|
|
|
|
|
from glob import glob |
|
import json |
|
import os |
|
from pathlib import Path |
|
|
|
import datasets |
|
|
|
|
|
_URLS = { |
|
"faq": "data/faq.json", |
|
"product": "data/product.jsonl", |
|
} |
|
|
|
|
|
_CITATION = """\ |
|
@dataset{early_media, |
|
author = {Xing Tian}, |
|
title = {e_commerce_customer_service}, |
|
month = aug, |
|
year = 2023, |
|
publisher = {Xing Tian}, |
|
version = {1.0}, |
|
} |
|
""" |
|
|
|
|
|
class TelemarketingVoiceClassification(datasets.GeneratorBasedBuilder): |
|
VERSION = datasets.Version("1.0.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(name="faq", version=VERSION, description="faq"), |
|
datasets.BuilderConfig(name="product", version=VERSION, description="product"), |
|
] |
|
|
|
def _info(self): |
|
if self.config.name == "faq": |
|
features = datasets.Features( |
|
{ |
|
"url": datasets.Value("string"), |
|
"question": datasets.Value("string"), |
|
"answer": datasets.Value("string"), |
|
"label": datasets.Value("string"), |
|
} |
|
) |
|
elif self.config.name == "product": |
|
features = datasets.Features( |
|
{ |
|
"title": datasets.Value("string"), |
|
"brand": datasets.Value("string"), |
|
"review": datasets.Value("string"), |
|
"description": datasets.Value("string"), |
|
"mpn": datasets.Value("string"), |
|
"color": datasets.Sequence(datasets.Value("string")), |
|
"size": datasets.Sequence(datasets.Value("string")), |
|
"sku": datasets.Value("string"), |
|
"ratingValue": datasets.Value("float32"), |
|
"reviewCount": datasets.Value("int64"), |
|
"overview": datasets.Value("string"), |
|
"category": datasets.Value("string"), |
|
"url": datasets.Value("string"), |
|
} |
|
) |
|
else: |
|
raise NotImplementedError |
|
|
|
return datasets.DatasetInfo( |
|
features=features, |
|
supervised_keys=None, |
|
homepage="", |
|
license="", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
url = _URLS[self.config.name] |
|
dl_path = dl_manager.download_and_extract(url) |
|
archive_path = dl_path |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"archive_path": archive_path, "split": "train"}, |
|
), |
|
] |
|
|
|
def _generate_faq(self, archive_path, split): |
|
archive_path = Path(archive_path) |
|
|
|
with open(archive_path, "r", encoding="utf-8") as f: |
|
faq = json.load(f) |
|
|
|
idx = 0 |
|
for qa in faq: |
|
yield idx, { |
|
"url": qa["url"], |
|
"question": qa["question"], |
|
"answer": qa["answer"], |
|
"label": qa["label"], |
|
} |
|
idx += 1 |
|
|
|
def _generate_product(self, archive_path, split): |
|
archive_path = Path(archive_path) |
|
|
|
idx = 0 |
|
with open(archive_path, "r", encoding="utf-8") as f: |
|
for row in f: |
|
row = json.loads(row) |
|
|
|
yield idx, { |
|
"title": row["title"], |
|
"brand": row["brand"], |
|
"review": row["review"], |
|
"description": row["description"], |
|
"mpn": row["mpn"], |
|
"color": row["color"], |
|
"size": row["size"], |
|
"sku": row["sku"], |
|
"ratingValue": float(row["ratingValue"]) if row["ratingValue"] is not None else None, |
|
"reviewCount": int(row["reviewCount"]) if row["reviewCount"] is not None else None, |
|
"overview": row["overview"], |
|
"category": row["category"], |
|
"url": row["url"], |
|
} |
|
idx += 1 |
|
|
|
def _generate_examples(self, archive_path, split): |
|
"""Yields examples.""" |
|
if self.config.name == "faq": |
|
return self._generate_faq(archive_path, split) |
|
elif self.config.name == "product": |
|
return self._generate_product(archive_path, split) |
|
else: |
|
raise NotImplementedError |
|
|
|
|
|
if __name__ == '__main__': |
|
pass |
|
|