pietrolesci commited on
Commit
ee99c8e
·
1 Parent(s): 5b4e679

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +53 -0
README.md ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## Overview
2
+ Original dataset [here](https://github.com/felipessalvatore/NLI_datasets).
3
+
4
+
5
+ ## Dataset curation
6
+ One hypothesis in the dev set and three hypotheses in the train set are empty and have been
7
+ filled in with the empty string `""`. Labels are encoded with custom NLI mapping, that is
8
+
9
+ ```
10
+ {"entailment": 0, "neutral": 1, "contradiction": 2}
11
+ ```
12
+
13
+
14
+ ## Code to create the dataset
15
+ ```python
16
+ import pandas as pd
17
+ from datasets import Features, Value, ClassLabel, Dataset, DatasetDict, load_dataset
18
+ from pathlib import Path
19
+
20
+
21
+ # load datasets
22
+ path = Path("<path to folder>/nli_datasets")
23
+ datasets = {}
24
+ for dataset_path in path.iterdir():
25
+ datasets[dataset_path.name] = {}
26
+ for name in dataset_path.iterdir():
27
+ df = pd.read_csv(name)
28
+ datasets[dataset_path.name][name.name.split(".")[0]] = df
29
+
30
+
31
+ ds = {}
32
+ for name, df_ in datasets["fracas"].items():
33
+
34
+ df = df_.copy()
35
+ assert df["label"].isna().sum() == 0
36
+
37
+ # fill-in empty hypothesis
38
+ df = df.fillna("")
39
+
40
+ # encode labels
41
+ df["label"] = df["label"].map({"entailment": 0, "neutral": 1, "contradiction": 2})
42
+
43
+ # cast to dataset
44
+ features = Features({
45
+ "premise": Value(dtype="string", id=None),
46
+ "hypothesis": Value(dtype="string", id=None),
47
+ "label": ClassLabel(num_classes=3, names=["entailment", "neutral", "contradiction"]),
48
+ })
49
+ ds[name] = Dataset.from_pandas(df, features=features)
50
+
51
+ dataset = DatasetDict(ds)
52
+ dataset.push_to_hub("fracas", token="<token>")
53
+ ```