import numpy as np import datasets from sklearn.model_selection import train_test_split class DSprites(datasets.GeneratorBasedBuilder): """TODO: Short description of my dataset.""" VERSION = datasets.Version("1.0.0") def _info(self): features = datasets.Features( { "image": datasets.Image(), "orientation": datasets.Value("float"), "shape": datasets.ClassLabel(names=["square", "ellipse", "heart"]), "scale": datasets.Value("float"), "color": datasets.ClassLabel(names=["white"]), "position_x": datasets.Value("float"), "position_y": datasets.Value("float"), } ) homepage = "https://github.com/deepmind/dsprites-dataset" license = "zlib/libpng" return datasets.DatasetInfo( description="""dSprites is a dataset of 2D shapes procedurally generated from 6 ground truth independent latent factors. These factors are color, shape, scale, rotation, x and y positions of a sprite. All possible combinations of these latents are present exactly once, generating N = 737280 total images.""", features=features, supervised_keys=("image", "shape"), homepage=homepage, license=license, citation="""@misc{dsprites17, author = {Loic Matthey and Irina Higgins and Demis Hassabis and Alexander Lerchner}, title = {dSprites: Disentanglement testing Sprites dataset}, howpublished= {https://github.com/deepmind/dsprites-dataset/}, year = "2017"}""", ) def _split_generators(self, dl_manager): archive = dl_manager.download( "https://github.com/google-deepmind/dsprites-dataset/raw/refs/heads/master/dsprites_ndarray_co1sh3sc6or40x32y32_64x64.npz" ) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"archive": archive, "split": "train"}, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"archive": archive, "split": "test"}, ), ] # method parameters are unpacked from `gen_kwargs` as given in `_split_generators` def _generate_examples(self, archive, split): dataset_zip = np.load(archive, allow_pickle=True) images = dataset_zip["imgs"] latents_values = dataset_zip["latents_values"] # Split the indices for train and test indices = np.arange(len(images)) train_indices, test_indices = train_test_split(indices, test_size=0.3, random_state=42) if split == "train": selected_indices = train_indices elif split == "test": selected_indices = test_indices for key in selected_indices: yield int(key), { # Ensure the key is a Python native int "image": images[key], "color": int(latents_values[key, 0]) - 1, "shape": int(latents_values[key, 1]) - 1, "scale": latents_values[key, 2], "orientation": latents_values[key, 3], "position_x": latents_values[key, 4], "position_y": latents_values[key, 5], }