Datasets:
Tasks:
Audio Classification
Modalities:
Audio
Languages:
English
Tags:
audio
music-classification
meter-classification
multi-class-classification
multi-label-classification
License:
| # meter2800.py | |
| from pathlib import Path | |
| import datasets | |
| import pandas as pd | |
| _CITATION = """\ | |
| @misc{meter2800_dataset, | |
| author = {PianistProgrammer}, | |
| title = {{Meter2800}: A Dataset for Music Time signature detection / Meter Classification}, | |
| year = {2025}, | |
| publisher = {Hugging Face}, | |
| url = {https://huggingface.co/datasets/pianistprogrammer/Meter2800} | |
| } | |
| """ | |
| _DESCRIPTION = """\ | |
| Meter2800 is a dataset of 2,800 music audio samples for automatic meter classification. | |
| Each audio file is annotated with a primary meter class label and an alternative meter. | |
| It is split into training, validation, and test sets, each available in two class configurations: | |
| 2-class and 4-class. All audio is 16-bit WAV format. | |
| """ | |
| _HOMEPAGE = "https://huggingface.co/datasets/pianistprogrammer/Meter2800" | |
| _LICENSE = "mit" | |
| LABELS_4 = ["three", "four", "five", "seven"] | |
| LABELS_2 = ["three", "four"] | |
| class Meter2800Config(datasets.BuilderConfig): | |
| def __init__(self, name, **kwargs): | |
| super().__init__(name=name, version=datasets.Version("1.0.0"), **kwargs) | |
| class Meter2800(datasets.GeneratorBasedBuilder): | |
| BUILDER_CONFIGS = [ | |
| Meter2800Config(name="4_classes", description="4‑class meter classification"), | |
| Meter2800Config(name="2_classes", description="2‑class meter classification"), | |
| ] | |
| DEFAULT_CONFIG_NAME = "4_classes" | |
| def _info(self): | |
| labels = LABELS_4 if self.config.name == "4_classes" else LABELS_2 | |
| return datasets.DatasetInfo( | |
| description=_DESCRIPTION, | |
| features=datasets.Features({ | |
| "filename": datasets.Value("string"), | |
| "audio": datasets.Audio(sampling_rate=22050), | |
| "label": datasets.ClassLabel(names=labels), | |
| "meter": datasets.Value("string"), | |
| "alt_meter": datasets.Value("string"), | |
| }), | |
| supervised_keys=("audio", "label"), | |
| homepage=_HOMEPAGE, | |
| license=_LICENSE, | |
| citation=_CITATION, | |
| ) | |
| def _split_generators(self, dl_manager): | |
| csv_links = { | |
| split: f"https://huggingface.co/datasets/pianistprogrammer/Meter2800/resolve/main/data_{split}_{self.config.name}.csv" | |
| for split in ["train", "val", "test"] | |
| } | |
| csv_files = dl_manager.download(csv_links) | |
| archive = dl_manager.download_and_extract( | |
| "https://huggingface.co/datasets/pianistprogrammer/Meter2800/resolve/main/data.tar.gz" | |
| ) | |
| return [ | |
| datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"csv_path": csv_files["train"], "root": archive}), | |
| datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"csv_path": csv_files["val"], "root": archive}), | |
| datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"csv_path": csv_files["test"], "root": archive}), | |
| ] | |
| def _generate_examples(self, csv_path, root): | |
| df = pd.read_csv(csv_path).dropna(subset=["filename", "label", "meter"]).reset_index(drop=True) | |
| for idx, row in df.iterrows(): | |
| rel = row["filename"].lstrip("/") # ensure relative path, not absolute | |
| audio_path = Path(root) / rel | |
| if not audio_path.is_file(): | |
| raise FileNotFoundError(f"Missing audio file: {audio_path}") | |
| yield idx, { | |
| "filename": rel, | |
| "audio": str(audio_path), | |
| "label": row["label"], | |
| "meter": str(row["meter"]), | |
| "alt_meter": str(row.get("alt_meter", row["meter"])), | |
| } | |