File size: 8,065 Bytes
8e5c4a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
import sys, argparse, glob, os
import torch
import numpy as np
from tqdm import tqdm
import gradio as gr
from PIL import Image
from omegaconf import OmegaConf
from einops import repeat, rearrange
from pytorch_lightning import seed_everything
from imwatermark import WatermarkEncoder
from scripts.txt2img import put_watermark
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.models.diffusion.ddpm import LatentUpscaleDiffusion, LatentUpscaleFinetuneDiffusion
from ldm.util import exists, instantiate_from_config
torch.set_grad_enabled(False)
def load_model_from_config(config, ckpt, verbose=False):
print(f"Loading model from {ckpt}")
pl_sd = torch.load(ckpt, map_location="cpu")
if "global_step" in pl_sd:
print(f"Global Step: {pl_sd['global_step']}")
sd = pl_sd["state_dict"]
model = instantiate_from_config(config.model)
m, u = model.load_state_dict(sd, strict=False)
if len(m) > 0 and verbose:
print("missing keys:")
print(m)
if len(u) > 0 and verbose:
print("unexpected keys:")
print(u)
model.cuda()
model.eval()
return model
def make_batch_sd( image, txt, device,num_samples=1,size=(512,512)):
image = Image.open(image).convert("RGB")
image = image.resize(size)
image = np.array(image)
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
batch = {
"lr": rearrange(image, 'h w c -> 1 c h w'),
"txt": num_samples * [txt],
}
batch["lr"] = repeat(batch["lr"].to(device=device), "1 ... -> n ...", n=num_samples)
return batch
def make_noise_augmentation(model, batch, noise_level=None):
x_low = batch[model.low_scale_key]
x_low = x_low.to(memory_format=torch.contiguous_format).float()
x_aug, noise_level = model.low_scale_model(x_low, noise_level)
return x_aug, noise_level
def paint(sampler, image, prompt, seed, scale, h, w, steps, num_samples=1, callback=None, eta=0., noise_level=None):
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
model = sampler.model
seed_everything(seed)
prng = np.random.RandomState(seed)
start_code = prng.randn(num_samples, model.channels, h, w)
start_code = torch.from_numpy(start_code).to(device=device, dtype=torch.float32)
with torch.no_grad(), torch.autocast("cuda"):
batch = make_batch_sd(image, txt=prompt, device=device, num_samples=num_samples, size=(h, w))
c = model.cond_stage_model.encode(batch["txt"])
c_cat = list()
if isinstance(model, LatentUpscaleFinetuneDiffusion):
for ck in model.concat_keys:
cc = batch[ck]
if exists(model.reshuffle_patch_size):
assert isinstance(model.reshuffle_patch_size, int)
cc = rearrange(cc, 'b c (p1 h) (p2 w) -> b (p1 p2 c) h w',p1=model.reshuffle_patch_size, p2=model.reshuffle_patch_size)
c_cat.append(cc)
c_cat = torch.cat(c_cat, dim=1)
# cond
cond = {"c_concat": [c_cat], "c_crossattn": [c]}
# uncond cond
uc_cross = model.get_unconditional_conditioning(num_samples, "")
uc_full = {"c_concat": [c_cat], "c_crossattn": [uc_cross]}
elif isinstance(model, LatentUpscaleDiffusion):
x_augment, noise_level = make_noise_augmentation(model, batch, noise_level)
cond = {"c_concat": [x_augment], "c_crossattn": [c], "c_adm": noise_level}
# uncond cond
uc_cross = model.get_unconditional_conditioning(num_samples, "")
uc_full = {"c_concat": [x_augment], "c_crossattn": [uc_cross], "c_adm": noise_level}
else:
raise NotImplementedError()
shape = [model.channels, h, w]
samples, intermediates = sampler.sample(
steps,
num_samples,
shape,
cond,
verbose=False,
eta=eta,
unconditional_guidance_scale=scale,
unconditional_conditioning=uc_full,
x_T=start_code,
callback=callback
)
with torch.no_grad():
x_samples_ddim = model.decode_first_stage(samples)
result = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
result = result.cpu().numpy().transpose(0, 2, 3, 1) * 255
return Image.fromarray(result.astype(np.uint8)[0])
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--indir", type=str, nargs="?", help="dir containing image-mask pairs (`example.png` and `example_mask.png`)",)
parser.add_argument("--num_imgs", type=int, default=None, help="number of images to generate",)
parser.add_argument("--steps",type=int,default=50,help="number of ddim sampling steps",)
parser.add_argument("--config",type=str,default="/checkpoint/pfz/autoencoders/sd/stable-diffusion-x4-upscaler/x4-upscaling.yaml",help="path to config which constructs model",)
parser.add_argument("--ckpt",type=str,default="/checkpoint/pfz/autoencoders/sd/stable-diffusion-x4-upscaler/x4-upscaler-ema.ckpt",help="path to checkpoint of model",)
parser.add_argument("--ldm_decoder_ckpt",default=None,type=str,help="path to checkpoint of LDM decoder")
parser.add_argument("--num_samples",default=1,type=int,help="number of samples to generate")
parser.add_argument("--scale", default=10.0, type=float, help="scale")
parser.add_argument("--eta", default=0.0, type=float, help="eta")
parser.add_argument("--noise_level", default=20, type=float, help="eta")
parser.add_argument("--output_dir",type=str,default="outputs",nargs="?",help="dir to write results to",)
parser.add_argument("--height",type=int,default=512,help="height of output image",)
parser.add_argument("--width",type=int,default=512,help="width of output image",)
parser.add_argument("--seed",type=int,default=0,help="random seed",)
opt = parser.parse_args()
print(f'>>> Building LDM model with config {opt.config} and weights from {opt.ckpt}...')
config = OmegaConf.load(f"{opt.config}")
model = load_model_from_config(config, f"{opt.ckpt}")
# Parameter None for clutil sweep
print(f'reload decoder weights {opt.ldm_decoder_ckpt}...')
if opt.ldm_decoder_ckpt is not None and opt.ldm_decoder_ckpt.lower() == "none":
opt.ldm_decoder_ckpt = None
if opt.ldm_decoder_ckpt is not None:
state_dict = torch.load(opt.ldm_decoder_ckpt)['ldm_decoder']
msg = model.first_stage_model.load_state_dict(state_dict, strict=False)
print(msg)
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
model = model.to(device)
model.eval()
sampler = DDIMSampler(model)
os.makedirs(opt.output_dir, exist_ok=True)
images = sorted(glob.glob(os.path.join(opt.indir, "*.png"))) + sorted(glob.glob(os.path.join(opt.indir, "*.jpg"))) + sorted(glob.glob(os.path.join(opt.indir, "*.jpeg")))
images += sorted(glob.glob(os.path.join(opt.indir, "*.PNG"))) + sorted(glob.glob(os.path.join(opt.indir, "*.JPG"))) + sorted(glob.glob(os.path.join(opt.indir, "*.JPEG")))
print(f"Found {len(images)} inputs.")
counter = 0
for image in tqdm(images):
if opt.num_imgs is not None and counter >= opt.num_imgs:
break
noise_level = torch.Tensor( opt.num_samples * [opt.noise_level]).to(sampler.model.device).long()
sampler.make_schedule(opt.steps, ddim_eta=opt.eta, verbose=True)
result = paint(
sampler=sampler,
image=image,
prompt="",
seed=opt.seed,
scale=opt.scale,
h=opt.height, w=opt.width, steps=opt.steps,
num_samples=opt.num_samples,
callback=None,
noise_level=noise_level
)
outpath = os.path.join(opt.output_dir, os.path.split(image)[1]).replace('.jpg', '.png').replace('.jpeg', '.png').replace('.JPG', '.png').replace('.JPEG', '.png')
result.save(outpath)
counter += 1
|