Upload ragwiki_indexing-e5.flex.ipynb
Browse files- ragwiki_indexing-e5.flex.ipynb +398 -0
ragwiki_indexing-e5.flex.ipynb
ADDED
@@ -0,0 +1,398 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {},
|
6 |
+
"source": [
|
7 |
+
"# E5 PyTerrier_DR Index for RAG Wikipedia Corpus\n",
|
8 |
+
"\n",
|
9 |
+
"This creates a dense index using [PyTerrier](https://github.com/terrier-org/pyterrier) and [PyTerrier_dr](https://github.com/terrierteam/pyterrier_dr) for the Wikipedia corpus used by Natural Questions and TextbookQuestionAnswering datasets.\n",
|
10 |
+
"\n",
|
11 |
+
"The corpus is downloaded from https://huggingface.co/datasets/RUC-NLPIR/FlashRAG_datasets/resolve/main/retrieval-corpus/wiki18_100w.zip by `\n",
|
12 |
+
"pt.get_dataset('rag:nq_wiki').get_corpus_iter()`.\n",
|
13 |
+
"\n"
|
14 |
+
]
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"cell_type": "code",
|
18 |
+
"execution_count": 2,
|
19 |
+
"metadata": {},
|
20 |
+
"outputs": [],
|
21 |
+
"source": [
|
22 |
+
"import pyterrier as pt\n",
|
23 |
+
"import pyterrier_rag\n",
|
24 |
+
"\n",
|
25 |
+
"# print pretty progress bars\n",
|
26 |
+
"pt.utils.set_tqdm('notebook')"
|
27 |
+
]
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"cell_type": "markdown",
|
31 |
+
"metadata": {},
|
32 |
+
"source": [
|
33 |
+
"Ensure pyterrier_dr is installed"
|
34 |
+
]
|
35 |
+
},
|
36 |
+
{
|
37 |
+
"cell_type": "code",
|
38 |
+
"execution_count": 4,
|
39 |
+
"metadata": {},
|
40 |
+
"outputs": [
|
41 |
+
{
|
42 |
+
"name": "stdout",
|
43 |
+
"output_type": "stream",
|
44 |
+
"text": [
|
45 |
+
"\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager, possibly rendering your system unusable.It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv. Use the --root-user-action option if you know what you are doing and want to suppress this warning.\u001b[0m\u001b[33m\n",
|
46 |
+
"\u001b[0mNote: you may need to restart the kernel to use updated packages.\n"
|
47 |
+
]
|
48 |
+
}
|
49 |
+
],
|
50 |
+
"source": [
|
51 |
+
"%pip install -q pyterrier_dr\n",
|
52 |
+
"from pyterrier_dr import FlexIndex, E5"
|
53 |
+
]
|
54 |
+
},
|
55 |
+
{
|
56 |
+
"cell_type": "markdown",
|
57 |
+
"metadata": {},
|
58 |
+
"source": [
|
59 |
+
"We'll need an E5 model - this will transform the document text into document embeddings"
|
60 |
+
]
|
61 |
+
},
|
62 |
+
{
|
63 |
+
"cell_type": "code",
|
64 |
+
"execution_count": 7,
|
65 |
+
"metadata": {},
|
66 |
+
"outputs": [],
|
67 |
+
"source": [
|
68 |
+
"e5 = E5()"
|
69 |
+
]
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"cell_type": "markdown",
|
73 |
+
"metadata": {},
|
74 |
+
"source": [
|
75 |
+
"Now let's setup an indexing pipeline. Documents are encoded using `e5` before being stored in the FlexIndex emebdding store. The FlexIndex can be used for retrieval later."
|
76 |
+
]
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"cell_type": "code",
|
80 |
+
"execution_count": null,
|
81 |
+
"metadata": {},
|
82 |
+
"outputs": [
|
83 |
+
{
|
84 |
+
"data": {
|
85 |
+
"application/vnd.jupyter.widget-view+json": {
|
86 |
+
"model_id": "53fb275a60da417daa05d5e1240ae039",
|
87 |
+
"version_major": 2,
|
88 |
+
"version_minor": 0
|
89 |
+
},
|
90 |
+
"text/plain": [
|
91 |
+
"indexing: 0dvec [00:00, ?dvec/s]"
|
92 |
+
]
|
93 |
+
},
|
94 |
+
"metadata": {},
|
95 |
+
"output_type": "display_data"
|
96 |
+
}
|
97 |
+
],
|
98 |
+
"source": [
|
99 |
+
"index = \"./nq_tctindex.flex\"\n",
|
100 |
+
"index = FlexIndex(index)\n",
|
101 |
+
"(e5 >> index).index(pt.get_dataset('rag:nq_wiki').get_corpus_iter())"
|
102 |
+
]
|
103 |
+
},
|
104 |
+
{
|
105 |
+
"cell_type": "markdown",
|
106 |
+
"metadata": {},
|
107 |
+
"source": [
|
108 |
+
"Finally, we upload the index to Huggingface."
|
109 |
+
]
|
110 |
+
},
|
111 |
+
{
|
112 |
+
"cell_type": "code",
|
113 |
+
"execution_count": 14,
|
114 |
+
"metadata": {},
|
115 |
+
"outputs": [
|
116 |
+
{
|
117 |
+
"name": "stdout",
|
118 |
+
"output_type": "stream",
|
119 |
+
"text": [
|
120 |
+
"adding docnos.npids [207 B]\n",
|
121 |
+
"adding pt_meta.json [81 B]\n",
|
122 |
+
"adding vecs.f4 [60.1 GB]\n",
|
123 |
+
"starting segment 1\n",
|
124 |
+
"starting segment 2\n",
|
125 |
+
"starting segment 3\n",
|
126 |
+
"starting segment 4\n",
|
127 |
+
"starting segment 5\n",
|
128 |
+
"starting segment 6\n",
|
129 |
+
"starting segment 7\n",
|
130 |
+
"starting segment 8\n",
|
131 |
+
"starting segment 9\n",
|
132 |
+
"starting segment 10\n",
|
133 |
+
"starting segment 11\n",
|
134 |
+
"starting segment 12\n",
|
135 |
+
"starting segment 13\n"
|
136 |
+
]
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"data": {
|
140 |
+
"application/vnd.jupyter.widget-view+json": {
|
141 |
+
"model_id": "ea2c0152abb34d28aff00335ebcdf6e7",
|
142 |
+
"version_major": 2,
|
143 |
+
"version_minor": 0
|
144 |
+
},
|
145 |
+
"text/plain": [
|
146 |
+
"artifact.tar.lz4.12: 0%| | 0.00/4.90G [00:00<?, ?B/s]"
|
147 |
+
]
|
148 |
+
},
|
149 |
+
"metadata": {},
|
150 |
+
"output_type": "display_data"
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"data": {
|
154 |
+
"application/vnd.jupyter.widget-view+json": {
|
155 |
+
"model_id": "5184bd70ae9e42a0bc3221278d807fe9",
|
156 |
+
"version_major": 2,
|
157 |
+
"version_minor": 0
|
158 |
+
},
|
159 |
+
"text/plain": [
|
160 |
+
"artifact.tar.lz4.1: 0%| | 0.00/4.90G [00:00<?, ?B/s]"
|
161 |
+
]
|
162 |
+
},
|
163 |
+
"metadata": {},
|
164 |
+
"output_type": "display_data"
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"data": {
|
168 |
+
"application/vnd.jupyter.widget-view+json": {
|
169 |
+
"model_id": "b84c5bc6a823413981e493077d86f283",
|
170 |
+
"version_major": 2,
|
171 |
+
"version_minor": 0
|
172 |
+
},
|
173 |
+
"text/plain": [
|
174 |
+
"artifact.tar.lz4.10: 0%| | 0.00/4.90G [00:00<?, ?B/s]"
|
175 |
+
]
|
176 |
+
},
|
177 |
+
"metadata": {},
|
178 |
+
"output_type": "display_data"
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"data": {
|
182 |
+
"application/vnd.jupyter.widget-view+json": {
|
183 |
+
"model_id": "f19b5a687afa4e329937a4e3cb46f66e",
|
184 |
+
"version_major": 2,
|
185 |
+
"version_minor": 0
|
186 |
+
},
|
187 |
+
"text/plain": [
|
188 |
+
"artifact.tar.lz4.11: 0%| | 0.00/4.90G [00:00<?, ?B/s]"
|
189 |
+
]
|
190 |
+
},
|
191 |
+
"metadata": {},
|
192 |
+
"output_type": "display_data"
|
193 |
+
},
|
194 |
+
{
|
195 |
+
"data": {
|
196 |
+
"application/vnd.jupyter.widget-view+json": {
|
197 |
+
"model_id": "b0d8c9b33e6b4a68b470738fe0f82923",
|
198 |
+
"version_major": 2,
|
199 |
+
"version_minor": 0
|
200 |
+
},
|
201 |
+
"text/plain": [
|
202 |
+
"artifact.tar.lz4.0: 0%| | 0.00/4.90G [00:00<?, ?B/s]"
|
203 |
+
]
|
204 |
+
},
|
205 |
+
"metadata": {},
|
206 |
+
"output_type": "display_data"
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"data": {
|
210 |
+
"application/vnd.jupyter.widget-view+json": {
|
211 |
+
"model_id": "deeb302680ce4e089b264ab9ff5f9e0a",
|
212 |
+
"version_major": 2,
|
213 |
+
"version_minor": 0
|
214 |
+
},
|
215 |
+
"text/plain": [
|
216 |
+
"Upload 15 LFS files: 0%| | 0/15 [00:00<?, ?it/s]"
|
217 |
+
]
|
218 |
+
},
|
219 |
+
"metadata": {},
|
220 |
+
"output_type": "display_data"
|
221 |
+
},
|
222 |
+
{
|
223 |
+
"data": {
|
224 |
+
"application/vnd.jupyter.widget-view+json": {
|
225 |
+
"model_id": "df192fdb3fea483999f38e474e1f5b86",
|
226 |
+
"version_major": 2,
|
227 |
+
"version_minor": 0
|
228 |
+
},
|
229 |
+
"text/plain": [
|
230 |
+
"artifact.tar.lz4.13: 0%| | 0.00/802M [00:00<?, ?B/s]"
|
231 |
+
]
|
232 |
+
},
|
233 |
+
"metadata": {},
|
234 |
+
"output_type": "display_data"
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"data": {
|
238 |
+
"application/vnd.jupyter.widget-view+json": {
|
239 |
+
"model_id": "7b3bfeaec1814b74ba9bdb905f0f2713",
|
240 |
+
"version_major": 2,
|
241 |
+
"version_minor": 0
|
242 |
+
},
|
243 |
+
"text/plain": [
|
244 |
+
"artifact.tar.lz4.2: 0%| | 0.00/4.90G [00:00<?, ?B/s]"
|
245 |
+
]
|
246 |
+
},
|
247 |
+
"metadata": {},
|
248 |
+
"output_type": "display_data"
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"data": {
|
252 |
+
"application/vnd.jupyter.widget-view+json": {
|
253 |
+
"model_id": "4705436114824e4cb962d2906c62959a",
|
254 |
+
"version_major": 2,
|
255 |
+
"version_minor": 0
|
256 |
+
},
|
257 |
+
"text/plain": [
|
258 |
+
"artifact.tar.lz4.3: 0%| | 0.00/4.90G [00:00<?, ?B/s]"
|
259 |
+
]
|
260 |
+
},
|
261 |
+
"metadata": {},
|
262 |
+
"output_type": "display_data"
|
263 |
+
},
|
264 |
+
{
|
265 |
+
"data": {
|
266 |
+
"application/vnd.jupyter.widget-view+json": {
|
267 |
+
"model_id": "b233353405404a7099a752d4ad1576db",
|
268 |
+
"version_major": 2,
|
269 |
+
"version_minor": 0
|
270 |
+
},
|
271 |
+
"text/plain": [
|
272 |
+
"artifact.tar.lz4.4: 0%| | 0.00/4.90G [00:00<?, ?B/s]"
|
273 |
+
]
|
274 |
+
},
|
275 |
+
"metadata": {},
|
276 |
+
"output_type": "display_data"
|
277 |
+
},
|
278 |
+
{
|
279 |
+
"data": {
|
280 |
+
"application/vnd.jupyter.widget-view+json": {
|
281 |
+
"model_id": "51aa06c9c85746ef981bc3cfc86ea5e0",
|
282 |
+
"version_major": 2,
|
283 |
+
"version_minor": 0
|
284 |
+
},
|
285 |
+
"text/plain": [
|
286 |
+
"artifact.tar.lz4.5: 0%| | 0.00/4.90G [00:00<?, ?B/s]"
|
287 |
+
]
|
288 |
+
},
|
289 |
+
"metadata": {},
|
290 |
+
"output_type": "display_data"
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"data": {
|
294 |
+
"application/vnd.jupyter.widget-view+json": {
|
295 |
+
"model_id": "d950b616a88240c8ac3b28d72dde8d59",
|
296 |
+
"version_major": 2,
|
297 |
+
"version_minor": 0
|
298 |
+
},
|
299 |
+
"text/plain": [
|
300 |
+
"artifact.tar.lz4.6: 0%| | 0.00/4.90G [00:00<?, ?B/s]"
|
301 |
+
]
|
302 |
+
},
|
303 |
+
"metadata": {},
|
304 |
+
"output_type": "display_data"
|
305 |
+
},
|
306 |
+
{
|
307 |
+
"data": {
|
308 |
+
"application/vnd.jupyter.widget-view+json": {
|
309 |
+
"model_id": "a1939208cc3e4c248926a75068ebf7d2",
|
310 |
+
"version_major": 2,
|
311 |
+
"version_minor": 0
|
312 |
+
},
|
313 |
+
"text/plain": [
|
314 |
+
"artifact.tar.lz4.7: 0%| | 0.00/4.90G [00:00<?, ?B/s]"
|
315 |
+
]
|
316 |
+
},
|
317 |
+
"metadata": {},
|
318 |
+
"output_type": "display_data"
|
319 |
+
},
|
320 |
+
{
|
321 |
+
"data": {
|
322 |
+
"application/vnd.jupyter.widget-view+json": {
|
323 |
+
"model_id": "301870e8556f4da59f2779a3d2ba4d26",
|
324 |
+
"version_major": 2,
|
325 |
+
"version_minor": 0
|
326 |
+
},
|
327 |
+
"text/plain": [
|
328 |
+
"artifact.tar.lz4.8: 0%| | 0.00/4.90G [00:00<?, ?B/s]"
|
329 |
+
]
|
330 |
+
},
|
331 |
+
"metadata": {},
|
332 |
+
"output_type": "display_data"
|
333 |
+
},
|
334 |
+
{
|
335 |
+
"data": {
|
336 |
+
"application/vnd.jupyter.widget-view+json": {
|
337 |
+
"model_id": "201baa6e39054d5285ba702b116a63ae",
|
338 |
+
"version_major": 2,
|
339 |
+
"version_minor": 0
|
340 |
+
},
|
341 |
+
"text/plain": [
|
342 |
+
"artifact.tar.lz4.9: 0%| | 0.00/4.90G [00:00<?, ?B/s]"
|
343 |
+
]
|
344 |
+
},
|
345 |
+
"metadata": {},
|
346 |
+
"output_type": "display_data"
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"data": {
|
350 |
+
"application/vnd.jupyter.widget-view+json": {
|
351 |
+
"model_id": "a030063cfe764414ba7033e8d352c899",
|
352 |
+
"version_major": 2,
|
353 |
+
"version_minor": 0
|
354 |
+
},
|
355 |
+
"text/plain": [
|
356 |
+
"artifact.tar.lz4.json: 0%| | 0.00/788 [00:00<?, ?B/s]"
|
357 |
+
]
|
358 |
+
},
|
359 |
+
"metadata": {},
|
360 |
+
"output_type": "display_data"
|
361 |
+
},
|
362 |
+
{
|
363 |
+
"name": "stderr",
|
364 |
+
"output_type": "stream",
|
365 |
+
"text": [
|
366 |
+
"\n",
|
367 |
+
"Artifact uploaded to https://huggingface.co/datasets/pyterrier/ragwiki-e5.flex/tree/main/\n",
|
368 |
+
"Consider editing the README.md to help explain this artifact to others.\n"
|
369 |
+
]
|
370 |
+
}
|
371 |
+
],
|
372 |
+
"source": [
|
373 |
+
"e5_emb_index.to_hf('pyterrier/ragwiki-e5.flex')"
|
374 |
+
]
|
375 |
+
}
|
376 |
+
],
|
377 |
+
"metadata": {
|
378 |
+
"kernelspec": {
|
379 |
+
"display_name": "Python [conda env:rag]",
|
380 |
+
"language": "python",
|
381 |
+
"name": "conda-env-rag-py"
|
382 |
+
},
|
383 |
+
"language_info": {
|
384 |
+
"codemirror_mode": {
|
385 |
+
"name": "ipython",
|
386 |
+
"version": 3
|
387 |
+
},
|
388 |
+
"file_extension": ".py",
|
389 |
+
"mimetype": "text/x-python",
|
390 |
+
"name": "python",
|
391 |
+
"nbconvert_exporter": "python",
|
392 |
+
"pygments_lexer": "ipython3",
|
393 |
+
"version": "3.11.11"
|
394 |
+
}
|
395 |
+
},
|
396 |
+
"nbformat": 4,
|
397 |
+
"nbformat_minor": 4
|
398 |
+
}
|