|
from dataclasses import dataclass |
|
from typing import Any, Dict |
|
|
|
import datasets |
|
from pytorch_ie import Document |
|
from pytorch_ie.annotations import BinaryRelation, LabeledSpan |
|
from pytorch_ie.documents import ( |
|
AnnotationLayer, |
|
TextBasedDocument, |
|
TextDocumentWithLabeledSpansAndBinaryRelations, |
|
TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions, |
|
annotation_field, |
|
) |
|
|
|
from pie_datasets import GeneratorBasedBuilder |
|
|
|
|
|
@dataclass |
|
class ChemprotDocument(TextBasedDocument): |
|
|
|
entities: AnnotationLayer[LabeledSpan] = annotation_field(target="text") |
|
relations: AnnotationLayer[BinaryRelation] = annotation_field(target="entities") |
|
|
|
|
|
@dataclass |
|
class ChemprotBigbioDocument(TextBasedDocument): |
|
passages: AnnotationLayer[LabeledSpan] = annotation_field(target="text") |
|
entities: AnnotationLayer[LabeledSpan] = annotation_field(target="text") |
|
relations: AnnotationLayer[BinaryRelation] = annotation_field(target="entities") |
|
|
|
|
|
def example_to_chemprot_doc(example) -> ChemprotDocument: |
|
metadata = {"entity_ids": []} |
|
id_to_labeled_span: Dict[str, LabeledSpan] = {} |
|
|
|
doc = ChemprotDocument( |
|
text=example["text"], |
|
id=example["pmid"], |
|
metadata=metadata, |
|
) |
|
|
|
for idx in range(len(example["entities"]["id"])): |
|
labeled_span = LabeledSpan( |
|
start=example["entities"]["offsets"][idx][0], |
|
end=example["entities"]["offsets"][idx][1], |
|
label=example["entities"]["type"][idx], |
|
) |
|
doc.entities.append(labeled_span) |
|
doc.metadata["entity_ids"].append(example["entities"]["id"][idx]) |
|
id_to_labeled_span[example["entities"]["id"][idx]] = labeled_span |
|
|
|
for idx in range(len(example["relations"]["type"])): |
|
doc.relations.append( |
|
BinaryRelation( |
|
head=id_to_labeled_span[example["relations"]["arg1"][idx]], |
|
tail=id_to_labeled_span[example["relations"]["arg2"][idx]], |
|
label=example["relations"]["type"][idx], |
|
) |
|
) |
|
|
|
return doc |
|
|
|
|
|
def example_to_chemprot_bigbio_doc(example) -> ChemprotBigbioDocument: |
|
text = " ".join([" ".join(passage["text"]) for passage in example["passages"]]) |
|
metadata = {"id": example["id"], "entity_ids": [], "relation_ids": []} |
|
id_to_labeled_span: Dict[str, LabeledSpan] = {} |
|
|
|
doc = ChemprotBigbioDocument( |
|
text=text, |
|
id=example["document_id"], |
|
metadata=metadata, |
|
) |
|
|
|
for passage in example["passages"]: |
|
doc.passages.append( |
|
LabeledSpan( |
|
start=passage["offsets"][0][0], |
|
end=passage["offsets"][0][1], |
|
label=passage["type"], |
|
) |
|
) |
|
|
|
for span in example["entities"]: |
|
labeled_span = LabeledSpan( |
|
start=span["offsets"][0][0], |
|
end=span["offsets"][0][1], |
|
label=span["type"], |
|
) |
|
doc.entities.append(labeled_span) |
|
doc.metadata["entity_ids"].append(span["id"]) |
|
id_to_labeled_span[span["id"]] = labeled_span |
|
|
|
for relation in example["relations"]: |
|
doc.relations.append( |
|
BinaryRelation( |
|
head=id_to_labeled_span[relation["arg1_id"]], |
|
tail=id_to_labeled_span[relation["arg2_id"]], |
|
label=relation["type"], |
|
) |
|
) |
|
doc.metadata["relation_ids"].append([relation["arg1_id"], relation["arg2_id"]]) |
|
|
|
return doc |
|
|
|
|
|
def chemprot_doc_to_example(doc: ChemprotDocument) -> Dict[str, Any]: |
|
entities = { |
|
"id": [], |
|
"offsets": [], |
|
"text": [], |
|
"type": [], |
|
} |
|
relations = { |
|
"arg1": [], |
|
"arg2": [], |
|
"type": [], |
|
} |
|
|
|
entity_id2entity = { |
|
ent_id: entity for ent_id, entity in zip(doc.metadata["entity_ids"], doc.entities) |
|
} |
|
|
|
for entity_id, entity in zip(doc.metadata["entity_ids"], doc.entities): |
|
entities["id"].append(entity_id) |
|
entities["offsets"].append([entity.start, entity.end]) |
|
entities["text"].append(doc.text[entity.start : entity.end]) |
|
entities["type"].append(entity.label) |
|
|
|
if entity in entity_id2entity: |
|
raise ValueError("Entity already exists in entity_id2entity") |
|
|
|
entity_id2entity[entity] = entity_id |
|
|
|
for relation in doc.relations: |
|
relations["arg1"].append(entity_id2entity[relation.head]) |
|
relations["arg2"].append(entity_id2entity[relation.tail]) |
|
relations["type"].append(relation.label) |
|
|
|
return { |
|
"text": doc.text, |
|
"pmid": doc.id, |
|
"entities": entities, |
|
"relations": relations, |
|
} |
|
|
|
|
|
def chemprot_bigbio_doc_to_example(doc: ChemprotBigbioDocument) -> Dict[str, Any]: |
|
id = int(doc.metadata["id"]) |
|
passages = [] |
|
entities = [] |
|
relations = [] |
|
|
|
entity_id2entity = { |
|
ent_id: entity for ent_id, entity in zip(doc.metadata["entity_ids"], doc.entities) |
|
} |
|
|
|
for passage in doc.passages: |
|
id += 1 |
|
passages.append( |
|
{ |
|
"id": str(id), |
|
"offsets": [[passage.start, passage.end]], |
|
"text": [doc.text[passage.start : passage.end]], |
|
"type": passage.label, |
|
} |
|
) |
|
|
|
entity2entity_id = dict() |
|
|
|
for entity_id, entity in zip(doc.metadata["entity_ids"], doc.entities): |
|
id += 1 |
|
entities.append( |
|
{ |
|
"id": entity_id, |
|
"normalized": [], |
|
"offsets": [[entity.start, entity.end]], |
|
"text": [doc.text[entity.start : entity.end]], |
|
"type": entity.label, |
|
} |
|
) |
|
if entity in entity_id2entity: |
|
raise ValueError("Entity already exists in entity_id2entity") |
|
|
|
entity2entity_id[entity] = entity_id |
|
|
|
for relation in doc.relations: |
|
id += 1 |
|
relations.append( |
|
{ |
|
"id": str(id), |
|
"arg1_id": entity2entity_id[relation.head], |
|
"arg2_id": entity2entity_id[relation.tail], |
|
"type": relation.label, |
|
"normalized": [], |
|
} |
|
) |
|
|
|
return { |
|
"id": doc.metadata["id"], |
|
"document_id": doc.id, |
|
"passages": passages, |
|
"entities": entities, |
|
"events": [], |
|
"coreferences": [], |
|
"relations": relations, |
|
} |
|
|
|
|
|
class Chemprot(GeneratorBasedBuilder): |
|
DOCUMENT_TYPES = { |
|
"chemprot_full_source": ChemprotDocument, |
|
"chemprot_bigbio_kb": ChemprotBigbioDocument, |
|
"chemprot_shared_task_eval_source": ChemprotDocument, |
|
} |
|
|
|
BASE_DATASET_PATH = "bigbio/chemprot" |
|
BASE_DATASET_REVISION = "86afccf3ccc614f817a7fad0692bf62fbc5ce469" |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
name="chemprot_full_source", |
|
version=datasets.Version("1.0.0"), |
|
description="ChemProt full source version", |
|
), |
|
datasets.BuilderConfig( |
|
name="chemprot_bigbio_kb", |
|
version=datasets.Version("1.0.0"), |
|
description="ChemProt BigBio kb version", |
|
), |
|
datasets.BuilderConfig( |
|
name="chemprot_shared_task_eval_source", |
|
version=datasets.Version("1.0.0"), |
|
description="ChemProt shared task eval source version", |
|
), |
|
] |
|
|
|
@property |
|
def document_converters(self): |
|
if ( |
|
self.config.name == "chemprot_full_source" |
|
or self.config.name == "chemprot_shared_task_eval_source" |
|
): |
|
return { |
|
TextDocumentWithLabeledSpansAndBinaryRelations: { |
|
"entities": "labeled_spans", |
|
"relations": "binary_relations", |
|
} |
|
} |
|
elif self.config.name == "chemprot_bigbio_kb": |
|
return { |
|
TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions: { |
|
"passages": "labeled_partitions", |
|
"entities": "labeled_spans", |
|
"relations": "binary_relations", |
|
} |
|
} |
|
else: |
|
raise ValueError(f"Unknown dataset name: {self.config.name}") |
|
|
|
def _generate_document(self, example, **kwargs): |
|
if self.config.name == "chemprot_bigbio_kb": |
|
return example_to_chemprot_bigbio_doc(example) |
|
else: |
|
return example_to_chemprot_doc(example) |
|
|
|
def _generate_example(self, document: Document, **kwargs) -> Dict[str, Any]: |
|
if isinstance(document, ChemprotBigbioDocument): |
|
return chemprot_bigbio_doc_to_example(document) |
|
elif isinstance(document, ChemprotDocument): |
|
return chemprot_doc_to_example(document) |
|
else: |
|
raise ValueError(f"Unknown document type: {type(document)}") |
|
|