leonleyang commited on
Commit
595d8f8
·
verified ·
1 Parent(s): dcab4b4

Create dsprites.py

Browse files
Files changed (1) hide show
  1. dsprites.py +79 -0
dsprites.py ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import datasets
3
+ from sklearn.model_selection import train_test_split
4
+
5
+
6
+ class DSprites(datasets.GeneratorBasedBuilder):
7
+ """TODO: Short description of my dataset."""
8
+
9
+ VERSION = datasets.Version("1.0.0")
10
+
11
+ def _info(self):
12
+ features = datasets.Features(
13
+ {
14
+ "image": datasets.Image(),
15
+ "orientation": datasets.Value("float"),
16
+ "shape": datasets.ClassLabel(names=["square", "ellipse", "heart"]),
17
+ "scale": datasets.Value("float"),
18
+ "color": datasets.ClassLabel(names=["white"]),
19
+ "position_x": datasets.Value("float"),
20
+ "position_y": datasets.Value("float"),
21
+ }
22
+ )
23
+
24
+ homepage = "https://github.com/deepmind/dsprites-dataset"
25
+ license = "zlib/libpng"
26
+ return datasets.DatasetInfo(
27
+ description="""dSprites is a dataset of 2D shapes procedurally generated from 6 ground truth independent latent factors. These factors are color, shape, scale, rotation, x and y positions of a sprite.
28
+ All possible combinations of these latents are present exactly once, generating N = 737280 total images.""",
29
+ features=features,
30
+ supervised_keys=("image", "shape"),
31
+ homepage=homepage,
32
+ license=license,
33
+ citation="""@misc{dsprites17,
34
+ author = {Loic Matthey and Irina Higgins and Demis Hassabis and Alexander Lerchner},
35
+ title = {dSprites: Disentanglement testing Sprites dataset},
36
+ howpublished= {https://github.com/deepmind/dsprites-dataset/},
37
+ year = "2017"}""",
38
+ )
39
+
40
+ def _split_generators(self, dl_manager):
41
+ archive = dl_manager.download(
42
+ "https://github.com/google-deepmind/dsprites-dataset/raw/refs/heads/master/dsprites_ndarray_co1sh3sc6or40x32y32_64x64.npz"
43
+ )
44
+ return [
45
+ datasets.SplitGenerator(
46
+ name=datasets.Split.TRAIN,
47
+ gen_kwargs={"archive": archive, "split": "train"},
48
+ ),
49
+ datasets.SplitGenerator(
50
+ name=datasets.Split.TEST,
51
+ gen_kwargs={"archive": archive, "split": "test"},
52
+ ),
53
+ ]
54
+
55
+ # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
56
+ def _generate_examples(self, archive, split):
57
+ dataset_zip = np.load(archive, allow_pickle=True)
58
+ images = dataset_zip["imgs"]
59
+ latents_values = dataset_zip["latents_values"]
60
+
61
+ # Split the indices for train and test
62
+ indices = np.arange(len(images))
63
+ train_indices, test_indices = train_test_split(indices, test_size=0.3, random_state=42)
64
+
65
+ if split == "train":
66
+ selected_indices = train_indices
67
+ elif split == "test":
68
+ selected_indices = test_indices
69
+
70
+ for key in selected_indices:
71
+ yield int(key), { # Ensure the key is a Python native int
72
+ "image": images[key],
73
+ "color": int(latents_values[key, 0]) - 1,
74
+ "shape": int(latents_values[key, 1]) - 1,
75
+ "scale": latents_values[key, 2],
76
+ "orientation": latents_values[key, 3],
77
+ "position_x": latents_values[key, 4],
78
+ "position_y": latents_values[key, 5],
79
+ }