--- license: mit dataset_info: features: - name: id dtype: string - name: question dtype: string - name: context dtype: string - name: choices sequence: string - name: label dtype: int64 splits: - name: train num_bytes: 63920351 num_examples: 2523 - name: validation num_bytes: 52064930 num_examples: 2086 download_size: 5955070 dataset_size: 115985281 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* --- This dataset is derived from `tau/scrolls` [dataset](tau/scrolls) by running the following script: ```python import re from datasets import load_dataset def _normalize_answer(text): return " ".join(text.split()).strip() def _drop_duplicates_in_input(untokenized_dataset): # from scrolls/evaluator/dataset_evaluator.py indices_to_keep = [] id_to_idx = {} outputs = [] for i, (id_, output) in enumerate( zip(untokenized_dataset["id"], untokenized_dataset["output"]) ): if id_ in id_to_idx: outputs[id_to_idx[id_]].append(output) continue indices_to_keep.append(i) id_to_idx[id_] = len(outputs) outputs.append([output]) untokenized_dataset = untokenized_dataset.select(indices_to_keep).flatten_indices() untokenized_dataset = untokenized_dataset.remove_columns("output") untokenized_dataset = untokenized_dataset.add_column("outputs", outputs) return untokenized_dataset def _process_doc_prepended_question(doc): input = doc["input"] split = input.find("\n\n") return { "id": doc["id"], "pid": doc["pid"], "input": input, "outputs": doc["outputs"], "question": input[0:split], "text": input[split + 2 :], } def process_doc(doc): quality_multiple_choice_pattern = re.compile(r" *\([A-D]\) *") doc = _process_doc_prepended_question(doc) split = doc["text"].find("\n\n", doc["text"].find("(D)")) choices_text = doc["text"][:split] doc["text"] = doc["text"][split:].strip() doc["choices"] = [ _normalize_answer(choice) for choice in re.split(quality_multiple_choice_pattern, choices_text)[1:] ] doc["gold"] = doc["choices"].index(_normalize_answer(doc["outputs"][0])) return doc def get_quality_dataset(): """ download and processes the quality dataset following the lm-evaluation-harness scrolls_quality task The processed dataset has the following train & validation splits with 2523 & 2086 examples respectively. fields to be used during evaluation: - question: the question prompt - text: the context - choices: list of choices (4 in total) - gold: index of the correct choice """ quality_dataset = load_dataset("tau/scrolls", "quality") del quality_dataset["test"] # drop test split -> no ground truths for split in quality_dataset: quality_dataset[split] = _drop_duplicates_in_input(quality_dataset[split]) quality_dataset = quality_dataset.map(process_doc) return quality_dataset quality_dataset = get_quality_dataset() quality_dataset = quality_dataset.rename_columns({"text": "context", "gold": "label"}) quality_dataset = quality_dataset.remove_columns(["pid", "input", "outputs"]) train_ds = quality_dataset["train"] validation_ds = quality_dataset["validation"] ``` The processing code is adapted from [lm-evaluation-harness scrolls task](https://github.com/EleutherAI/lm-evaluation-harness/blob/main/lm_eval/tasks/scrolls/task.py) --- Relevant sections from the [SCROLLS: Standardized CompaRison Over Long Language Sequences paper](https://arxiv.org/pdf/2201.03533) ``` QuALITY (Pang et al., 2021): A multiplechoice question answering dataset over stories and articles sourced from Project Gutenberg,10 the Open American National Corpus (Fillmore et al., 1998; Ide and Suderman, 2004), and more. Experienced writers wrote questions and distractors, and were incentivized to write answerable, unambiguous questions such that in order to correctly answer them, human annotators must read large portions of the given document. To measure the difficulty of their questions, Pang et al. conducted a speed validation process, where another set of annotators were asked to answer questions given only a short period of time to skim through the document. As a result, 50% of the questions in QuALITY are labeled as hard, i.e. the majority of the annotators in the speed validation setting chose the wrong answer. ```