Commit
·
89bc030
1
Parent(s):
cc1972d
adding first pass dataset loading script
Browse files- pythia_training_metrics.py +159 -0
pythia_training_metrics.py
ADDED
|
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import datasets
|
| 2 |
+
import pickle
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
_DESCRIPTION = """\
|
| 6 |
+
Dataset for storing training metrics of pythia models
|
| 7 |
+
"""
|
| 8 |
+
|
| 9 |
+
class PythiaTrainingMetrics(datasets.GeneratorBasedBuilder):
|
| 10 |
+
|
| 11 |
+
MODEL_SIZES = [
|
| 12 |
+
"70m",
|
| 13 |
+
"160m",
|
| 14 |
+
"410m",
|
| 15 |
+
"1b",
|
| 16 |
+
"1.4b",
|
| 17 |
+
"2.8b",
|
| 18 |
+
"6.9b"
|
| 19 |
+
]
|
| 20 |
+
|
| 21 |
+
_GRADIENTS_DESCRIPTION = """\
|
| 22 |
+
Dataset for storing gradients of pythia models
|
| 23 |
+
"""
|
| 24 |
+
|
| 25 |
+
_WEIGHTS_DESCRIPTION = """\
|
| 26 |
+
Dataset for storing weights of pythia models
|
| 27 |
+
"""
|
| 28 |
+
|
| 29 |
+
_WEIGHTS_MINI_DESCRIPTION = """\
|
| 30 |
+
Dataset for storing weights of pythia models (minimizes the amount of gradients per
|
| 31 |
+
checkpoint to only 2)
|
| 32 |
+
"""
|
| 33 |
+
|
| 34 |
+
_ACTIVATIONS_DESCRIPTION = """\
|
| 35 |
+
Dataset for storing activations of pythia models
|
| 36 |
+
"""
|
| 37 |
+
|
| 38 |
+
BUILDER_CONFIGS = [
|
| 39 |
+
datasets.BuilderConfig(
|
| 40 |
+
name="gradients",
|
| 41 |
+
description=_WEIGHTS_DESCRIPTION,
|
| 42 |
+
version="1.0.0",
|
| 43 |
+
),
|
| 44 |
+
datasets.BuilderConfig(
|
| 45 |
+
name="gradients_mini",
|
| 46 |
+
description=_WEIGHTS_MINI_DESCRIPTION,
|
| 47 |
+
version="1.0.0",
|
| 48 |
+
),
|
| 49 |
+
datasets.BuilderConfig(
|
| 50 |
+
name="activations ",
|
| 51 |
+
description=_ACTIVATIONS_DESCRIPTION,
|
| 52 |
+
version="1.0.0",
|
| 53 |
+
),
|
| 54 |
+
datasets.BuilderConfig(
|
| 55 |
+
name="weights",
|
| 56 |
+
description=_WEIGHTS_DESCRIPTION,
|
| 57 |
+
version="1.0.0",
|
| 58 |
+
),
|
| 59 |
+
datasets.BuilderConfig(
|
| 60 |
+
name="all",
|
| 61 |
+
description="All the metrics",
|
| 62 |
+
version="1.0.0",
|
| 63 |
+
)
|
| 64 |
+
]
|
| 65 |
+
|
| 66 |
+
def _info(self):
|
| 67 |
+
"""
|
| 68 |
+
TODO: Got to figure out how to represent the features etc.
|
| 69 |
+
|
| 70 |
+
how do we do this if each feature is dependent on the model size?
|
| 71 |
+
"""
|
| 72 |
+
|
| 73 |
+
features_dict = {
|
| 74 |
+
"checkpoint_step": datasets.Value('int32'),
|
| 75 |
+
"layer_name": datasets.Value('string'),
|
| 76 |
+
}
|
| 77 |
+
|
| 78 |
+
if self.config.name in ["activations", "weights"]:
|
| 79 |
+
features_dict['data'] = datasets.Sequence(datasets.Value('float32'))
|
| 80 |
+
elif self.config_name in ["gradients", "gradients_mini"]:
|
| 81 |
+
features_dict['gradient_step'] = datasets.Value('int32')
|
| 82 |
+
features_dict['gradient'] = datasets.Sequence(datasets.Value('float32'))
|
| 83 |
+
|
| 84 |
+
features = datasets.Features(features_dict)
|
| 85 |
+
|
| 86 |
+
return datasets.DatasetInfo(
|
| 87 |
+
description=_DESCRIPTION,
|
| 88 |
+
features=features,
|
| 89 |
+
)
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager):
|
| 93 |
+
"""
|
| 94 |
+
Returns data for different splits - we define a split as a model size.
|
| 95 |
+
"""
|
| 96 |
+
|
| 97 |
+
model_size_to_fp = { model_size: [] for model_size in self.MODEL_SIZES }
|
| 98 |
+
|
| 99 |
+
checkpoint_steps = [0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1000, ]
|
| 100 |
+
checkpoint_steps.extend([3000 + (i * 10000) for i in range(0, 15)])
|
| 101 |
+
|
| 102 |
+
def get_gradient_step(step: int):
|
| 103 |
+
"""
|
| 104 |
+
Return a list of the gradient steps that are used at a given checkpoint step.
|
| 105 |
+
"""
|
| 106 |
+
return list(range(max(0, step-5), min(step+6, 143_000)))
|
| 107 |
+
|
| 108 |
+
for model_size in self.MODEL_SIZES:
|
| 109 |
+
for checkpoint_step in checkpoint_steps:
|
| 110 |
+
|
| 111 |
+
directory_path = f"./models/{model_size}/checkpoint_{checkpoint_step}"
|
| 112 |
+
|
| 113 |
+
if self.config.name == "activations":
|
| 114 |
+
model_size_to_fp[model_size].append(f"{directory_path}/checkpoint_activations.pickle")
|
| 115 |
+
elif self.config_name == "weights":
|
| 116 |
+
model_size_to_fp[model_size].append(f"{directory_path}/checkpoint_weights.pickle")
|
| 117 |
+
elif self.config_name == "gradients":
|
| 118 |
+
for gradient_step in get_gradient_step(checkpoint_step):
|
| 119 |
+
model_size_to_fp[model_size].append(f"{directory_path}/checkpoint_gradients_{gradient_step}.pickle")
|
| 120 |
+
elif self.config_name == "gradients_mini":
|
| 121 |
+
for gradient_step in get_gradient_step(checkpoint_step)[:2]:
|
| 122 |
+
model_size_to_fp[model_size].append(f"{directory_path}/checkpoint_gradients_mini_{gradient_step}.pickle")
|
| 123 |
+
|
| 124 |
+
downloaded_files = dl_manager.download_and_extract(model_size_to_fp)
|
| 125 |
+
|
| 126 |
+
return [
|
| 127 |
+
datasets.SplitGenerator(
|
| 128 |
+
name=datasets.Split.TRAIN,
|
| 129 |
+
gen_kwargs={
|
| 130 |
+
"filepaths": downloaded_fps
|
| 131 |
+
}
|
| 132 |
+
) for downloaded_fps in downloaded_files.values()
|
| 133 |
+
]
|
| 134 |
+
|
| 135 |
+
def _generate_examples(self, filepaths):
|
| 136 |
+
|
| 137 |
+
# the filepaths should be a list of filepaths
|
| 138 |
+
if isinstance(filepaths, str):
|
| 139 |
+
filepaths = [filepaths]
|
| 140 |
+
|
| 141 |
+
global_idx = 0 # the unique identifier for the example
|
| 142 |
+
|
| 143 |
+
for filepath in filepaths:
|
| 144 |
+
with open(filepath, encoding="utf-8") as f:
|
| 145 |
+
data = pickle.load(f)
|
| 146 |
+
|
| 147 |
+
# extract checkpoint step from the filepath
|
| 148 |
+
checkpoint_step = int(filepath.split("/")[1].split("_")[-1])
|
| 149 |
+
|
| 150 |
+
if self.config.name in ["activations", "weights"]:
|
| 151 |
+
for layer_name, layer_data in data.items():
|
| 152 |
+
for data in layer_data:
|
| 153 |
+
yield global_idx, {"checkpoint_step": checkpoint_step, "layer_name": layer_name, "data": data}
|
| 154 |
+
global_idx += 1
|
| 155 |
+
elif self.config.name in ["gradients", "gradients_mini"]:
|
| 156 |
+
for layer_name, layer_data in data.items():
|
| 157 |
+
for gradient_step, gradient in layer_data.items():
|
| 158 |
+
yield global_idx, {"checkpoint_step": checkpoint_step, "layer_name": layer_name, "gradient_step": gradient_step, "gradient": gradient}
|
| 159 |
+
global_idx += 1
|