark] .colab-df-convert {\n",
|
423 |
+
" background-color: #3B4455;\n",
|
424 |
+
" fill: #D2E3FC;\n",
|
425 |
+
" }\n",
|
426 |
+
"\n",
|
427 |
+
" [theme=dark] .colab-df-convert:hover {\n",
|
428 |
+
" background-color: #434B5C;\n",
|
429 |
+
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
|
430 |
+
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
|
431 |
+
" fill: #FFFFFF;\n",
|
432 |
+
" }\n",
|
433 |
+
" </style>\n",
|
434 |
+
"\n",
|
435 |
+
" <script>\n",
|
436 |
+
" const buttonEl =\n",
|
437 |
+
" document.querySelector('#df-d8591515-3aef-458e-9707-9fb81eb55634 button.colab-df-convert');\n",
|
438 |
+
" buttonEl.style.display =\n",
|
439 |
+
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
|
440 |
+
"\n",
|
441 |
+
" async function convertToInteractive(key) {\n",
|
442 |
+
" const element = document.querySelector('#df-d8591515-3aef-458e-9707-9fb81eb55634');\n",
|
443 |
+
" const dataTable =\n",
|
444 |
+
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
|
445 |
+
" [key], {});\n",
|
446 |
+
" if (!dataTable) return;\n",
|
447 |
+
"\n",
|
448 |
+
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
|
449 |
+
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
|
450 |
+
" + ' to learn more about interactive tables.';\n",
|
451 |
+
" element.innerHTML = '';\n",
|
452 |
+
" dataTable['output_type'] = 'display_data';\n",
|
453 |
+
" await google.colab.output.renderOutput(dataTable, element);\n",
|
454 |
+
" const docLink = document.createElement('div');\n",
|
455 |
+
" docLink.innerHTML = docLinkHtml;\n",
|
456 |
+
" element.appendChild(docLink);\n",
|
457 |
+
" }\n",
|
458 |
+
" </script>\n",
|
459 |
+
" </div>\n",
|
460 |
+
"\n",
|
461 |
+
"\n",
|
462 |
+
" </div>\n",
|
463 |
+
" </div>\n"
|
464 |
+
],
|
465 |
+
"application/vnd.google.colaboratory.intrinsic+json": {
|
466 |
+
"type": "dataframe",
|
467 |
+
"variable_name": "ml_meta_movies"
|
468 |
+
}
|
469 |
+
},
|
470 |
+
"metadata": {},
|
471 |
+
"execution_count": 181
|
472 |
+
}
|
473 |
+
]
|
474 |
+
},
|
475 |
+
{
|
476 |
+
"cell_type": "code",
|
477 |
+
"source": [
|
478 |
+
"print(movies[\"movie_id\"].nunique())\n",
|
479 |
+
"print(users[\"user_id\"].nunique())"
|
480 |
+
],
|
481 |
+
"metadata": {
|
482 |
+
"colab": {
|
483 |
+
"base_uri": "https://localhost:8080/"
|
484 |
+
},
|
485 |
+
"id": "fNy0OWLnqHkC",
|
486 |
+
"outputId": "fafeda16-2ece-4738-ae68-3189b7d30cca"
|
487 |
+
},
|
488 |
+
"execution_count": 182,
|
489 |
+
"outputs": [
|
490 |
+
{
|
491 |
+
"output_type": "stream",
|
492 |
+
"name": "stdout",
|
493 |
+
"text": [
|
494 |
+
"1682\n",
|
495 |
+
"943\n"
|
496 |
+
]
|
497 |
+
}
|
498 |
+
]
|
499 |
+
},
|
500 |
+
{
|
501 |
+
"cell_type": "code",
|
502 |
+
"source": [
|
503 |
+
"# prompt: i wanna check that all title on dataframe movies is exists on dataframe ml_meta_movies with column title or original_title and how many title is not exists, with text is lowercase, and remove the row on movies if is not exists.\n",
|
504 |
+
"\n",
|
505 |
+
"# Convert titles to lowercase for comparison\n",
|
506 |
+
"movies['title_lower'] = movies['title'].str.lower()\n",
|
507 |
+
"ml_meta_movies['title_lower'] = ml_meta_movies['title'].str.lower()\n",
|
508 |
+
"ml_meta_movies['original_title_lower'] = ml_meta_movies['original_title'].str.lower()\n",
|
509 |
+
"\n",
|
510 |
+
"# Check which titles in 'movies' exist in 'ml_meta_movies'\n",
|
511 |
+
"movies_exist = movies['title_lower'].isin(ml_meta_movies['title_lower']) | movies['title_lower'].isin(ml_meta_movies['original_title_lower'])\n",
|
512 |
+
"\n",
|
513 |
+
"# Count how many titles don't exist\n",
|
514 |
+
"not_exist_count = (~movies_exist).sum()\n",
|
515 |
+
"print(\"Number of titles not existing in ml_meta_movies:\", not_exist_count)\n",
|
516 |
+
"\n",
|
517 |
+
"# Remove rows from 'movies' where titles don't exist\n",
|
518 |
+
"movies = movies[movies_exist]\n",
|
519 |
+
"\n",
|
520 |
+
"# Drop the temporary lowercase title columns\n",
|
521 |
+
"movies = movies.drop(['title_lower'], axis=1)\n",
|
522 |
+
"ml_meta_movies = ml_meta_movies.drop(['title_lower', 'original_title_lower'], axis=1)\n",
|
523 |
+
"movies.reset_index(drop=True, inplace=True)"
|
524 |
+
],
|
525 |
+
"metadata": {
|
526 |
+
"colab": {
|
527 |
+
"base_uri": "https://localhost:8080/"
|
528 |
+
},
|
529 |
+
"id": "Wg9oVcqi9m7p",
|
530 |
+
"outputId": "b664355e-2d3f-4357-a02b-1f6d0e39b355"
|
531 |
+
},
|
532 |
+
"execution_count": 183,
|
533 |
+
"outputs": [
|
534 |
+
{
|
535 |
+
"output_type": "stream",
|
536 |
+
"name": "stdout",
|
537 |
+
"text": [
|
538 |
+
"Number of titles not existing in ml_meta_movies: 518\n"
|
539 |
+
]
|
540 |
+
}
|
541 |
+
]
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"cell_type": "code",
|
545 |
+
"source": [
|
546 |
+
"# prompt: remove all rows on ratings dataframe if the column movie_id is not exists on movies dataframe\n",
|
547 |
+
"\n",
|
548 |
+
"# Filter ratings DataFrame based on movie existence\n",
|
549 |
+
"ratings = ratings[ratings['movie_id'].isin(movies['movie_id'])]\n",
|
550 |
+
"ratings.reset_index(drop=True, inplace=True)"
|
551 |
+
],
|
552 |
+
"metadata": {
|
553 |
+
"id": "2FZmRDYP-MQM"
|
554 |
+
},
|
555 |
+
"execution_count": 184,
|
556 |
+
"outputs": []
|
557 |
+
},
|
558 |
+
{
|
559 |
+
"cell_type": "code",
|
560 |
+
"source": [
|
561 |
+
"# prompt: Can you reset movie_id column on movies datafram start to 1 and syncronize to movie_id on ratings dataframe\n",
|
562 |
+
"\n",
|
563 |
+
"# Create a mapping of old movie_id to new movie_id\n",
|
564 |
+
"movie_id_map = {old_id: new_id for new_id, old_id in enumerate(movies['movie_id'].unique(), start=1)}\n",
|
565 |
+
"\n",
|
566 |
+
"# Apply the mapping to the movies DataFrame\n",
|
567 |
+
"movies['movie_id'] = movies['movie_id'].map(movie_id_map)\n",
|
568 |
+
"\n",
|
569 |
+
"# Apply the mapping to the ratings DataFrame\n",
|
570 |
+
"ratings['movie_id'] = ratings['movie_id'].map(movie_id_map)"
|
571 |
+
],
|
572 |
+
"metadata": {
|
573 |
+
"colab": {
|
574 |
+
"base_uri": "https://localhost:8080/"
|
575 |
+
},
|
576 |
+
"id": "WPOSzdEoB7qP",
|
577 |
+
"outputId": "02a53bdb-92f0-456d-8aae-d4b30777d04e"
|
578 |
+
},
|
579 |
+
"execution_count": 185,
|
580 |
+
"outputs": [
|
581 |
+
{
|
582 |
+
"output_type": "stream",
|
583 |
+
"name": "stderr",
|
584 |
+
"text": [
|
585 |
+
"<ipython-input-185-05ef1c64b40f>:10: SettingWithCopyWarning: \n",
|
586 |
+
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
587 |
+
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
588 |
+
"\n",
|
589 |
+
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
590 |
+
" ratings['movie_id'] = ratings['movie_id'].map(movie_id_map)\n"
|
591 |
+
]
|
592 |
+
}
|
593 |
+
]
|
594 |
+
},
|
595 |
+
{
|
596 |
+
"cell_type": "code",
|
597 |
+
"source": [
|
598 |
+
"# prompt: Can you reset user_id column on ratings datafram start to 1 and syncronize to user_id on users dataframe and remove all rows on users when the user_id is not exist on unique user_id on ratings\n",
|
599 |
+
"\n",
|
600 |
+
"# Get unique user_ids from ratings\n",
|
601 |
+
"unique_rating_users = ratings['user_id'].unique()\n",
|
602 |
+
"\n",
|
603 |
+
"# Filter users DataFrame to keep only users present in ratings\n",
|
604 |
+
"users = users[users['user_id'].isin(unique_rating_users)]\n",
|
605 |
+
"users.reset_index(drop=True, inplace=True)\n",
|
606 |
+
"\n",
|
607 |
+
"# Create a mapping of old user_id to new user_id\n",
|
608 |
+
"user_id_map = {old_id: new_id for new_id, old_id in enumerate(users['user_id'].unique(), start=1)}\n",
|
609 |
+
"\n",
|
610 |
+
"# Apply the mapping to the users DataFrame\n",
|
611 |
+
"users['user_id'] = users['user_id'].map(user_id_map)\n",
|
612 |
+
"\n",
|
613 |
+
"# Apply the mapping to the ratings DataFrame\n",
|
614 |
+
"ratings['user_id'] = ratings['user_id'].map(user_id_map)\n"
|
615 |
+
],
|
616 |
+
"metadata": {
|
617 |
+
"colab": {
|
618 |
+
"base_uri": "https://localhost:8080/"
|
619 |
+
},
|
620 |
+
"id": "YulqHdu7Dmf6",
|
621 |
+
"outputId": "9ff98c2c-0b7d-419c-8698-bfb51c48ca09"
|
622 |
+
},
|
623 |
+
"execution_count": 186,
|
624 |
+
"outputs": [
|
625 |
+
{
|
626 |
+
"output_type": "stream",
|
627 |
+
"name": "stderr",
|
628 |
+
"text": [
|
629 |
+
"<ipython-input-186-63a67bcdbf80>:17: SettingWithCopyWarning: \n",
|
630 |
+
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
631 |
+
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
632 |
+
"\n",
|
633 |
+
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
634 |
+
" ratings['user_id'] = ratings['user_id'].map(user_id_map)\n"
|
635 |
+
]
|
636 |
+
}
|
637 |
+
]
|
638 |
+
},
|
639 |
+
{
|
640 |
+
"cell_type": "code",
|
641 |
+
"source": [
|
642 |
+
"# prompt: Now i want to copy columns adult, original_language, original_title, overview, popularity, release_date, revenue, runtime, vote_average, dan vote_count from ml_meta_movies to movies dataframe based on title or original_title\n",
|
643 |
+
"\n",
|
644 |
+
"# Create temporary lowercase title columns for efficient comparison\n",
|
645 |
+
"movies['title_lower'] = movies['title'].str.lower()\n",
|
646 |
+
"ml_meta_movies['title_lower'] = ml_meta_movies['title'].str.lower()\n",
|
647 |
+
"ml_meta_movies['original_title_lower'] = ml_meta_movies['original_title'].str.lower()\n",
|
648 |
+
"\n",
|
649 |
+
"# Initialize new columns in 'movies' DataFrame\n",
|
650 |
+
"movies['adult'] = None\n",
|
651 |
+
"movies['original_language'] = None\n",
|
652 |
+
"movies['original_title'] = None\n",
|
653 |
+
"movies['overview'] = None\n",
|
654 |
+
"movies['popularity'] = None\n",
|
655 |
+
"movies['release_date'] = None\n",
|
656 |
+
"movies['revenue'] = None\n",
|
657 |
+
"movies['runtime'] = None\n",
|
658 |
+
"movies['vote_average'] = None\n",
|
659 |
+
"movies['vote_count'] = None\n",
|
660 |
+
"\n",
|
661 |
+
"# Iterate over 'movies' and copy data from 'ml_meta_movies'\n",
|
662 |
+
"for index, row in movies.iterrows():\n",
|
663 |
+
" title_lower = row['title_lower']\n",
|
664 |
+
" match = ml_meta_movies[(ml_meta_movies['title_lower'] == title_lower) | (ml_meta_movies['original_title_lower'] == title_lower)]\n",
|
665 |
+
" if not match.empty:\n",
|
666 |
+
" movies.loc[index, 'adult'] = match['adult'].iloc[0]\n",
|
667 |
+
" movies.loc[index, 'original_language'] = match['original_language'].iloc[0]\n",
|
668 |
+
" movies.loc[index, 'original_title'] = match['original_title'].iloc[0]\n",
|
669 |
+
" movies.loc[index, 'overview'] = match['overview'].iloc[0]\n",
|
670 |
+
" movies.loc[index, 'popularity'] = match['popularity'].iloc[0]\n",
|
671 |
+
" movies.loc[index, 'release_date'] = match['release_date'].iloc[0]\n",
|
672 |
+
" movies.loc[index, 'revenue'] = match['revenue'].iloc[0]\n",
|
673 |
+
" movies.loc[index, 'runtime'] = match['runtime'].iloc[0]\n",
|
674 |
+
" movies.loc[index, 'vote_average'] = match['vote_average'].iloc[0]\n",
|
675 |
+
" movies.loc[index, 'vote_count'] = match['vote_count'].iloc[0]\n",
|
676 |
+
"\n",
|
677 |
+
"# Drop the temporary lowercase title columns\n",
|
678 |
+
"movies = movies.drop(['title_lower'], axis=1)\n",
|
679 |
+
"ml_meta_movies = ml_meta_movies.drop(['title_lower', 'original_title_lower'], axis=1)\n"
|
680 |
+
],
|
681 |
+
"metadata": {
|
682 |
+
"id": "joj4h0U2JNRL"
|
683 |
+
},
|
684 |
+
"execution_count": 187,
|
685 |
+
"outputs": []
|
686 |
+
},
|
687 |
+
{
|
688 |
+
"cell_type": "markdown",
|
689 |
+
"source": [
|
690 |
+
"## Show Tables"
|
691 |
+
],
|
692 |
+
"metadata": {
|
693 |
+
"id": "jA-vHTcjiaYj"
|
694 |
+
}
|
695 |
+
},
|
696 |
+
{
|
697 |
+
"cell_type": "code",
|
698 |
+
"source": [
|
699 |
+
"# Ratings\n",
|
700 |
+
"ratings.head(1)"
|
701 |
+
],
|
702 |
+
"metadata": {
|
703 |
+
"colab": {
|
704 |
+
"base_uri": "https://localhost:8080/",
|
705 |
+
"height": 0
|
706 |
+
},
|
707 |
+
"id": "-gEkmf5mevq2",
|
708 |
+
"outputId": "b0495a83-b6f9-41da-d493-4f04dd3efb3e"
|
709 |
+
},
|
710 |
+
"execution_count": 188,
|
711 |
+
"outputs": [
|
712 |
+
{
|
713 |
+
"output_type": "execute_result",
|
714 |
+
"data": {
|
715 |
+
"text/plain": [
|
716 |
+
" user_id movie_id rating timestamp\n",
|
717 |
+
"0 196 169 3 881250949"
|
718 |
+
],
|
719 |
+
"text/html": [
|
720 |
+
"\n",
|
721 |
+
" <div id=\"df-046071fc-1ebc-4261-8a1c-d4bca4119035\" class=\"colab-df-container\">\n",
|
722 |
+
" <div>\n",
|
723 |
+
"<style scoped>\n",
|
724 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
725 |
+
" vertical-align: middle;\n",
|
726 |
+
" }\n",
|
727 |
+
"\n",
|
728 |
+
" .dataframe tbody tr th {\n",
|
729 |
+
" vertical-align: top;\n",
|
730 |
+
" }\n",
|
731 |
+
"\n",
|
732 |
+
" .dataframe thead th {\n",
|
733 |
+
" text-align: right;\n",
|
734 |
+
" }\n",
|
735 |
+
"</style>\n",
|
736 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
737 |
+
" <thead>\n",
|
738 |
+
" <tr style=\"text-align: right;\">\n",
|
739 |
+
" <th></th>\n",
|
740 |
+
" <th>user_id</th>\n",
|
741 |
+
" <th>movie_id</th>\n",
|
742 |
+
" <th>rating</th>\n",
|
743 |
+
" <th>timestamp</th>\n",
|
744 |
+
" </tr>\n",
|
745 |
+
" </thead>\n",
|
746 |
+
" <tbody>\n",
|
747 |
+
" <tr>\n",
|
748 |
+
" <th>0</th>\n",
|
749 |
+
" <td>196</td>\n",
|
750 |
+
" <td>169</td>\n",
|
751 |
+
" <td>3</td>\n",
|
752 |
+
" <td>881250949</td>\n",
|
753 |
+
" </tr>\n",
|
754 |
+
" </tbody>\n",
|
755 |
+
"</table>\n",
|
756 |
+
"</div>\n",
|
757 |
+
" <div class=\"colab-df-buttons\">\n",
|
758 |
+
"\n",
|
759 |
+
" <div class=\"colab-df-container\">\n",
|
760 |
+
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-046071fc-1ebc-4261-8a1c-d4bca4119035')\"\n",
|
761 |
+
" title=\"Convert this dataframe to an interactive table.\"\n",
|
762 |
+
" style=\"display:none;\">\n",
|
763 |
+
"\n",
|
764 |
+
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n",
|
765 |
+
" <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n",
|
766 |
+
" </svg>\n",
|
767 |
+
" </button>\n",
|
768 |
+
"\n",
|
769 |
+
" <style>\n",
|
770 |
+
" .colab-df-container {\n",
|
771 |
+
" display:flex;\n",
|
772 |
+
" gap: 12px;\n",
|
773 |
+
" }\n",
|
774 |
+
"\n",
|
775 |
+
" .colab-df-convert {\n",
|
776 |
+
" background-color: #E8F0FE;\n",
|
777 |
+
" border: none;\n",
|
778 |
+
" border-radius: 50%;\n",
|
779 |
+
" cursor: pointer;\n",
|
780 |
+
" display: none;\n",
|
781 |
+
" fill: #1967D2;\n",
|
782 |
+
" height: 32px;\n",
|
783 |
+
" padding: 0 0 0 0;\n",
|
784 |
+
" width: 32px;\n",
|
785 |
+
" }\n",
|
786 |
+
"\n",
|
787 |
+
" .colab-df-convert:hover {\n",
|
788 |
+
" background-color: #E2EBFA;\n",
|
789 |
+
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
|
790 |
+
" fill: #174EA6;\n",
|
791 |
+
" }\n",
|
792 |
+
"\n",
|
793 |
+
" .colab-df-buttons div {\n",
|
794 |
+
" margin-bottom: 4px;\n",
|
795 |
+
" }\n",
|
796 |
+
"\n",
|
797 |
+
" [theme=dark] .colab-df-convert {\n",
|
798 |
+
" background-color: #3B4455;\n",
|
799 |
+
" fill: #D2E3FC;\n",
|
800 |
+
" }\n",
|
801 |
+
"\n",
|
802 |
+
" [theme=dark] .colab-df-convert:hover {\n",
|
803 |
+
" background-color: #434B5C;\n",
|
804 |
+
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
|
805 |
+
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
|
806 |
+
" fill: #FFFFFF;\n",
|
807 |
+
" }\n",
|
808 |
+
" </style>\n",
|
809 |
+
"\n",
|
810 |
+
" <script>\n",
|
811 |
+
" const buttonEl =\n",
|
812 |
+
" document.querySelector('#df-046071fc-1ebc-4261-8a1c-d4bca4119035 button.colab-df-convert');\n",
|
813 |
+
" buttonEl.style.display =\n",
|
814 |
+
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
|
815 |
+
"\n",
|
816 |
+
" async function convertToInteractive(key) {\n",
|
817 |
+
" const element = document.querySelector('#df-046071fc-1ebc-4261-8a1c-d4bca4119035');\n",
|
818 |
+
" const dataTable =\n",
|
819 |
+
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
|
820 |
+
" [key], {});\n",
|
821 |
+
" if (!dataTable) return;\n",
|
822 |
+
"\n",
|
823 |
+
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
|
824 |
+
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
|
825 |
+
" + ' to learn more about interactive tables.';\n",
|
826 |
+
" element.innerHTML = '';\n",
|
827 |
+
" dataTable['output_type'] = 'display_data';\n",
|
828 |
+
" await google.colab.output.renderOutput(dataTable, element);\n",
|
829 |
+
" const docLink = document.createElement('div');\n",
|
830 |
+
" docLink.innerHTML = docLinkHtml;\n",
|
831 |
+
" element.appendChild(docLink);\n",
|
832 |
+
" }\n",
|
833 |
+
" </script>\n",
|
834 |
+
" </div>\n",
|
835 |
+
"\n",
|
836 |
+
"\n",
|
837 |
+
" </div>\n",
|
838 |
+
" </div>\n"
|
839 |
+
],
|
840 |
+
"application/vnd.google.colaboratory.intrinsic+json": {
|
841 |
+
"type": "dataframe",
|
842 |
+
"variable_name": "ratings",
|
843 |
+
"summary": "{\n \"name\": \"ratings\",\n \"rows\": 72799,\n \"fields\": [\n {\n \"column\": \"user_id\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 266,\n \"min\": 1,\n \"max\": 943,\n \"num_unique_values\": 943,\n \"samples\": [\n 1,\n 204,\n 812\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"movie_id\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 236,\n \"min\": 1,\n \"max\": 1164,\n \"num_unique_values\": 1164,\n \"samples\": [\n 652,\n 683,\n 485\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"rating\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1,\n \"min\": 1,\n \"max\": 5,\n \"num_unique_values\": 5,\n \"samples\": [\n 1,\n 5,\n 2\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"timestamp\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 5332640,\n \"min\": 874724710,\n \"max\": 893286638,\n \"num_unique_values\": 41739,\n \"samples\": [\n 892836523,\n 891224840,\n 882910457\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
|
844 |
+
}
|
845 |
+
},
|
846 |
+
"metadata": {},
|
847 |
+
"execution_count": 188
|
848 |
+
}
|
849 |
+
]
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"cell_type": "code",
|
853 |
+
"source": [
|
854 |
+
"# Users\n",
|
855 |
+
"users.head(1)"
|
856 |
+
],
|
857 |
+
"metadata": {
|
858 |
+
"colab": {
|
859 |
+
"base_uri": "https://localhost:8080/",
|
860 |
+
"height": 0
|
861 |
+
},
|
862 |
+
"id": "02jusHhgipqH",
|
863 |
+
"outputId": "f8b6812e-1106-4f08-967f-f524b2b7e45b"
|
864 |
+
},
|
865 |
+
"execution_count": 189,
|
866 |
+
"outputs": [
|
867 |
+
{
|
868 |
+
"output_type": "execute_result",
|
869 |
+
"data": {
|
870 |
+
"text/plain": [
|
871 |
+
" user_id gender age occupation zip_code\n",
|
872 |
+
"0 1 24 M technician 85711"
|
873 |
+
],
|
874 |
+
"text/html": [
|
875 |
+
"\n",
|
876 |
+
" <div id=\"df-1b7be07c-888a-4129-ab46-b905f73eb705\" class=\"colab-df-container\">\n",
|
877 |
+
" <div>\n",
|
878 |
+
"<style scoped>\n",
|
879 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
880 |
+
" vertical-align: middle;\n",
|
881 |
+
" }\n",
|
882 |
+
"\n",
|
883 |
+
" .dataframe tbody tr th {\n",
|
884 |
+
" vertical-align: top;\n",
|
885 |
+
" }\n",
|
886 |
+
"\n",
|
887 |
+
" .dataframe thead th {\n",
|
888 |
+
" text-align: right;\n",
|
889 |
+
" }\n",
|
890 |
+
"</style>\n",
|
891 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
892 |
+
" <thead>\n",
|
893 |
+
" <tr style=\"text-align: right;\">\n",
|
894 |
+
" <th></th>\n",
|
895 |
+
" <th>user_id</th>\n",
|
896 |
+
" <th>gender</th>\n",
|
897 |
+
" <th>age</th>\n",
|
898 |
+
" <th>occupation</th>\n",
|
899 |
+
" <th>zip_code</th>\n",
|
900 |
+
" </tr>\n",
|
901 |
+
" </thead>\n",
|
902 |
+
" <tbody>\n",
|
903 |
+
" <tr>\n",
|
904 |
+
" <th>0</th>\n",
|
905 |
+
" <td>1</td>\n",
|
906 |
+
" <td>24</td>\n",
|
907 |
+
" <td>M</td>\n",
|
908 |
+
" <td>technician</td>\n",
|
909 |
+
" <td>85711</td>\n",
|
910 |
+
" </tr>\n",
|
911 |
+
" </tbody>\n",
|
912 |
+
"</table>\n",
|
913 |
+
"</div>\n",
|
914 |
+
" <div class=\"colab-df-buttons\">\n",
|
915 |
+
"\n",
|
916 |
+
" <div class=\"colab-df-container\">\n",
|
917 |
+
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-1b7be07c-888a-4129-ab46-b905f73eb705')\"\n",
|
918 |
+
" title=\"Convert this dataframe to an interactive table.\"\n",
|
919 |
+
" style=\"display:none;\">\n",
|
920 |
+
"\n",
|
921 |
+
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n",
|
922 |
+
" <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n",
|
923 |
+
" </svg>\n",
|
924 |
+
" </button>\n",
|
925 |
+
"\n",
|
926 |
+
" <style>\n",
|
927 |
+
" .colab-df-container {\n",
|
928 |
+
" display:flex;\n",
|
929 |
+
" gap: 12px;\n",
|
930 |
+
" }\n",
|
931 |
+
"\n",
|
932 |
+
" .colab-df-convert {\n",
|
933 |
+
" background-color: #E8F0FE;\n",
|
934 |
+
" border: none;\n",
|
935 |
+
" border-radius: 50%;\n",
|
936 |
+
" cursor: pointer;\n",
|
937 |
+
" display: none;\n",
|
938 |
+
" fill: #1967D2;\n",
|
939 |
+
" height: 32px;\n",
|
940 |
+
" padding: 0 0 0 0;\n",
|
941 |
+
" width: 32px;\n",
|
942 |
+
" }\n",
|
943 |
+
"\n",
|
944 |
+
" .colab-df-convert:hover {\n",
|
945 |
+
" background-color: #E2EBFA;\n",
|
946 |
+
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
|
947 |
+
" fill: #174EA6;\n",
|
948 |
+
" }\n",
|
949 |
+
"\n",
|
950 |
+
" .colab-df-buttons div {\n",
|
951 |
+
" margin-bottom: 4px;\n",
|
952 |
+
" }\n",
|
953 |
+
"\n",
|
954 |
+
" [theme=dark] .colab-df-convert {\n",
|
955 |
+
" background-color: #3B4455;\n",
|
956 |
+
" fill: #D2E3FC;\n",
|
957 |
+
" }\n",
|
958 |
+
"\n",
|
959 |
+
" [theme=dark] .colab-df-convert:hover {\n",
|
960 |
+
" background-color: #434B5C;\n",
|
961 |
+
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
|
962 |
+
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
|
963 |
+
" fill: #FFFFFF;\n",
|
964 |
+
" }\n",
|
965 |
+
" </style>\n",
|
966 |
+
"\n",
|
967 |
+
" <script>\n",
|
968 |
+
" const buttonEl =\n",
|
969 |
+
" document.querySelector('#df-1b7be07c-888a-4129-ab46-b905f73eb705 button.colab-df-convert');\n",
|
970 |
+
" buttonEl.style.display =\n",
|
971 |
+
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
|
972 |
+
"\n",
|
973 |
+
" async function convertToInteractive(key) {\n",
|
974 |
+
" const element = document.querySelector('#df-1b7be07c-888a-4129-ab46-b905f73eb705');\n",
|
975 |
+
" const dataTable =\n",
|
976 |
+
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
|
977 |
+
" [key], {});\n",
|
978 |
+
" if (!dataTable) return;\n",
|
979 |
+
"\n",
|
980 |
+
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
|
981 |
+
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
|
982 |
+
" + ' to learn more about interactive tables.';\n",
|
983 |
+
" element.innerHTML = '';\n",
|
984 |
+
" dataTable['output_type'] = 'display_data';\n",
|
985 |
+
" await google.colab.output.renderOutput(dataTable, element);\n",
|
986 |
+
" const docLink = document.createElement('div');\n",
|
987 |
+
" docLink.innerHTML = docLinkHtml;\n",
|
988 |
+
" element.appendChild(docLink);\n",
|
989 |
+
" }\n",
|
990 |
+
" </script>\n",
|
991 |
+
" </div>\n",
|
992 |
+
"\n",
|
993 |
+
"\n",
|
994 |
+
" </div>\n",
|
995 |
+
" </div>\n"
|
996 |
+
],
|
997 |
+
"application/vnd.google.colaboratory.intrinsic+json": {
|
998 |
+
"type": "dataframe",
|
999 |
+
"variable_name": "users",
|
1000 |
+
"summary": "{\n \"name\": \"users\",\n \"rows\": 943,\n \"fields\": [\n {\n \"column\": \"user_id\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 272,\n \"min\": 1,\n \"max\": 943,\n \"num_unique_values\": 943,\n \"samples\": [\n 97,\n 266,\n 811\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"gender\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 12,\n \"min\": 7,\n \"max\": 73,\n \"num_unique_values\": 61,\n \"samples\": [\n 24,\n 57,\n 52\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"age\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 2,\n \"samples\": [\n \"F\",\n \"M\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"occupation\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 21,\n \"samples\": [\n \"technician\",\n \"healthcare\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"zip_code\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 795,\n \"samples\": [\n \"90016\",\n \"15232\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
|
1001 |
+
}
|
1002 |
+
},
|
1003 |
+
"metadata": {},
|
1004 |
+
"execution_count": 189
|
1005 |
+
}
|
1006 |
+
]
|
1007 |
+
},
|
1008 |
+
{
|
1009 |
+
"cell_type": "code",
|
1010 |
+
"source": [
|
1011 |
+
"# Movies\n",
|
1012 |
+
"movies.head(1)"
|
1013 |
+
],
|
1014 |
+
"metadata": {
|
1015 |
+
"colab": {
|
1016 |
+
"base_uri": "https://localhost:8080/",
|
1017 |
+
"height": 0
|
1018 |
+
},
|
1019 |
+
"id": "5y3nX2tQivh_",
|
1020 |
+
"outputId": "ec5a7f2c-eb79-4fc9-a58e-5473a6074d2a"
|
1021 |
+
},
|
1022 |
+
"execution_count": 190,
|
1023 |
+
"outputs": [
|
1024 |
+
{
|
1025 |
+
"output_type": "execute_result",
|
1026 |
+
"data": {
|
1027 |
+
"text/plain": [
|
1028 |
+
" movie_id title release_date \\\n",
|
1029 |
+
"0 1 Toy Story 1995-10-30 \n",
|
1030 |
+
"\n",
|
1031 |
+
" imdb_url \\\n",
|
1032 |
+
"0 http://us.imdb.com/M/title-exact?Toy%20Story%2... \n",
|
1033 |
+
"\n",
|
1034 |
+
" genres year adult original_language original_title \\\n",
|
1035 |
+
"0 Animation|Children's|Comedy 1995 False en Toy Story \n",
|
1036 |
+
"\n",
|
1037 |
+
" overview popularity revenue \\\n",
|
1038 |
+
"0 Led by Woody, Andy's toys live happily in his ... 21.946943 373554033.0 \n",
|
1039 |
+
"\n",
|
1040 |
+
" runtime vote_average vote_count \n",
|
1041 |
+
"0 81.0 7.7 5415.0 "
|
1042 |
+
],
|
1043 |
+
"text/html": [
|
1044 |
+
"\n",
|
1045 |
+
" <div id=\"df-1c36e9a6-1049-44ca-879c-ccaf267483f7\" class=\"colab-df-container\">\n",
|
1046 |
+
" <div>\n",
|
1047 |
+
"<style scoped>\n",
|
1048 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
1049 |
+
" vertical-align: middle;\n",
|
1050 |
+
" }\n",
|
1051 |
+
"\n",
|
1052 |
+
" .dataframe tbody tr th {\n",
|
1053 |
+
" vertical-align: top;\n",
|
1054 |
+
" }\n",
|
1055 |
+
"\n",
|
1056 |
+
" .dataframe thead th {\n",
|
1057 |
+
" text-align: right;\n",
|
1058 |
+
" }\n",
|
1059 |
+
"</style>\n",
|
1060 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
1061 |
+
" <thead>\n",
|
1062 |
+
" <tr style=\"text-align: right;\">\n",
|
1063 |
+
" <th></th>\n",
|
1064 |
+
" <th>movie_id</th>\n",
|
1065 |
+
" <th>title</th>\n",
|
1066 |
+
" <th>release_date</th>\n",
|
1067 |
+
" <th>imdb_url</th>\n",
|
1068 |
+
" <th>genres</th>\n",
|
1069 |
+
" <th>year</th>\n",
|
1070 |
+
" <th>adult</th>\n",
|
1071 |
+
" <th>original_language</th>\n",
|
1072 |
+
" <th>original_title</th>\n",
|
1073 |
+
" <th>overview</th>\n",
|
1074 |
+
" <th>popularity</th>\n",
|
1075 |
+
" <th>revenue</th>\n",
|
1076 |
+
" <th>runtime</th>\n",
|
1077 |
+
" <th>vote_average</th>\n",
|
1078 |
+
" <th>vote_count</th>\n",
|
1079 |
+
" </tr>\n",
|
1080 |
+
" </thead>\n",
|
1081 |
+
" <tbody>\n",
|
1082 |
+
" <tr>\n",
|
1083 |
+
" <th>0</th>\n",
|
1084 |
+
" <td>1</td>\n",
|
1085 |
+
" <td>Toy Story</td>\n",
|
1086 |
+
" <td>1995-10-30</td>\n",
|
1087 |
+
" <td>http://us.imdb.com/M/title-exact?Toy%20Story%2...</td>\n",
|
1088 |
+
" <td>Animation|Children's|Comedy</td>\n",
|
1089 |
+
" <td>1995</td>\n",
|
1090 |
+
" <td>False</td>\n",
|
1091 |
+
" <td>en</td>\n",
|
1092 |
+
" <td>Toy Story</td>\n",
|
1093 |
+
" <td>Led by Woody, Andy's toys live happily in his ...</td>\n",
|
1094 |
+
" <td>21.946943</td>\n",
|
1095 |
+
" <td>373554033.0</td>\n",
|
1096 |
+
" <td>81.0</td>\n",
|
1097 |
+
" <td>7.7</td>\n",
|
1098 |
+
" <td>5415.0</td>\n",
|
1099 |
+
" </tr>\n",
|
1100 |
+
" </tbody>\n",
|
1101 |
+
"</table>\n",
|
1102 |
+
"</div>\n",
|
1103 |
+
" <div class=\"colab-df-buttons\">\n",
|
1104 |
+
"\n",
|
1105 |
+
" <div class=\"colab-df-container\">\n",
|
1106 |
+
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-1c36e9a6-1049-44ca-879c-ccaf267483f7')\"\n",
|
1107 |
+
" title=\"Convert this dataframe to an interactive table.\"\n",
|
1108 |
+
" style=\"display:none;\">\n",
|
1109 |
+
"\n",
|
1110 |
+
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n",
|
1111 |
+
" <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n",
|
1112 |
+
" </svg>\n",
|
1113 |
+
" </button>\n",
|
1114 |
+
"\n",
|
1115 |
+
" <style>\n",
|
1116 |
+
" .colab-df-container {\n",
|
1117 |
+
" display:flex;\n",
|
1118 |
+
" gap: 12px;\n",
|
1119 |
+
" }\n",
|
1120 |
+
"\n",
|
1121 |
+
" .colab-df-convert {\n",
|
1122 |
+
" background-color: #E8F0FE;\n",
|
1123 |
+
" border: none;\n",
|
1124 |
+
" border-radius: 50%;\n",
|
1125 |
+
" cursor: pointer;\n",
|
1126 |
+
" display: none;\n",
|
1127 |
+
" fill: #1967D2;\n",
|
1128 |
+
" height: 32px;\n",
|
1129 |
+
" padding: 0 0 0 0;\n",
|
1130 |
+
" width: 32px;\n",
|
1131 |
+
" }\n",
|
1132 |
+
"\n",
|
1133 |
+
" .colab-df-convert:hover {\n",
|
1134 |
+
" background-color: #E2EBFA;\n",
|
1135 |
+
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
|
1136 |
+
" fill: #174EA6;\n",
|
1137 |
+
" }\n",
|
1138 |
+
"\n",
|
1139 |
+
" .colab-df-buttons div {\n",
|
1140 |
+
" margin-bottom: 4px;\n",
|
1141 |
+
" }\n",
|
1142 |
+
"\n",
|
1143 |
+
" [theme=dark] .colab-df-convert {\n",
|
1144 |
+
" background-color: #3B4455;\n",
|
1145 |
+
" fill: #D2E3FC;\n",
|
1146 |
+
" }\n",
|
1147 |
+
"\n",
|
1148 |
+
" [theme=dark] .colab-df-convert:hover {\n",
|
1149 |
+
" background-color: #434B5C;\n",
|
1150 |
+
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
|
1151 |
+
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
|
1152 |
+
" fill: #FFFFFF;\n",
|
1153 |
+
" }\n",
|
1154 |
+
" </style>\n",
|
1155 |
+
"\n",
|
1156 |
+
" <script>\n",
|
1157 |
+
" const buttonEl =\n",
|
1158 |
+
" document.querySelector('#df-1c36e9a6-1049-44ca-879c-ccaf267483f7 button.colab-df-convert');\n",
|
1159 |
+
" buttonEl.style.display =\n",
|
1160 |
+
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
|
1161 |
+
"\n",
|
1162 |
+
" async function convertToInteractive(key) {\n",
|
1163 |
+
" const element = document.querySelector('#df-1c36e9a6-1049-44ca-879c-ccaf267483f7');\n",
|
1164 |
+
" const dataTable =\n",
|
1165 |
+
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
|
1166 |
+
" [key], {});\n",
|
1167 |
+
" if (!dataTable) return;\n",
|
1168 |
+
"\n",
|
1169 |
+
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
|
1170 |
+
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
|
1171 |
+
" + ' to learn more about interactive tables.';\n",
|
1172 |
+
" element.innerHTML = '';\n",
|
1173 |
+
" dataTable['output_type'] = 'display_data';\n",
|
1174 |
+
" await google.colab.output.renderOutput(dataTable, element);\n",
|
1175 |
+
" const docLink = document.createElement('div');\n",
|
1176 |
+
" docLink.innerHTML = docLinkHtml;\n",
|
1177 |
+
" element.appendChild(docLink);\n",
|
1178 |
+
" }\n",
|
1179 |
+
" </script>\n",
|
1180 |
+
" </div>\n",
|
1181 |
+
"\n",
|
1182 |
+
"\n",
|
1183 |
+
" </div>\n",
|
1184 |
+
" </div>\n"
|
1185 |
+
],
|
1186 |
+
"application/vnd.google.colaboratory.intrinsic+json": {
|
1187 |
+
"type": "dataframe",
|
1188 |
+
"variable_name": "movies",
|
1189 |
+
"summary": "{\n \"name\": \"movies\",\n \"rows\": 1164,\n \"fields\": [\n {\n \"column\": \"movie_id\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 336,\n \"min\": 1,\n \"max\": 1164,\n \"num_unique_values\": 1164,\n \"samples\": [\n 765,\n 102,\n 774\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"title\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 1145,\n \"samples\": [\n \"Titanic\",\n \"Hard Eight\",\n \"Immortal Beloved\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"release_date\",\n \"properties\": {\n \"dtype\": \"object\",\n \"num_unique_values\": 756,\n \"samples\": [\n \"1977-04-06\",\n \"1973-12-17\",\n \"1994-05-13\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"imdb_url\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 1149,\n \"samples\": [\n \"http://us.imdb.com/M/title-exact?Shall%20we%20DANSU%3F%20%281996%29\",\n \"http://us.imdb.com/M/title-exact?Koyaanisqatsi%20(1983)\",\n \"http://us.imdb.com/M/title-exact?Conan+the+Barbarian+(1981)\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"genres\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 176,\n \"samples\": [\n \"Documentary\",\n \"Comedy|Drama|Romance\",\n \"Action|Romance\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"year\",\n \"properties\": {\n \"dtype\": \"object\",\n \"num_unique_values\": 65,\n \"samples\": [\n \"1943\",\n \"1952\",\n \"1995\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"adult\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 1,\n \"samples\": [\n \"False\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"original_language\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 20,\n \"samples\": [\n \"en\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"original_title\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 1145,\n \"samples\": [\n \"Titanic\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"overview\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 1139,\n \"samples\": [\n \"Dorothy Parker remembers the heyday of the Algonquin Round Table, a circle of friends whose barbed wit, like hers, was fueled by alcohol and flirted with despair.\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"popularity\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 1144,\n \"samples\": [\n \"26.88907\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"revenue\",\n \"properties\": {\n \"dtype\": \"date\",\n \"min\": 0.0,\n \"max\": 1845034188.0,\n \"num_unique_values\": 585,\n \"samples\": [\n 19075720.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"runtime\",\n \"properties\": {\n \"dtype\": \"date\",\n \"min\": 0.0,\n \"max\": 242.0,\n \"num_unique_values\": 113,\n \"samples\": [\n 141.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"vote_average\",\n \"properties\": {\n \"dtype\": \"date\",\n \"min\": 0.0,\n \"max\": 10.0,\n \"num_unique_values\": 57,\n \"samples\": [\n 7.7\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"vote_count\",\n \"properties\": {\n \"dtype\": \"date\",\n \"min\": 0.0,\n \"max\": 8670.0,\n \"num_unique_values\": 484,\n \"samples\": [\n 92.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
|
1190 |
+
}
|
1191 |
+
},
|
1192 |
+
"metadata": {},
|
1193 |
+
"execution_count": 190
|
1194 |
+
}
|
1195 |
+
]
|
1196 |
+
},
|
1197 |
+
{
|
1198 |
+
"cell_type": "markdown",
|
1199 |
+
"source": [
|
1200 |
+
"## Sample Recsys to check dataset is valid for embedding or not"
|
1201 |
+
],
|
1202 |
+
"metadata": {
|
1203 |
+
"id": "hU4wX4dn-zXO"
|
1204 |
+
}
|
1205 |
+
},
|
1206 |
+
{
|
1207 |
+
"cell_type": "code",
|
1208 |
+
"source": [
|
1209 |
+
"# Memuat data\n",
|
1210 |
+
"data = ratings.copy()\n",
|
1211 |
+
"data = data[['user_id', 'movie_id', 'rating']]\n",
|
1212 |
+
"\n",
|
1213 |
+
"# Normalisasi ID pengguna dan item (karena ID asli mungkin tidak dimulai dari 0)\n",
|
1214 |
+
"data['user_id'] = data['user_id'] - 1\n",
|
1215 |
+
"data['movie_id'] = data['movie_id'] - 1\n",
|
1216 |
+
"\n",
|
1217 |
+
"# Melihat statistik dataset\n",
|
1218 |
+
"num_users = data['user_id'].nunique()\n",
|
1219 |
+
"num_items = data['movie_id'].nunique()\n",
|
1220 |
+
"print(f\"Number of users: {num_users}, Number of items: {num_items}\")\n",
|
1221 |
+
"\n",
|
1222 |
+
"# Split dataset menjadi train dan test\n",
|
1223 |
+
"train_data, test_data = train_test_split(data, test_size=0.2, random_state=42)"
|
1224 |
+
],
|
1225 |
+
"metadata": {
|
1226 |
+
"colab": {
|
1227 |
+
"base_uri": "https://localhost:8080/"
|
1228 |
+
},
|
1229 |
+
"id": "kI90v3Mu-9Bd",
|
1230 |
+
"outputId": "0fdd7e17-60d0-4727-9421-6c081f12d621"
|
1231 |
+
},
|
1232 |
+
"execution_count": 191,
|
1233 |
+
"outputs": [
|
1234 |
+
{
|
1235 |
+
"output_type": "stream",
|
1236 |
+
"name": "stdout",
|
1237 |
+
"text": [
|
1238 |
+
"Number of users: 943, Number of items: 1164\n"
|
1239 |
+
]
|
1240 |
+
}
|
1241 |
+
]
|
1242 |
+
},
|
1243 |
+
{
|
1244 |
+
"cell_type": "code",
|
1245 |
+
"source": [
|
1246 |
+
"import torch\n",
|
1247 |
+
"import torch.nn as nn\n",
|
1248 |
+
"import torch.optim as optim\n",
|
1249 |
+
"from torch.utils.data import DataLoader, Dataset\n",
|
1250 |
+
"\n",
|
1251 |
+
"class MovieLensDataset(Dataset):\n",
|
1252 |
+
" def __init__(self, data):\n",
|
1253 |
+
" self.user_ids = torch.tensor(data['user_id'].values, dtype=torch.long)\n",
|
1254 |
+
" self.item_ids = torch.tensor(data['movie_id'].values, dtype=torch.long)\n",
|
1255 |
+
" self.ratings = torch.tensor(data['rating'].values, dtype=torch.float32)\n",
|
1256 |
+
"\n",
|
1257 |
+
" def __len__(self):\n",
|
1258 |
+
" return len(self.ratings)\n",
|
1259 |
+
"\n",
|
1260 |
+
" def __getitem__(self, idx):\n",
|
1261 |
+
" return self.user_ids[idx], self.item_ids[idx], self.ratings[idx]\n",
|
1262 |
+
"\n",
|
1263 |
+
"class MFModel(nn.Module):\n",
|
1264 |
+
" def __init__(self, num_users, num_items, embedding_size):\n",
|
1265 |
+
" super(MFModel, self).__init__()\n",
|
1266 |
+
" self.user_embedding = nn.Embedding(num_users, embedding_size)\n",
|
1267 |
+
" self.item_embedding = nn.Embedding(num_items, embedding_size)\n",
|
1268 |
+
"\n",
|
1269 |
+
" def forward(self, user_id, item_id):\n",
|
1270 |
+
" user_vec = self.user_embedding(user_id)\n",
|
1271 |
+
" item_vec = self.item_embedding(item_id)\n",
|
1272 |
+
" dot_product = torch.sum(user_vec * item_vec, dim=1)\n",
|
1273 |
+
" return dot_product\n",
|
1274 |
+
"\n",
|
1275 |
+
" def regularization_loss(self):\n",
|
1276 |
+
" return self.reg_factor * (torch.norm(self.user_embedding.weight) + torch.norm(self.item_embedding.weight))"
|
1277 |
+
],
|
1278 |
+
"metadata": {
|
1279 |
+
"id": "s025DVSf_nhh"
|
1280 |
+
},
|
1281 |
+
"execution_count": 192,
|
1282 |
+
"outputs": []
|
1283 |
+
},
|
1284 |
+
{
|
1285 |
+
"cell_type": "code",
|
1286 |
+
"source": [
|
1287 |
+
"# DataLoader untuk training\n",
|
1288 |
+
"train_dataset = MovieLensDataset(train_data)\n",
|
1289 |
+
"train_loader = DataLoader(train_dataset, batch_size=256, shuffle=True)\n",
|
1290 |
+
"\n",
|
1291 |
+
"# Hyperparameters\n",
|
1292 |
+
"embedding_size = 30\n",
|
1293 |
+
"reg_factor = 0.01\n",
|
1294 |
+
"model = MFModel(num_users, num_items, embedding_size)\n",
|
1295 |
+
"criterion = nn.MSELoss()\n",
|
1296 |
+
"optimizer = optim.Adam(model.parameters(), lr=0.01)\n",
|
1297 |
+
"\n",
|
1298 |
+
"# Training loop\n",
|
1299 |
+
"for epoch in range(10):\n",
|
1300 |
+
" model.train()\n",
|
1301 |
+
" total_loss = 0\n",
|
1302 |
+
" for data_user_id, data_item_id, data_rating in train_loader:\n",
|
1303 |
+
" optimizer.zero_grad()\n",
|
1304 |
+
" predictions = model(data_user_id, data_item_id)\n",
|
1305 |
+
" loss = criterion(predictions, data_rating)\n",
|
1306 |
+
" loss.backward()\n",
|
1307 |
+
" optimizer.step()\n",
|
1308 |
+
" total_loss += loss.item()\n",
|
1309 |
+
" print(f\"Epoch {epoch+1}, Loss: {total_loss/len(train_loader):.4f}\")"
|
1310 |
+
],
|
1311 |
+
"metadata": {
|
1312 |
+
"colab": {
|
1313 |
+
"base_uri": "https://localhost:8080/"
|
1314 |
+
},
|
1315 |
+
"id": "QmZazumN_ylY",
|
1316 |
+
"outputId": "60b6fb1c-0206-4b91-f41c-cb7f7cf0bae4"
|
1317 |
+
},
|
1318 |
+
"execution_count": 193,
|
1319 |
+
"outputs": [
|
1320 |
+
{
|
1321 |
+
"output_type": "stream",
|
1322 |
+
"name": "stdout",
|
1323 |
+
"text": [
|
1324 |
+
"Epoch 1, Loss: 34.7072\n",
|
1325 |
+
"Epoch 2, Loss: 18.3940\n",
|
1326 |
+
"Epoch 3, Loss: 9.6635\n",
|
1327 |
+
"Epoch 4, Loss: 4.3265\n",
|
1328 |
+
"Epoch 5, Loss: 2.3596\n",
|
1329 |
+
"Epoch 6, Loss: 1.5818\n",
|
1330 |
+
"Epoch 7, Loss: 1.1944\n",
|
1331 |
+
"Epoch 8, Loss: 0.9714\n",
|
1332 |
+
"Epoch 9, Loss: 0.8330\n",
|
1333 |
+
"Epoch 10, Loss: 0.7384\n"
|
1334 |
+
]
|
1335 |
+
}
|
1336 |
+
]
|
1337 |
+
},
|
1338 |
+
{
|
1339 |
+
"cell_type": "code",
|
1340 |
+
"source": [
|
1341 |
+
"from sklearn.metrics import mean_squared_error\n",
|
1342 |
+
"import numpy as np\n",
|
1343 |
+
"\n",
|
1344 |
+
"model.eval()\n",
|
1345 |
+
"test_dataset = MovieLensDataset(test_data)\n",
|
1346 |
+
"test_loader = DataLoader(test_dataset, batch_size=256, shuffle=False)\n",
|
1347 |
+
"\n",
|
1348 |
+
"predictions, targets = [], []\n",
|
1349 |
+
"with torch.no_grad():\n",
|
1350 |
+
" for data_user_id, data_item_id, data_rating in test_loader:\n",
|
1351 |
+
" output = model(data_user_id, data_item_id)\n",
|
1352 |
+
" predictions.extend(output.numpy())\n",
|
1353 |
+
" targets.extend(data_rating.numpy())\n",
|
1354 |
+
"\n",
|
1355 |
+
"rmse = np.sqrt(mean_squared_error(targets, predictions))\n",
|
1356 |
+
"print(f\"Test RMSE: {rmse:.4f}\")"
|
1357 |
+
],
|
1358 |
+
"metadata": {
|
1359 |
+
"colab": {
|
1360 |
+
"base_uri": "https://localhost:8080/"
|
1361 |
+
},
|
1362 |
+
"id": "w9mD2UhHI0Kx",
|
1363 |
+
"outputId": "76b52339-ec74-420e-f0b8-add08e66842d"
|
1364 |
+
},
|
1365 |
+
"execution_count": 194,
|
1366 |
+
"outputs": [
|
1367 |
+
{
|
1368 |
+
"output_type": "stream",
|
1369 |
+
"name": "stdout",
|
1370 |
+
"text": [
|
1371 |
+
"Test RMSE: 1.8248\n"
|
1372 |
+
]
|
1373 |
+
}
|
1374 |
+
]
|
1375 |
+
},
|
1376 |
+
{
|
1377 |
+
"cell_type": "code",
|
1378 |
+
"source": [
|
1379 |
+
"def get_top_n_recommendations_pytorch(model, user_id, N=10):\n",
|
1380 |
+
" # Dapatkan semua item yang tersedia\n",
|
1381 |
+
" all_items = np.array(range(num_items))\n",
|
1382 |
+
"\n",
|
1383 |
+
" # Cek item yang sudah dirating oleh user\n",
|
1384 |
+
" rated_items = train_data[train_data['user_id'] == user_id]['movie_id'].values\n",
|
1385 |
+
"\n",
|
1386 |
+
" # Ambil item yang belum dirating oleh user\n",
|
1387 |
+
" items_to_predict = np.setdiff1d(all_items, rated_items)\n",
|
1388 |
+
"\n",
|
1389 |
+
" # Prediksi rating untuk item-item tersebut\n",
|
1390 |
+
" model.eval()\n",
|
1391 |
+
" with torch.no_grad():\n",
|
1392 |
+
" user_ids = torch.tensor([user_id] * len(items_to_predict))\n",
|
1393 |
+
" item_ids = torch.tensor(items_to_predict)\n",
|
1394 |
+
" predicted_ratings = model(user_ids, item_ids).numpy()\n",
|
1395 |
+
"\n",
|
1396 |
+
" # Urutkan item berdasarkan rating tertinggi\n",
|
1397 |
+
" top_n_items = items_to_predict[np.argsort(predicted_ratings)[-N:][::-1]]\n",
|
1398 |
+
"\n",
|
1399 |
+
" return top_n_items\n",
|
1400 |
+
"\n",
|
1401 |
+
"# Contoh penggunaan\n",
|
1402 |
+
"user_id = 0\n",
|
1403 |
+
"top_n_recommendations = get_top_n_recommendations_pytorch(model, user_id, N=10)\n",
|
1404 |
+
"print(f\"Top 10 recommended items for user {user_id}: {top_n_recommendations}\")"
|
1405 |
+
],
|
1406 |
+
"metadata": {
|
1407 |
+
"colab": {
|
1408 |
+
"base_uri": "https://localhost:8080/"
|
1409 |
+
},
|
1410 |
+
"id": "04UHnGBtI8CB",
|
1411 |
+
"outputId": "93f34309-174b-41bd-af2c-f8a353efe5ad"
|
1412 |
+
},
|
1413 |
+
"execution_count": 195,
|
1414 |
+
"outputs": [
|
1415 |
+
{
|
1416 |
+
"output_type": "stream",
|
1417 |
+
"name": "stdout",
|
1418 |
+
"text": [
|
1419 |
+
"Top 10 recommended items for user 0: [1151 916 718 1134 832 941 327 347 631 434]\n"
|
1420 |
+
]
|
1421 |
+
}
|
1422 |
+
]
|
1423 |
+
},
|
1424 |
+
{
|
1425 |
+
"cell_type": "markdown",
|
1426 |
+
"source": [
|
1427 |
+
"## Export the datasets\n"
|
1428 |
+
],
|
1429 |
+
"metadata": {
|
1430 |
+
"id": "PEfUd5FtKQS8"
|
1431 |
+
}
|
1432 |
+
},
|
1433 |
+
{
|
1434 |
+
"cell_type": "code",
|
1435 |
+
"source": [
|
1436 |
+
"ratings.to_csv(f\"ratings.csv\", index=False)\n",
|
1437 |
+
"movies.to_csv(f\"movies.csv\", index=False)\n",
|
1438 |
+
"users.to_csv(f\"users.csv\", index=False)"
|
1439 |
+
],
|
1440 |
+
"metadata": {
|
1441 |
+
"id": "tVZFC_urL4Yd"
|
1442 |
+
},
|
1443 |
+
"execution_count": 196,
|
1444 |
+
"outputs": []
|
1445 |
+
}
|
1446 |
+
]
|
1447 |
+
}
|