--- dataset_info: features: - name: main_category dtype: string - name: title dtype: string - name: average_rating dtype: float64 - name: rating_number dtype: int64 - name: features sequence: string - name: description sequence: string - name: price dtype: string - name: images struct: - name: hi_res sequence: string - name: large sequence: string - name: thumb sequence: string - name: variant sequence: string - name: videos struct: - name: title sequence: string - name: url sequence: string - name: user_id sequence: string - name: store dtype: string - name: categories sequence: string - name: details dtype: string - name: parent_asin dtype: string - name: bought_together dtype: 'null' - name: subtitle dtype: string - name: author dtype: string - name: reviews list: - name: asin dtype: string - name: helpful_vote dtype: int64 - name: images list: - name: attachment_type dtype: string - name: large_image_url dtype: string - name: medium_image_url dtype: string - name: small_image_url dtype: string - name: parent_asin dtype: string - name: rating dtype: float64 - name: text dtype: string - name: timestamp dtype: int64 - name: title dtype: string - name: user_id dtype: string - name: verified_purchase dtype: bool - name: qa_pairs list: - name: answers list: - name: answer dtype: string - name: candidate dtype: string - name: label dtype: int64 - name: question dtype: string - name: asin dtype: string splits: - name: train num_bytes: 596400838 num_examples: 2980 download_size: 317160149 dataset_size: 596400838 configs: - config_name: default data_files: - split: train path: data/train-* task_categories: - text-generation - text2text-generation - question-answering language: - en tags: - qa size_categories: - 1KPlease use parent ID to find product meta. | | user_id | str | ID of the reviewer | | timestamp | int | Time of the review (unix time) | | verified_purchase | bool | User purchase verification | | helpful_vote | int | Helpful votes of the review | ### For Answers | Field | Type | Explanation | | ----- | ---- | ----------- | | answer | str | manually written natural-sounding answer if label >= 1 | | candidate | str | Text used to justify answer | | label | int | 2 means fully answering, 1 means helpful but not fully answering, 0 means irrelevant | ## Datasets Used [Amazon Reviews 2023](https://huggingface.co/datasets/McAuley-Lab/Amazon-Reviews-2023) ``` @article{hou2024bridging, title={Bridging Language and Items for Retrieval and Recommendation}, author={Hou, Yupeng and Li, Jiacheng and He, Zhankui and Yan, An and Chen, Xiusi and McAuley, Julian}, journal={arXiv preprint arXiv:2403.03952}, year={2024} } ``` [ePQA](https://github.com/amazon-science/contextual-product-qa) ``` @article{shen2023xpqa, title={xPQA: Cross-Lingual Product Question Answering across 12 Languages}, author={Shen, Xiaoyu and Asai, Akari and Byrne, Bill and de Gispert, Adri{\`a}}, journal={arXiv preprint arXiv:2305.09249}, year={2023} } ```