Datasets:

Modalities:
Tabular
Formats:
parquet
Languages:
English
ArXiv:
DOI:
Libraries:
Datasets
pandas
License:
File size: 7,629 Bytes
316d516
 
 
 
 
 
 
 
 
 
 
49f3b24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
316d516
f44c7fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d528956
f44c7fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
---
license: apache-2.0
task_categories:
- reinforcement-learning
language:
- en
tags:
- offlinerl
pretty_name: neorl
size_categories:
- 100M<n<1B
configs:
- config_name: DMSD
  data_files:
  - split: train
    path: "DMSD/train/*.parquet"
  - split: val
    path: "DMSD/val/*.parquet"
- config_name: Fusion
  data_files:
  - split: train
    path: "Fusion/train/*.parquet"
  - split: val
    path: "Fusion/val/*.parquet"
- config_name: Pipeline
  data_files:
  - split: train
    path: "Pipeline/train/*.parquet"
  - split: val
    path: "Pipeline/val/*.parquet"
- config_name: RandomFrictionHopper
  data_files:
  - split: train
    path: "RandomFrictionHopper/train/*.parquet"
  - split: val
    path: "RandomFrictionHopper/val/*.parquet"
- config_name: RocketRecovery
  data_files:
  - split: train
    path: "RocketRecovery/train/*.parquet"
  - split: val
    path: "RocketRecovery/val/*.parquet"
- config_name: SafetyHalfCheetah
  data_files:
  - split: train
    path: "SafetyHalfCheetah/train/*.parquet"
  - split: val
    path: "SafetyHalfCheetah/val/*.parquet"
- config_name: Salespromotion
  data_files:
  - split: train
    path: "Salespromotion/train/*.parquet"
  - split: val
    path: "Salespromotion/val/*.parquet"
- config_name: Simglucose
  data_files:
  - split: train
    path: "Simglucose/train/*.parquet"
  - split: val
    path: "Simglucose/val/*.parquet"
- config_name: Simglucose-high
  data_files:
  - split: train
    path: "Simglucose-high/train/*.parquet"
  - split: val
    path: "Simglucose-high/val/*.parquet"
---
# Dataset Card for NeoRL‑2: Near Real‑World Benchmarks for Offline Reinforcement Learning

## Dataset Summary

**NeoRL-2** is a collection of seven near–real-world offline-RL datasets *plus* their evaluation simulators. This repo we provide the offline-RL dataset, while the simulators are in <https://github.com/polixir/NeoRL2>.

Each task injects one or more realistic challenges—delays, exogenous disturbances, global safety constraints, traditional rule-based data, and/or severe data scarcity—into a lightweight control environment.


---

## Dataset Details

| Challenge | Brief description | Appears in |
|-----------|-------------------|------------|
| **Delay** | Long & variable observation-to-effect latency | Pipeline, Simglucose |
| **External factors** | State variables the agent cannot influence (e.g. wind, ground-friction) | RocketRecovery, RandomFrictionHopper, Simglucose |
| **Global safety constraints** | Hard limits that must never be violated | SafetyHalfCheetah |
| **Rule-based behaviour policy** | Trajectories from a PID or other deterministic controller | DMSD |
| **Severely limited data** | Tiny datasets reflecting expensive experimentation | Fusion, RocketRecovery, SafetyHalfCheetah |

* **Curated by:** Polixir Technologies  
* **Paper:** Gao *et al.* “NeoRL-2: Near Real-World Benchmarks for Offline Reinforcement Learning with Extended Realistic Scenarios”, arXiv:2503.19267 (2025)  
* **Repository (the environments for the datasets are in here):** <https://github.com/polixir/NeoRL2>  
* **Task:** offline / batch reinforcement learning

## Uses

### Direct Use
* Benchmarking offline-RL algorithms under near-deployment conditions  
* Studying robustness to delays, safety limits, exogenous disturbances and data scarcity  
* Developing data-efficient model-based or model-free methods able to outperform conservative behaviour policies  

#### Loading example
```python
from datasets import load_dataset

dmsd = load_dataset("polixir/neorl2", "DMSD", split="train")
state, action, reward, next_state, done = dmsd[0].values()
```

### Out-of-Scope Use
* Online RL with unlimited interaction  
* Safety-critical decision-making without extensive validation on the real system  


---

## Dataset Structure

Each Parquet row contains  

| Key                | Type        | Description                                     |
|--------------------|-------------|-------------------------------------------------|
| `observations`     | float32[]   | Raw observation vector (dim varies per task)    |
| `actions`          | float32[]   | Continuous action taken by the behaviour policy |
| `rewards`          | float32     | Scalar reward                                   |
| `next_observations`| float32[]   | Observation at the next timestep                |
| `terminals`        | bool        | `True` if episode ended (termination or safety) |

Typical dataset sizes are **≈100 k transitions**; *Fusion*, *RocketRecovery* and *SafetyHalfCheetah* are smaller by design.

---

## Baseline Benchmark

### Normalised return (0 – 100) 

| Task | Data | BC | CQL | EDAC | MCQ | TD3BC | MOPO | COMBO | RAMBO | MOBILE |
|------|------|----|----|------|----|------|------|------|------|-------|
| **Pipeline** | 69.25 | 68.6 ± 13.4 | **81.1 ± 8.3** | 72.9 ± 4.6 | 49.7 ± 7.4 | **81.9 ± 7.5** | −26.3 ± 92.7 | 55.5 ± 4.3 | 24.1 ± 74.4 | 65.5 ± 4.1 |
| **Simglucose** | 73.9 | **75.1 ± 0.7** | 11.0 ± 3.4 | 8.1 ± 0.3 | 29.6 ± 5.7 | **74.2 ± 0.4** | 34.6 ± 28.1 | 23.2 ± 2.5 | 10.8 ± 0.9 | 9.3 ± 0.2 |
| **RocketRecovery** | 75.3 | 72.8 ± 2.5 | 74.3 ± 1.4 | 65.7 ± 9.8 | **76.5 ± 0.8** | **79.7 ± 0.9** | −27.7 ± 105.6 | 74.7 ± 0.7 | −44.2 ± 263.0 | 43.7 ± 17.5 |
| **RandomFrictionHopper** | 28.7 | 28.0 ± 0.3 | 33.0 ± 1.2 | **34.7 ± 1.3** | 31.7 ± 1.3 | 29.5 ± 0.7 | 32.5 ± 5.8 | 34.1 ± 4.7 | 29.6 ± 7.2 | **35.1 ± 0.5** |
| **DMSD** | 56.6 | 65.1 ± 1.6 | 70.2 ± 1.1 | **78.7 ± 2.3** | **77.8 ± 1.2** | 60.0 ± 0.8 | 68.2 ± 0.7 | 68.3 ± 0.4 | 76.2 ± 1.9 | 64.4 ± 0.8 |
| **Fusion** | 48.8 | 55.2 ± 0.3 | 55.9 ± 1.9 | **58.0 ± 0.7** | 49.7 ± 1.1 | 54.6 ± 0.8 | −11.6 ± 22.2 | 55.5 ± 0.3 | **59.6 ± 5.0** | 5.0 ± 7.1 |
| **SafetyHalfCheetah** | 73.6 | 70.2 ± 0.4 | 71.2 ± 0.6 | 53.1 ± 11.1 | 54.7 ± 4.3 | 68.6 ± 0.4 | 23.7 ± 24.3 | 57.8 ± 13.3 | −422.4 ± 307.5 | 8.7 ± 3.9 |

### How often do algorithms beat the behaviour policy?

| Margin | BC | CQL | EDAC | MCQ | TD3BC | MOPO | COMBO | RAMBO | MOBILE |
|--------|----|----|----|----|------|------|------|------|-------|
| ≥ 0    | 3 | 4 | 4 | 4 | **6** | 2 | 3 | 3 | 2 |
| ≥ +3   | 2 | 4 | 4 | 2 | **4** | 2 | 3 | 2 | 2 |
| ≥ +5   | 2 | 3 | 3 | 1 | **2** | 1 | 3 | 2 | 2 |
| ≥ +10  | 0 | 2 | 1 | 1 | **1** | 1 | 1 | 2 | 0 |

### Key conclusions

* No baseline “solves” any task (score ≥ 95). Best result is TD3BC’s 81.9 on *Pipeline*.  
* **TD3BC** is the most reliable algorithm, surpassing the data in 6 / 7 tasks and still leading at stricter margins.  
* Model-based methods (MOPO, RAMBO, and MOBILE) are brittle, with large variance and occasional catastrophic divergence.  
* *DMSD* is easiest: many algorithms exceed the behaviour policy by 20 + points thanks to simple PID data.  
* *SafetyHalfCheetah* is hardest: every method trails the data due to strict safety penalties and limited samples.  
* In general, model-free approaches show smaller error bars than model-based ones, underlining the challenge of learning accurate dynamics under delay, disturbance and scarcity.

---

## Citation

```bibtex
@misc{gao2025neorl2,
  title   = {NeoRL-2: Near Real-World Benchmarks for Offline Reinforcement Learning with Extended Realistic Scenarios},
  author  = {Songyi Gao and Zuolin Tu and Rong-Jun Qin and Yi-Hao Sun and Xiong-Hui Chen and Yang Yu},
  year    = {2025},
  eprint  = {2503.19267},
  archivePrefix = {arXiv},
  primaryClass = {cs.LG}
}
```

---

## Contact

Questions or bug reports? Please open an issue on the [NeoRL-2 GitHub repo](https://github.com/polixir/NeoRL2).