leonleyang commited on
Commit
9b42776
·
verified ·
1 Parent(s): fea4a43

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +71 -3
README.md CHANGED
@@ -1,3 +1,71 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ {}
3
+ ---
4
+
5
+ # Dataset Card for Fashion-MNIST
6
+
7
+ <!-- Provide a quick summary of the dataset. -->
8
+
9
+ ## Dataset Details
10
+
11
+ ### Dataset Description
12
+
13
+ <!-- Provide a longer summary of what this dataset is. -->
14
+ Fashion-MNIST is a dataset of 70,000 grayscale images, each 28×28 pixels, representing 10 different classes of clothing and accessories. It serves as a drop-in replacement for the original MNIST dataset but provides a more challenging benchmark for machine learning models. The dataset was introduced by Zalando Research to address the limitations of MNIST, which primarily contains handwritten digits.
15
+
16
+ ### Dataset Sources
17
+
18
+ <!-- Provide the basic links for the dataset. -->
19
+
20
+ - **Homepage:** https://github.com/zalandoresearch/fashion-mnist?tab=readme-ov-file#license
21
+ - **Paper:** Xiao, H., Rasul, K., & Vollgraf, R. (2017). Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747.
22
+
23
+ ## Dataset Structure
24
+
25
+ <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
26
+
27
+ Total images: 70,000
28
+
29
+ Classes: 10 (T-shirt/top, Trouser, Pullover, Dress, Coat, Sandal, Shirt, Sneaker, Bag, Ankle boot)
30
+
31
+ Splits:
32
+
33
+ - **Train:** 60,000 images
34
+
35
+ - **Test:** 10,000 images
36
+
37
+ Image specs: PNG format, 28×28 pixels, Grayscale
38
+
39
+ ## Example Usage
40
+ Below is a quick example of how to load this dataset via the Hugging Face Datasets library.
41
+ ```
42
+ from datasets import load_dataset
43
+
44
+ # Load the dataset
45
+ dataset = load_dataset("fashion-mnist", split="train", trust_remote_code=True)
46
+ # dataset = load_dataset("fashion-mnist", split="test", trust_remote_code=True)
47
+
48
+ # Access a sample from the dataset
49
+ example = dataset[0]
50
+ image = example["image"]
51
+ label = example["label"]
52
+
53
+ image.show() # Display the image
54
+ print(f"Label: {label}")
55
+ ```
56
+
57
+ ## Citation
58
+
59
+ <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
60
+
61
+ **BibTeX:**
62
+
63
+ @online{xiao2017/online,
64
+ author = {Han Xiao and Kashif Rasul and Roland Vollgraf},
65
+ title = {Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms},
66
+ date = {2017-08-28},
67
+ year = {2017},
68
+ eprintclass = {cs.LG},
69
+ eprinttype = {arXiv},
70
+ eprint = {cs.LG/1708.07747},
71
+ }