Datasets:
File size: 3,063 Bytes
0e938dd 9ca51c1 0e938dd 9ca51c1 98c055f 0e938dd 98c055f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
---
dataset_info:
features:
- name: seq
dtype: string
- name: label
dtype: int64
splits:
- name: train
num_bytes: 19408437
num_examples: 62478
- name: test
num_bytes: 2176357
num_examples: 6942
download_size: 21064069
dataset_size: 21584794
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
license: apache-2.0
task_categories:
- text-classification
tags:
- chemistry
- biology
---
# Dataset Card for Solubility Prediction Dataset
### Dataset Summary
This solubility prediction task involves a binary classification of a heterogenous set of proteins, assessing them as either soluble or insoluble. The solubility metric is a crucial design parameter in ensuring protein efficacy, with particular relevance in the pharmaceutical domain.
## Dataset Structure
### Data Instances
For each instance, there is a string representing the protein sequence and an integer label indicating that the protein sequence is soluble or insoluble. See the [solubility prediction dataset viewer](https://huggingface.co/datasets/Bo1015/solubility_prediction/viewer) to explore more examples.
```
{'seq':'MEHVIDNFDNIDKCLKCGKPIKVVKLKYIKKKIENIPNSHLINFKYCSKCKRENVIENL'
'label':1}
```
The average for the `seq` and the `label` are provided below:
| Feature | Mean Count |
| ---------- | ---------------- |
| seq | 298 |
| label (0) | 0.58 |
| label (1) | 0.42 |
### Data Fields
- `seq`: a string containing the protein sequence
- `label`: an integer label indicating that the protein sequence is soluble or insoluble.
### Data Splits
The solubility prediction dataset has 2 splits: _train_ and _test_. Below are the statistics of the dataset.
| Dataset Split | Number of Instances in Split |
| ------------- | ------------------------------------------- |
| Train | 62,478 |
| Test | 6,942 |
### Source Data
#### Initial Data Collection and Normalization
The initialized dataset is adapted from [DeepSol](https://academic.oup.com/bioinformatics/article/34/15/2605/4938490). Within this framework, any protein exhibiting a sequence identity of 30% or greater to any protein within the test subset is eliminated from both the training subsets, ensuring robust and unbiased evaluation.
### Licensing Information
The dataset is released under the [Apache-2.0 License](http://www.apache.org/licenses/LICENSE-2.0).
### Citation
If you find our work useful, please consider citing the following paper:
```
@misc{chen2024xtrimopglm,
title={xTrimoPGLM: unified 100B-scale pre-trained transformer for deciphering the language of protein},
author={Chen, Bo and Cheng, Xingyi and Li, Pan and Geng, Yangli-ao and Gong, Jing and Li, Shen and Bei, Zhilei and Tan, Xu and Wang, Boyan and Zeng, Xin and others},
year={2024},
eprint={2401.06199},
archivePrefix={arXiv},
primaryClass={cs.CL},
note={arXiv preprint arXiv:2401.06199}
}
``` |