File size: 7,629 Bytes
			
			| 316d516 49f3b24 316d516 f44c7fe d528956 f44c7fe | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 | ---
license: apache-2.0
task_categories:
- reinforcement-learning
language:
- en
tags:
- offlinerl
pretty_name: neorl
size_categories:
- 100M<n<1B
configs:
- config_name: DMSD
  data_files:
  - split: train
    path: "DMSD/train/*.parquet"
  - split: val
    path: "DMSD/val/*.parquet"
- config_name: Fusion
  data_files:
  - split: train
    path: "Fusion/train/*.parquet"
  - split: val
    path: "Fusion/val/*.parquet"
- config_name: Pipeline
  data_files:
  - split: train
    path: "Pipeline/train/*.parquet"
  - split: val
    path: "Pipeline/val/*.parquet"
- config_name: RandomFrictionHopper
  data_files:
  - split: train
    path: "RandomFrictionHopper/train/*.parquet"
  - split: val
    path: "RandomFrictionHopper/val/*.parquet"
- config_name: RocketRecovery
  data_files:
  - split: train
    path: "RocketRecovery/train/*.parquet"
  - split: val
    path: "RocketRecovery/val/*.parquet"
- config_name: SafetyHalfCheetah
  data_files:
  - split: train
    path: "SafetyHalfCheetah/train/*.parquet"
  - split: val
    path: "SafetyHalfCheetah/val/*.parquet"
- config_name: Salespromotion
  data_files:
  - split: train
    path: "Salespromotion/train/*.parquet"
  - split: val
    path: "Salespromotion/val/*.parquet"
- config_name: Simglucose
  data_files:
  - split: train
    path: "Simglucose/train/*.parquet"
  - split: val
    path: "Simglucose/val/*.parquet"
- config_name: Simglucose-high
  data_files:
  - split: train
    path: "Simglucose-high/train/*.parquet"
  - split: val
    path: "Simglucose-high/val/*.parquet"
---
# Dataset Card for NeoRL‑2: Near Real‑World Benchmarks for Offline Reinforcement Learning
## Dataset Summary
**NeoRL-2** is a collection of seven near–real-world offline-RL datasets *plus* their evaluation simulators. This repo we provide the offline-RL dataset, while the simulators are in <https://github.com/polixir/NeoRL2>.
Each task injects one or more realistic challenges—delays, exogenous disturbances, global safety constraints, traditional rule-based data, and/or severe data scarcity—into a lightweight control environment.
---
## Dataset Details
| Challenge | Brief description | Appears in |
|-----------|-------------------|------------|
| **Delay** | Long & variable observation-to-effect latency | Pipeline, Simglucose |
| **External factors** | State variables the agent cannot influence (e.g. wind, ground-friction) | RocketRecovery, RandomFrictionHopper, Simglucose |
| **Global safety constraints** | Hard limits that must never be violated | SafetyHalfCheetah |
| **Rule-based behaviour policy** | Trajectories from a PID or other deterministic controller | DMSD |
| **Severely limited data** | Tiny datasets reflecting expensive experimentation | Fusion, RocketRecovery, SafetyHalfCheetah |
* **Curated by:** Polixir Technologies  
* **Paper:** Gao *et al.* “NeoRL-2: Near Real-World Benchmarks for Offline Reinforcement Learning with Extended Realistic Scenarios”, arXiv:2503.19267 (2025)  
* **Repository (the environments for the datasets are in here):** <https://github.com/polixir/NeoRL2>  
* **Task:** offline / batch reinforcement learning
## Uses
### Direct Use
* Benchmarking offline-RL algorithms under near-deployment conditions  
* Studying robustness to delays, safety limits, exogenous disturbances and data scarcity  
* Developing data-efficient model-based or model-free methods able to outperform conservative behaviour policies  
#### Loading example
```python
from datasets import load_dataset
dmsd = load_dataset("polixir/neorl2", "DMSD", split="train")
state, action, reward, next_state, done = dmsd[0].values()
```
### Out-of-Scope Use
* Online RL with unlimited interaction  
* Safety-critical decision-making without extensive validation on the real system  
---
## Dataset Structure
Each Parquet row contains  
| Key                | Type        | Description                                     |
|--------------------|-------------|-------------------------------------------------|
| `observations`     | float32[]   | Raw observation vector (dim varies per task)    |
| `actions`          | float32[]   | Continuous action taken by the behaviour policy |
| `rewards`          | float32     | Scalar reward                                   |
| `next_observations`| float32[]   | Observation at the next timestep                |
| `terminals`        | bool        | `True` if episode ended (termination or safety) |
Typical dataset sizes are **≈100 k transitions**; *Fusion*, *RocketRecovery* and *SafetyHalfCheetah* are smaller by design.
---
## Baseline Benchmark
### Normalised return (0 – 100) 
| Task | Data | BC | CQL | EDAC | MCQ | TD3BC | MOPO | COMBO | RAMBO | MOBILE |
|------|------|----|----|------|----|------|------|------|------|-------|
| **Pipeline** | 69.25 | 68.6 ± 13.4 | **81.1 ± 8.3** | 72.9 ± 4.6 | 49.7 ± 7.4 | **81.9 ± 7.5** | −26.3 ± 92.7 | 55.5 ± 4.3 | 24.1 ± 74.4 | 65.5 ± 4.1 |
| **Simglucose** | 73.9 | **75.1 ± 0.7** | 11.0 ± 3.4 | 8.1 ± 0.3 | 29.6 ± 5.7 | **74.2 ± 0.4** | 34.6 ± 28.1 | 23.2 ± 2.5 | 10.8 ± 0.9 | 9.3 ± 0.2 |
| **RocketRecovery** | 75.3 | 72.8 ± 2.5 | 74.3 ± 1.4 | 65.7 ± 9.8 | **76.5 ± 0.8** | **79.7 ± 0.9** | −27.7 ± 105.6 | 74.7 ± 0.7 | −44.2 ± 263.0 | 43.7 ± 17.5 |
| **RandomFrictionHopper** | 28.7 | 28.0 ± 0.3 | 33.0 ± 1.2 | **34.7 ± 1.3** | 31.7 ± 1.3 | 29.5 ± 0.7 | 32.5 ± 5.8 | 34.1 ± 4.7 | 29.6 ± 7.2 | **35.1 ± 0.5** |
| **DMSD** | 56.6 | 65.1 ± 1.6 | 70.2 ± 1.1 | **78.7 ± 2.3** | **77.8 ± 1.2** | 60.0 ± 0.8 | 68.2 ± 0.7 | 68.3 ± 0.4 | 76.2 ± 1.9 | 64.4 ± 0.8 |
| **Fusion** | 48.8 | 55.2 ± 0.3 | 55.9 ± 1.9 | **58.0 ± 0.7** | 49.7 ± 1.1 | 54.6 ± 0.8 | −11.6 ± 22.2 | 55.5 ± 0.3 | **59.6 ± 5.0** | 5.0 ± 7.1 |
| **SafetyHalfCheetah** | 73.6 | 70.2 ± 0.4 | 71.2 ± 0.6 | 53.1 ± 11.1 | 54.7 ± 4.3 | 68.6 ± 0.4 | 23.7 ± 24.3 | 57.8 ± 13.3 | −422.4 ± 307.5 | 8.7 ± 3.9 |
### How often do algorithms beat the behaviour policy?
| Margin | BC | CQL | EDAC | MCQ | TD3BC | MOPO | COMBO | RAMBO | MOBILE |
|--------|----|----|----|----|------|------|------|------|-------|
| ≥ 0    | 3 | 4 | 4 | 4 | **6** | 2 | 3 | 3 | 2 |
| ≥ +3   | 2 | 4 | 4 | 2 | **4** | 2 | 3 | 2 | 2 |
| ≥ +5   | 2 | 3 | 3 | 1 | **2** | 1 | 3 | 2 | 2 |
| ≥ +10  | 0 | 2 | 1 | 1 | **1** | 1 | 1 | 2 | 0 |
### Key conclusions
* No baseline “solves” any task (score ≥ 95). Best result is TD3BC’s 81.9 on *Pipeline*.  
* **TD3BC** is the most reliable algorithm, surpassing the data in 6 / 7 tasks and still leading at stricter margins.  
* Model-based methods (MOPO, RAMBO, and MOBILE) are brittle, with large variance and occasional catastrophic divergence.  
* *DMSD* is easiest: many algorithms exceed the behaviour policy by 20 + points thanks to simple PID data.  
* *SafetyHalfCheetah* is hardest: every method trails the data due to strict safety penalties and limited samples.  
* In general, model-free approaches show smaller error bars than model-based ones, underlining the challenge of learning accurate dynamics under delay, disturbance and scarcity.
---
## Citation
```bibtex
@misc{gao2025neorl2,
  title   = {NeoRL-2: Near Real-World Benchmarks for Offline Reinforcement Learning with Extended Realistic Scenarios},
  author  = {Songyi Gao and Zuolin Tu and Rong-Jun Qin and Yi-Hao Sun and Xiong-Hui Chen and Yang Yu},
  year    = {2025},
  eprint  = {2503.19267},
  archivePrefix = {arXiv},
  primaryClass = {cs.LG}
}
```
---
## Contact
Questions or bug reports? Please open an issue on the [NeoRL-2 GitHub repo](https://github.com/polixir/NeoRL2).
  
 | 
