LTMeyer commited on
Commit
bc01a3c
·
verified ·
1 Parent(s): 3305dac

Add files using upload-large-folder tool

Browse files
Files changed (31) hide show
  1. .gitattributes +20 -0
  2. README.md +121 -0
  3. acoustic_scattering_maze.yaml +28 -0
  4. data/test/acoustic_scattering_maze_chunk_18.hdf5 +3 -0
  5. data/test/acoustic_scattering_maze_chunk_19.hdf5 +3 -0
  6. data/train/acoustic_scattering_maze_chunk_0.hdf5 +3 -0
  7. data/train/acoustic_scattering_maze_chunk_1.hdf5 +3 -0
  8. data/train/acoustic_scattering_maze_chunk_10.hdf5 +3 -0
  9. data/train/acoustic_scattering_maze_chunk_11.hdf5 +3 -0
  10. data/train/acoustic_scattering_maze_chunk_12.hdf5 +3 -0
  11. data/train/acoustic_scattering_maze_chunk_13.hdf5 +3 -0
  12. data/train/acoustic_scattering_maze_chunk_14.hdf5 +3 -0
  13. data/train/acoustic_scattering_maze_chunk_15.hdf5 +3 -0
  14. data/train/acoustic_scattering_maze_chunk_2.hdf5 +3 -0
  15. data/train/acoustic_scattering_maze_chunk_3.hdf5 +3 -0
  16. data/train/acoustic_scattering_maze_chunk_4.hdf5 +3 -0
  17. data/train/acoustic_scattering_maze_chunk_5.hdf5 +3 -0
  18. data/train/acoustic_scattering_maze_chunk_6.hdf5 +3 -0
  19. data/train/acoustic_scattering_maze_chunk_7.hdf5 +3 -0
  20. data/train/acoustic_scattering_maze_chunk_8.hdf5 +3 -0
  21. data/train/acoustic_scattering_maze_chunk_9.hdf5 +3 -0
  22. data/valid/acoustic_scattering_maze_chunk_16.hdf5 +3 -0
  23. data/valid/acoustic_scattering_maze_chunk_17.hdf5 +3 -0
  24. generation/acoustics_2d_interface_maze.py +231 -0
  25. generation/generate_acoustics_data.py +166 -0
  26. generation/run_mazes.sh +12 -0
  27. gif/mazes_density.png +3 -0
  28. gif/pressure_normalized.gif +3 -0
  29. gif/pressure_unnormalized.gif +3 -0
  30. stats.yaml +14 -0
  31. visualization_acoustic_scattering_maze.ipynb +0 -0
.gitattributes CHANGED
@@ -56,3 +56,23 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
56
  # Video files - compressed
57
  *.mp4 filter=lfs diff=lfs merge=lfs -text
58
  *.webm filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56
  # Video files - compressed
57
  *.mp4 filter=lfs diff=lfs merge=lfs -text
58
  *.webm filter=lfs diff=lfs merge=lfs -text
59
+ data/train/acoustic_scattering_maze_chunk_2.hdf5 filter=lfs diff=lfs merge=lfs -text
60
+ data/train/acoustic_scattering_maze_chunk_15.hdf5 filter=lfs diff=lfs merge=lfs -text
61
+ data/valid/acoustic_scattering_maze_chunk_17.hdf5 filter=lfs diff=lfs merge=lfs -text
62
+ data/train/acoustic_scattering_maze_chunk_13.hdf5 filter=lfs diff=lfs merge=lfs -text
63
+ data/valid/acoustic_scattering_maze_chunk_16.hdf5 filter=lfs diff=lfs merge=lfs -text
64
+ data/train/acoustic_scattering_maze_chunk_10.hdf5 filter=lfs diff=lfs merge=lfs -text
65
+ data/train/acoustic_scattering_maze_chunk_5.hdf5 filter=lfs diff=lfs merge=lfs -text
66
+ data/train/acoustic_scattering_maze_chunk_3.hdf5 filter=lfs diff=lfs merge=lfs -text
67
+ data/train/acoustic_scattering_maze_chunk_6.hdf5 filter=lfs diff=lfs merge=lfs -text
68
+ data/train/acoustic_scattering_maze_chunk_4.hdf5 filter=lfs diff=lfs merge=lfs -text
69
+ data/train/acoustic_scattering_maze_chunk_14.hdf5 filter=lfs diff=lfs merge=lfs -text
70
+ data/train/acoustic_scattering_maze_chunk_0.hdf5 filter=lfs diff=lfs merge=lfs -text
71
+ data/train/acoustic_scattering_maze_chunk_1.hdf5 filter=lfs diff=lfs merge=lfs -text
72
+ data/test/acoustic_scattering_maze_chunk_18.hdf5 filter=lfs diff=lfs merge=lfs -text
73
+ data/train/acoustic_scattering_maze_chunk_8.hdf5 filter=lfs diff=lfs merge=lfs -text
74
+ data/train/acoustic_scattering_maze_chunk_7.hdf5 filter=lfs diff=lfs merge=lfs -text
75
+ data/train/acoustic_scattering_maze_chunk_11.hdf5 filter=lfs diff=lfs merge=lfs -text
76
+ data/train/acoustic_scattering_maze_chunk_12.hdf5 filter=lfs diff=lfs merge=lfs -text
77
+ data/train/acoustic_scattering_maze_chunk_9.hdf5 filter=lfs diff=lfs merge=lfs -text
78
+ data/test/acoustic_scattering_maze_chunk_19.hdf5 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: cc-by-4.0
5
+ tags:
6
+ - physics
7
+
8
+ task_categories:
9
+ - time-series-forecasting
10
+ - other
11
+ task_ids:
12
+ - multivariate-time-series-forecasting
13
+ ---
14
+
15
+ # How To Load from HuggingFace Hub
16
+
17
+ 1. Be sure to have `the_well` installed (`pip install the_well`)
18
+ 2. Use the `WellDataModule` to retrieve data as follows:
19
+
20
+ ```python
21
+ from the_well.benchmark.data import WellDataModule
22
+
23
+ # The following line may take a couple of minutes to instantiate the datamodule
24
+ datamodule = WellDataModule(
25
+ "hf://datasets/polymathic-ai/",
26
+ "acoustic_scattering_maze",
27
+ )
28
+ train_dataloader = datamodule.train_dataloader()
29
+
30
+ for batch in dataloader:
31
+ # Process training batch
32
+ ...
33
+ ```
34
+
35
+ # Acoustic Scattering - Maze
36
+
37
+ **One line description of the data:** Simple acoustic wave propogation through maze-like structures.
38
+
39
+ **Longer description of the data:** These variable-coefficient acoustic equations describe the propogation of an acoustic pressure wave through maze-like domains. Pressure waves emerge from point sources and propogate through domains consisting of low density maze paths and orders of magnitude higher density maze walls. This is built primarily as a challenge for machine learning methods, though has similar properties to optimal placement problems like WiFi in a building.
40
+
41
+ **Domain expert**: [Michael McCabe](https://mikemccabe210.github.io/), Polymathic AI.
42
+
43
+ **Code or software used to generate the data**: Clawpack, adapted from [this example.](http://www.clawpack.org/gallery/pyclaw/gallery/acoustics_2d_interface.html)
44
+
45
+ **Equation**:
46
+
47
+ ```math
48
+ \begin{align}
49
+ \frac{ \partial p}{\partial t} + K(x, y) \left( \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) &= 0 \\
50
+ \frac{ \partial u }{\partial t} + \frac{1}{\rho(x, y)} \frac{\partial p}{\partial x} &= 0 \\
51
+ \frac{ \partial v }{\partial t} + \frac{1}{\rho(x, y)} \frac{\partial p}{\partial y} &= 0
52
+ \end{align}
53
+ ```
54
+ with \\(\rho\\) the material density, \\(u, v\\) the velocity in the \\(x, y\\) directions respectively, \\(p\\) the pressure, and \\(K\\) the bulk modulus.
55
+
56
+ Example material densities can be seen below:
57
+
58
+ ![image](https://users.flatironinstitute.org/~polymathic/data/the_well/datasets/acoustic_scattering_maze/gif/mazes_density.png)
59
+
60
+ Traversal can be seen:
61
+
62
+ ![Gif](https://users.flatironinstitute.org/~polymathic/data/the_well/datasets/acoustic_scattering_maze/gif/pressure_normalized.gif)
63
+
64
+ | Dataset | FNO | TFNO | Unet | CNextU-net
65
+ |:-:|:-:|:-:|:-:|:-:|
66
+ | `acoustic_scattering_maze` | 0.5062 | 0.5057| 0.0351| \\(\mathbf{0.0153}\\)|
67
+
68
+ Table: VRMSE metrics on test sets (lower is better). Best results are shown in bold. VRMSE is scaled such that predicting the mean value of the target field results in a score of 1.
69
+
70
+ # About the data
71
+
72
+ **Dimension of discretized data:** 201 steps of 256 \\(\times\\) 256 images.
73
+
74
+ **Fields available in the data:** pressure (scalar field), material density (constant scalar field), material speed of sound (constant scalar field), velocity field (vector field).
75
+
76
+ **Number of trajectories:** 2000.
77
+
78
+ **Estimated size of the ensemble of all simulations:** 311.3 GB.
79
+
80
+ **Grid type:** uniform, cartesian coordinates.
81
+
82
+ **Initial conditions:** Flat pressure static field with 1-6 high pressure rings randomly placed along paths of maze. The rings are defined with variable intensity \\(\sim \mathcal U(3., 5.)\\) and radius \\(\sim \mathcal U(.01, .04)\\). Any overlap with walls is removed.
83
+
84
+ **Boundary conditions:** Open domain in \\(y\\), reflective walls in \\(x\\).
85
+
86
+ **Simulation time-step:** Variable based on CFL with safety factor .25.
87
+
88
+ **Data are stored separated by (\\(\Delta t\\)):** 2/201.
89
+
90
+ **Total time range (\\(t_{min}\\) to \\(t_{max}\\)):** [0, 4.].
91
+
92
+ **Spatial domain size (\\(L_x\\), \\(L_y\\)):** [-1, 1] x [-1, 1].
93
+
94
+ **Set of coefficients or non-dimensional parameters evaluated:**
95
+
96
+ - \\(K\\) is fixed at 4.0.
97
+
98
+ - \\(\rho\\) is the primary coefficient here. We generated a maze with initial width between 6 and 16 pixels and upsample it via nearest neighbor resampling to create a 256 x 256 maze. The walls are set to \\(\rho=10^6\\) while paths are set to \\(\rho=3\\).
99
+
100
+ **Approximate time to generate the data:** ~20 minutes per simulation.
101
+
102
+ **Hardware used to generate the data and precision used for generating the data:** 64 Intel Icelake cores per simulation. Generated in double precision.
103
+
104
+ # What is interesting and challenging about the data:
105
+
106
+ This is an example of simple dynamics in complicated geometry. The sharp discontinuities can be a significant problem for machine learning models, yet they are a common feature in many real-world physics. While visually the walls appear to stop the signal, it is actually simply the case that the speed of sound is much much lower inside the walls leading to partial reflection/absorbtion at the interfaces.
107
+
108
+
109
+ Please cite the associated paper if you use this data in your research:
110
+
111
+ ```
112
+ @article{mandli2016clawpack,
113
+ title={Clawpack: building an open source ecosystem for solving hyperbolic PDEs},
114
+ author={Mandli, Kyle T and Ahmadia, Aron J and Berger, Marsha and Calhoun, Donna and George, David L and Hadjimichael, Yiannis and Ketcheson, David I and Lemoine, Grady I and LeVeque, Randall J},
115
+ journal={PeerJ Computer Science},
116
+ volume={2},
117
+ pages={e68},
118
+ year={2016},
119
+ publisher={PeerJ Inc.}
120
+ }
121
+ ```
acoustic_scattering_maze.yaml ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ dataset_name: acoustic_scattering_maze
2
+ n_spatial_dims: 2
3
+ spatial_resolution:
4
+ - 256
5
+ - 256
6
+ scalar_names: []
7
+ constant_scalar_names: []
8
+ field_names:
9
+ 0:
10
+ - pressure
11
+ 1:
12
+ - velocity_x
13
+ - velocity_y
14
+ 2: []
15
+ constant_field_names:
16
+ 0:
17
+ - density
18
+ - speed_of_sound
19
+ 1: []
20
+ 2: []
21
+ boundary_condition_types:
22
+ - OPEN
23
+ - WALL
24
+ n_simulations: 2
25
+ n_steps_per_simulation:
26
+ - 202
27
+ - 202
28
+ grid_type: cartesian
data/test/acoustic_scattering_maze_chunk_18.hdf5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dd7198b4227c902e258426d6dc99ca6bf5a28832abcb6050b0a7df303c8ab248
3
+ size 15980298240
data/test/acoustic_scattering_maze_chunk_19.hdf5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:927cc101432e0efe9bfe5808a0a4afb08c8176fb300431f7624e5fe0d8a835ef
3
+ size 15980298240
data/train/acoustic_scattering_maze_chunk_0.hdf5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:93694c368e8bb7cec8bf4dc9524820981e4d02a4dc181a011ec3e41d7031c07e
3
+ size 15980298240
data/train/acoustic_scattering_maze_chunk_1.hdf5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:92585de6aaf0a57562b4f83b776eec66715d15a52fb84b09de5ee28a3db97ce5
3
+ size 15980298240
data/train/acoustic_scattering_maze_chunk_10.hdf5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:448436567a51940ed8bc5127d5465e0272604e4b009ab495373251ed568a2c18
3
+ size 15980298240
data/train/acoustic_scattering_maze_chunk_11.hdf5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:79aba95ca7fca3ad8d74970263f2c1a5dd1f36623666b3d3bd6ba594520529bf
3
+ size 15980298240
data/train/acoustic_scattering_maze_chunk_12.hdf5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0f21aaf96fbf1be6699f6e6647c355df0e25f5bb3120768bbc04ead9a0609278
3
+ size 15980298240
data/train/acoustic_scattering_maze_chunk_13.hdf5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5d97d779f880b72caa10bdaffa2f049a1acf31b69ad59ce3596da1d0f3017c63
3
+ size 15980298240
data/train/acoustic_scattering_maze_chunk_14.hdf5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8e7bb146d0f4af87ca0d7d11ae3830402bc084c7451720f4a84627c862e656e4
3
+ size 15980298240
data/train/acoustic_scattering_maze_chunk_15.hdf5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:64bc378064b72534d88a2fe59d162599006938f250ce9638bf5f642a95e84a23
3
+ size 15980298240
data/train/acoustic_scattering_maze_chunk_2.hdf5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:de777cceebff1a0a1861ae1781e1a2edfdfc5bb805410481cfaf5dc25e6e7490
3
+ size 15980298240
data/train/acoustic_scattering_maze_chunk_3.hdf5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:94a7f3155f36078244a2df857861be39a4a2cbd9ebba1690601adc16ff1996b6
3
+ size 15980298240
data/train/acoustic_scattering_maze_chunk_4.hdf5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ebf5e08d3b9c60791a6a8fd3ca9da39587fe5b5100f3416e9f65ce94f024cd3b
3
+ size 15980298240
data/train/acoustic_scattering_maze_chunk_5.hdf5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ff2a462d42006c0be6418faf43b141b757551fd0e769f94dcdcd47edc4813e31
3
+ size 15980298240
data/train/acoustic_scattering_maze_chunk_6.hdf5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7e0d05bf5df449fefd005869c8d10041b6aba1d147fa160cd915475fb23e60e0
3
+ size 15980298240
data/train/acoustic_scattering_maze_chunk_7.hdf5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2d122b10420393649f8612ab677fddd04ff8bf06e14dee51d6f873496effc8b2
3
+ size 15980298240
data/train/acoustic_scattering_maze_chunk_8.hdf5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a857a307c96e34c1d62202e1082f4f60a8c82629b79085ee76817ef8b082e30b
3
+ size 15980298240
data/train/acoustic_scattering_maze_chunk_9.hdf5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3659717ee915394ffc6d9c3c9476bf54d40bfaa02dabc71f0af5b8ce49561270
3
+ size 15980298240
data/valid/acoustic_scattering_maze_chunk_16.hdf5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:36cca5d9775479f37d50ed94028d2e9590b369384da204adf1958e5091198ba4
3
+ size 15980298240
data/valid/acoustic_scattering_maze_chunk_17.hdf5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:70d471bb96ca25e3fc870c3da6ee2ccabea72656ee947c8ec243a55ad452c48d
3
+ size 15980298240
generation/acoustics_2d_interface_maze.py ADDED
@@ -0,0 +1,231 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # encoding: utf-8
3
+ r"""
4
+ Two-dimensional variable-coefficient acoustics
5
+ ==============================================
6
+
7
+ Solve the variable-coefficient acoustics equations in 2D:
8
+
9
+ .. math::
10
+ p_t + K(x,y) (u_x + v_y) & = 0 \\
11
+ u_t + p_x / \rho(x,y) & = 0 \\
12
+ v_t + p_y / \rho(x,y) & = 0.
13
+
14
+ Here p is the pressure, (u,v) is the velocity, :math:`K(x,y)` is the bulk modulus,
15
+ and :math:`\rho(x,y)` is the density.
16
+
17
+ This example shows how to solve a problem with variable coefficients.
18
+ The left and right halves of the domain consist of different materials.
19
+ """
20
+
21
+ from functools import partial
22
+
23
+ import matplotlib.pyplot as plt
24
+ import numpy as np
25
+ from skimage.transform import resize
26
+
27
+
28
+ def create_maze(dim, seed):
29
+ # Create a grid filled with walls
30
+ maze = np.ones((dim * 2 + 1, dim * 2 + 1))
31
+
32
+ # Define the starting point
33
+ x, y = (0, 0)
34
+ maze[2 * x + 1, 2 * y + 1] = 0
35
+
36
+ # Initialize the stack with the starting point
37
+ stack = [(x, y)]
38
+ while len(stack) > 0:
39
+ x, y = stack[-1]
40
+
41
+ # Define possible directions
42
+ directions = [(0, 1), (1, 0), (0, -1), (-1, 0)]
43
+ directions = seed.permutation(directions)
44
+
45
+ for dx, dy in directions:
46
+ nx, ny = x + dx, y + dy
47
+ if (
48
+ nx >= 0
49
+ and ny >= 0
50
+ and nx < dim
51
+ and ny < dim
52
+ and maze[2 * nx + 1, 2 * ny + 1] == 1
53
+ ):
54
+ maze[2 * nx + 1, 2 * ny + 1] = 0
55
+ maze[2 * x + 1 + dx, 2 * y + 1 + dy] = 0
56
+ stack.append((nx, ny))
57
+ break
58
+ else:
59
+ stack.pop()
60
+
61
+ # Create an entrance and an exit
62
+ maze[1, 0] = 0
63
+ maze[-2, -1] = 0
64
+
65
+ return maze
66
+
67
+
68
+ def setup(
69
+ kernel_language="Fortran",
70
+ use_petsc=False,
71
+ outdir="./_output",
72
+ solver_type="classic",
73
+ time_integrator="SSP104",
74
+ lim_type=2,
75
+ disable_output=False,
76
+ num_cells=(256, 256),
77
+ seed=None,
78
+ T_max=4.0,
79
+ num_steps=201,
80
+ ):
81
+ """
82
+ Example python script for solving the 2d acoustics equations.
83
+ """
84
+ from clawpack import riemann
85
+
86
+ if seed is None:
87
+ seed = np.random.default_rng()
88
+ if use_petsc:
89
+ import clawpack.petclaw as pyclaw
90
+ else:
91
+ from clawpack import pyclaw
92
+
93
+ if solver_type == "classic":
94
+ solver = pyclaw.ClawSolver2D(riemann.vc_acoustics_2D)
95
+ solver.dimensional_split = False
96
+ solver.limiters = pyclaw.limiters.tvd.MC
97
+ elif solver_type == "sharpclaw":
98
+ solver = pyclaw.SharpClawSolver2D(riemann.vc_acoustics_2D)
99
+ solver.time_integrator = time_integrator
100
+ if time_integrator == "SSPLMMk2":
101
+ solver.lmm_steps = 3
102
+ solver.cfl_max = 0.25
103
+ solver.cfl_desired = 0.24
104
+
105
+ solver.bc_lower[0] = pyclaw.BC.wall
106
+ solver.bc_upper[0] = pyclaw.BC.extrap
107
+ solver.bc_lower[1] = pyclaw.BC.wall
108
+ solver.bc_upper[1] = pyclaw.BC.extrap
109
+ solver.aux_bc_lower[0] = pyclaw.BC.wall
110
+ solver.aux_bc_upper[0] = pyclaw.BC.extrap
111
+ solver.aux_bc_lower[1] = pyclaw.BC.wall
112
+ solver.aux_bc_upper[1] = pyclaw.BC.extrap
113
+
114
+ x = pyclaw.Dimension(-1.0, 1.0, num_cells[0], name="x")
115
+ y = pyclaw.Dimension(-1.0, 1.0, num_cells[1], name="y")
116
+ domain = pyclaw.Domain([x, y])
117
+
118
+ num_eqn = 3
119
+ num_aux = 2 # density, sound speed
120
+ state = pyclaw.State(domain, num_eqn, num_aux)
121
+
122
+ grid = state.grid
123
+ X, Y = grid.p_centers
124
+
125
+ def construct_maze_background(aux, seed, base_maze_low=3, base_maze_high=8):
126
+ maze_size = seed.integers(base_maze_low, base_maze_high + 1)
127
+ maze = create_maze(maze_size, seed)
128
+ maze = resize(maze, (aux[0].shape[-2], aux[0].shape[-1]), order=0)
129
+ rho = maze * 1e6 + 3
130
+ return rho
131
+
132
+ rho = construct_maze_background(state.aux, seed)
133
+ c = np.sqrt(4.0 / rho)
134
+ state.aux[0, :, :] = rho
135
+ state.aux[1, :, :] = c
136
+
137
+ state.q[0, :, :] = 0.0
138
+ state.q[1, :, :] = 0.0
139
+ state.q[2, :, :] = 0.0
140
+ # Set initial condition
141
+ n_waves = seed.integers(1, 6)
142
+ mask = rho < 100
143
+ for i in range(n_waves):
144
+ center_pixel = seed.choice(rho[mask].shape[0])
145
+ x0 = X[mask][center_pixel]
146
+ y0 = Y[mask][center_pixel]
147
+ width = seed.uniform(0.01, 0.02)
148
+ rad = seed.uniform(0.01, 0.04)
149
+ intensity = seed.uniform(3.0, 5.0)
150
+ # x0 = -0.5; y0 = 0.
151
+ r = np.sqrt((X - x0) ** 2 + (Y - y0) ** 2)
152
+ # width = 0.1; rad = 0.25
153
+ state.q[0, :, :] += (np.abs(r - rad) <= width) * (
154
+ intensity + np.cos(np.pi * (r - rad) / width)
155
+ )
156
+
157
+ state.q[0][~mask] = 0.0
158
+
159
+ claw = pyclaw.Controller()
160
+ claw.keep_copy = True
161
+ if disable_output:
162
+ claw.output_format = None
163
+ claw.solution = pyclaw.Solution(state, domain)
164
+ claw.solver = solver
165
+ claw.outdir = outdir
166
+ claw.tfinal = T_max
167
+ claw.num_output_times = num_steps
168
+ claw.write_aux_init = True
169
+ claw.setplot = setplot
170
+ claw.output_options = {"format": "binary"}
171
+ if use_petsc:
172
+ claw.output_options = {"format": "binary"}
173
+
174
+ return claw
175
+
176
+
177
+ def setplot(plotdata):
178
+ """
179
+ Plot solution using VisClaw.
180
+
181
+ This example shows how to mark an internal boundary on a 2D plot.
182
+ """
183
+
184
+ from clawpack.visclaw import colormaps
185
+
186
+ plotdata.clearfigures() # clear any old figures,axes,items data
187
+
188
+ # Figure for pressure
189
+ plotfigure = plotdata.new_plotfigure(name="Pressure", figno=0)
190
+
191
+ # Set up for axes in this figure:
192
+ plotaxes = plotfigure.new_plotaxes()
193
+ plotaxes.title = "Pressure"
194
+ plotaxes.scaled = True # so aspect ratio is 1
195
+ plotaxes.afteraxes = mark_interface
196
+
197
+ # Set up for item on these axes:
198
+ plotitem = plotaxes.new_plotitem(plot_type="2d_pcolor")
199
+ plotitem.plot_var = 0
200
+ plotitem.pcolor_cmap = colormaps.yellow_red_blue
201
+ plotitem.add_colorbar = True
202
+ plotitem.pcolor_cmin = 0.0
203
+ plotitem.pcolor_cmax = 1.0
204
+
205
+ # Figure for x-velocity plot
206
+ plotfigure = plotdata.new_plotfigure(name="x-Velocity", figno=1)
207
+
208
+ # Set up for axes in this figure:
209
+ plotaxes = plotfigure.new_plotaxes()
210
+ plotaxes.title = "u"
211
+ plotaxes.afteraxes = mark_interface
212
+
213
+ plotitem = plotaxes.new_plotitem(plot_type="2d_pcolor")
214
+ plotitem.plot_var = 1
215
+ plotitem.pcolor_cmap = colormaps.yellow_red_blue
216
+ plotitem.add_colorbar = True
217
+ plotitem.pcolor_cmin = -0.3
218
+ plotitem.pcolor_cmax = 0.3
219
+
220
+ return plotdata
221
+
222
+
223
+ def mark_interface(current_data):
224
+ plt.plot((0.0, 0.0), (-1.0, 1.0), "-k", linewidth=2)
225
+
226
+
227
+ if __name__ == "__main__":
228
+ from clawpack.pyclaw.util import run_app_from_main
229
+
230
+ setup_wrapped = partial(setup, seed=np.random.default_rng(1))
231
+ output = run_app_from_main(setup_wrapped, setplot)
generation/generate_acoustics_data.py ADDED
@@ -0,0 +1,166 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import multiprocessing as mp
3
+ from functools import partial
4
+
5
+ import numpy as np
6
+ from acoustics_2d_interface_maze import setup as maze_setup
7
+ from acoustics_2d_interface_random_medium import setup as random_setup
8
+
9
+ # Time/steps/samples
10
+ steps_map = {
11
+ "continuous": (2.0, 101, 2000),
12
+ "discontinuous": (2.0, 101, 2000),
13
+ "inclusions": (2.0, 101, 4000),
14
+ "maze": (4.0, 201, 2000),
15
+ }
16
+
17
+
18
+ def mp_wrapper(
19
+ seed,
20
+ discontinuous,
21
+ inclusions,
22
+ maze,
23
+ output_dir="/mnt/home/polymathic/ceph/the_well/testing_before_adding/clawpack_data/acoustics_2d_variable/",
24
+ ):
25
+ if discontinuous:
26
+ run_func = partial(
27
+ inner_gen_sample,
28
+ discontinuous=True,
29
+ inclusions=False,
30
+ maze=False,
31
+ output_dir=output_dir,
32
+ )
33
+ num_samples = 2000
34
+ elif inclusions:
35
+ run_func = partial(
36
+ inner_gen_sample,
37
+ discontinuous=False,
38
+ inclusions=True,
39
+ maze=False,
40
+ output_dir=output_dir,
41
+ )
42
+ num_samples = 4000
43
+ elif maze:
44
+ run_func = partial(
45
+ inner_gen_sample,
46
+ discontinuous=False,
47
+ inclusions=False,
48
+ maze=True,
49
+ output_dir=output_dir,
50
+ )
51
+ num_samples = 2000
52
+ else:
53
+ run_func = partial(
54
+ inner_gen_sample,
55
+ discontinuous=False,
56
+ inclusions=False,
57
+ maze=False,
58
+ output_dir=output_dir,
59
+ )
60
+ num_samples = 2000
61
+ cores = mp.cpu_count()
62
+ seeds = seed.spawn(num_samples)
63
+ with mp.Pool(cores // 2) as pool:
64
+ pool.map(run_func, seeds)
65
+ # run_func(seeds[0])
66
+
67
+
68
+ def inner_gen_sample(
69
+ seed=0, discontinuous=False, inclusions=False, maze=False, output_dir=""
70
+ ):
71
+ """
72
+ Iterate num samples times and enerate sample file. Use
73
+ it to overwrite qinit, then run .make output to generate trajectory.
74
+
75
+ Make sure overwrite is False in the make file before running.
76
+ """
77
+ # Check conditions and set up names
78
+ file_suffix = f"{str(seed.bit_generator.seed_seq.entropy)}_{str(seed.bit_generator.seed_seq.spawn_key)}"
79
+ if discontinuous:
80
+ file_suffix = "discontinuous_" + file_suffix
81
+ run_func = partial(
82
+ random_setup,
83
+ seed=seed,
84
+ include_splits=True,
85
+ include_inclusions=False,
86
+ outdir=output_dir + file_suffix,
87
+ T_max=2.0,
88
+ num_steps=101,
89
+ )
90
+ elif inclusions:
91
+ file_suffix = "inclusions_" + file_suffix
92
+ run_func = partial(
93
+ random_setup,
94
+ seed=seed,
95
+ include_splits=True,
96
+ include_inclusions=True,
97
+ outdir=output_dir + file_suffix,
98
+ T_max=2.0,
99
+ num_steps=101,
100
+ )
101
+ elif maze:
102
+ file_suffix = "maze_" + file_suffix
103
+ run_func = partial(
104
+ maze_setup,
105
+ seed=seed,
106
+ outdir=output_dir + file_suffix,
107
+ T_max=4.0,
108
+ num_steps=201,
109
+ )
110
+ else:
111
+ file_suffix = "continuous_" + file_suffix
112
+ run_func = partial(
113
+ random_setup,
114
+ seed=seed,
115
+ include_splits=False,
116
+ include_inclusions=False,
117
+ outdir=output_dir + file_suffix,
118
+ T_max=2.0,
119
+ num_steps=101,
120
+ )
121
+
122
+ claw = run_func(output_dir + file_suffix)
123
+ claw.run()
124
+
125
+
126
+ if __name__ == "__main__":
127
+ # print(len(gases))
128
+ parser = argparse.ArgumentParser(
129
+ description="Generate initial conditions for 2D Euler quadrants"
130
+ )
131
+ # parser.add_argument('--num_samples', type=int, default=1000, help='Number of samples to generate')
132
+ parser.add_argument(
133
+ "--discontinuity",
134
+ action="store_true",
135
+ help="Whether to generate random samples",
136
+ )
137
+ parser.add_argument(
138
+ "--inclusions", action="store_true", help="Whether to generate random samples"
139
+ )
140
+ parser.add_argument(
141
+ "--switch_to_maze",
142
+ action="store_true",
143
+ help="Whether to generate random samples",
144
+ )
145
+ # parser.add_argument('--bc', type=str, default='extrap', help='Boundary conditions')
146
+ # parser.add_argument('--gas_index', type=int, default=0, help='Index of gas to use (0-9 inclusive)')
147
+ parser.add_argument(
148
+ "--seed",
149
+ type=int,
150
+ default=0,
151
+ help="Seed for random samples - use different one per gas/bc if par",
152
+ )
153
+ parser.add_argument(
154
+ "--raw_output_dir",
155
+ type=str,
156
+ default=" /mnt/home/polymathic/ceph/the_well/testing_before_adding/clawpack_data/",
157
+ help="Directory to store raw output",
158
+ )
159
+ args = parser.parse_args()
160
+ seed = np.random.default_rng(
161
+ args.seed
162
+ + 100 * int(args.discontinuity)
163
+ + 1000 * int(args.inclusions)
164
+ + 10000 * int(args.switch_to_maze)
165
+ )
166
+ mp_wrapper(seed, args.discontinuity, args.inclusions, args.switch_to_maze)
generation/run_mazes.sh ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash -l
2
+ #SBATCH --time=24:00:00
3
+ #SBATCH -p cmbas
4
+ #SBATCH --nodes=1
5
+ #SBATCH --ntasks-per-node=1
6
+ #SBATCH -J acou_maze
7
+ #SBATCH -o acou_maze
8
+ #SBATCH -C icelake
9
+
10
+ source ~/venvs/clawpack/bin/activate
11
+
12
+ srun python generate_acoustics_data.py --switch_to_maze
gif/mazes_density.png ADDED

Git LFS Details

  • SHA256: 1ed40d89a6d90cd8e147520aa3e297320750b671d296f55e23b0d19a72e4fbf5
  • Pointer size: 130 Bytes
  • Size of remote file: 28 kB
gif/pressure_normalized.gif ADDED

Git LFS Details

  • SHA256: 996832cfe42474a4dd91ad36eec058e8c09b31c9062083e7221c31fa52cfc99a
  • Pointer size: 132 Bytes
  • Size of remote file: 4.12 MB
gif/pressure_unnormalized.gif ADDED

Git LFS Details

  • SHA256: 1b51d2eba1ed711308ad13fd6059eceafb71666516532fb5e5aefd469ca74277
  • Pointer size: 132 Bytes
  • Size of remote file: 8.95 MB
stats.yaml ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ mean:
2
+ bulk_modulus: 0.4914537656565528
3
+ density: 575388.1413726807
4
+ pressure: 0.011643124502395175
5
+ velocity:
6
+ - 7.811991663938063e-05
7
+ - 0.00013353731981243736
8
+ std:
9
+ bulk_modulus: 0.5697618996294348
10
+ density: 494284.41251997923
11
+ pressure: 0.12435384628054441
12
+ velocity:
13
+ - 0.024985422681220726
14
+ - 0.025001445400120472
visualization_acoustic_scattering_maze.ipynb ADDED
The diff for this file is too large to render. See raw diff