File size: 8,982 Bytes
c56e319
f906b6c
 
 
 
 
 
3927dec
 
 
f906b6c
3927dec
f906b6c
3927dec
 
 
 
c56e319
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f906b6c
4fd4a06
f906b6c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3927dec
f906b6c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3927dec
 
f906b6c
 
 
3927dec
f906b6c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3927dec
 
 
 
 
 
 
 
 
 
 
 
f906b6c
3927dec
 
 
 
 
f906b6c
3927dec
 
 
f906b6c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3927dec
f906b6c
 
 
 
3927dec
f906b6c
 
 
 
1ffac84
f906b6c
 
4fd4a06
 
 
 
 
 
 
f906b6c
 
 
3927dec
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
---
pretty_name: InpaintCOCO
language:
- en
size_categories:
- 1K<n<10K
task_categories:
- image-to-text
- text-to-image
- image-classification
task_ids:
- image-captioning
tags:
- coco
- image-captioning
- inpainting
- multimodel-understanding
dataset_info:
  features:
  - name: concept
    dtype: string
  - name: coco_caption
    dtype: string
  - name: coco_image
    dtype: image
  - name: inpaint_caption
    dtype: string
  - name: inpaint_image
    dtype: image
  - name: mask
    dtype: image
  - name: worker
    dtype: string
  - name: coco_details
    struct:
    - name: captions
      sequence: string
    - name: coco_url
      dtype: string
    - name: date_captured
      dtype: string
    - name: flickr_url
      dtype: string
    - name: height
      dtype: int64
    - name: id
      dtype: int64
    - name: image_license
      dtype: string
    - name: text_license
      dtype: string
    - name: width
      dtype: int64
  - name: inpaint_details
    struct:
    - name: duration
      dtype: int64
    - name: guidance_scale
      dtype: float64
    - name: num_inference_steps
      dtype: int64
    - name: prompt
      dtype: string
    - name: prompts_used
      dtype: int64
    - name: quality
      dtype: string
  - name: mask_details
    struct:
    - name: height_factor
      dtype: int64
    - name: prompt
      dtype: string
    - name: prompts_used
      dtype: int64
    - name: width_factor
      dtype: int64
  splits:
  - name: test
    num_bytes: 1062104623.5
    num_examples: 1260
  download_size: 1055968442
  dataset_size: 1062104623.5
configs:
- config_name: default
  data_files:
  - split: test
    path: data/test-*
---

# InpaintCOCO - Fine-grained multimodal concept understanding (for color, size, and COCO objects)

## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
- [Dataset Creation](#dataset-creation)
  - [Source Data](#source-data)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)

## Dataset Description

- **Homepage:** 
- **Repository:**
- **Paper:**
- **Leaderboard:**
- **Point of Contact:**

### Dataset Summary

A data sample contains 2 images and 2 corresponding captions that differ only in one object, the color of an object, or the size of an object. 

> Many multimodal tasks, such as Vision-Language Retrieval and Visual Question Answering, present results in terms of overall performance. 
> Unfortunately, this approach overlooks more nuanced concepts, leaving us unaware of which specific concepts contribute to the success of current models and which are ignored.
> In response to this limitation, more recent benchmarks attempt to assess particular aspects of vision-language models. 
> Some existing datasets focus on linguistic concepts utilizing one image paired with multiple captions; others adopt a visual or cross-modal perspective.
> In this study, we are particularly interested in fine-grained visual concept understanding, which we believe is not covered in existing benchmarks in sufficient isolation. 
> Therefore, we create the InpaintCOCO dataset which consists of image pairs with minimum differences that lead to changes in the captions.


Download the dataset:
```python
from datasets import load_dataset
dataset = load_dataset("phiyodr/inpaintCOCO")
```

### Supported Tasks and Leaderboards

InpaintCOCO is a benchmark to understand fine-grained concepts in multimodal models (vision-language) similar to [Winoground](https://huggingface.co/datasets/facebook/winoground). 
To our knowledge InpaintCOCO is the first benchmark, which consists of image pairs with minimum differences, so that the *visual* representation can be analyzed in a more standardized setting. 

### Languages

All texts are in English.

## Dataset Structure

```python
DatasetDict({
    test: Dataset({
        features: ['concept', 'coco_caption', 'coco_image', 
        	'inpaint_caption', 'inpaint_image', 
        	'mask', 'worker', 'coco_details', 'inpaint_details', 'mask_details'],
        num_rows: 1260
    })
})
```

### Data Instances

An example looks as follows:

```python
{'concept': 'object',
 'coco_caption': 'A closeup of a large stop sign in the bushes.',
 'coco_image': <PIL.PngImagePlugin.PngImageFile image mode=RGB size=512x512>,
 'inpaint_caption': 'A wooden bench in the bushes.',
 'inpaint_image': <PIL.PngImagePlugin.PngImageFile image mode=RGB size=512x512>,
 'mask': <PIL.PngImagePlugin.PngImageFile image mode=RGB size=512x512>,
 'worker': 'k',
 'coco_details': {'captions': ['A stop sign is shown among foliage and grass.',
     'A close up of a Stop sign near woods. ',
     'A closeup of a large stop sign in the bushes.',
     'A large oval Stop sign near some trees.',
     'a close up of a stop sign with trees in the background'],
   'coco_url': 'http://images.cocodataset.org/val2017/000000252332.jpg',
   'date_captured': '2013-11-17 08:29:48',
   'flickr_url': 'http://farm6.staticflickr.com/5261/5836914735_bef9249442_z.jpg',
   'height': 480,
   'id': 252332,
   'image_license': 'https://creativecommons.org/licenses/by/2.0/',
   'text_license': 'https://creativecommons.org/licenses/by/4.0/legalcode',
   'width': 640},
 'inpaint_details': {'duration': 18,
   'guidance_scale': 7.5,
   'num_inference_steps': 100,
   'prompt': 'wooden bench',
   'prompts_used': 2,
   'quality': 'very good'},
 'mask_details': {'height_factor': 25,
   'prompt': 'stop sign',
   'prompts_used': 1,
   'width_factor': 25}}
```

## Dataset Creation

> The challenge set was created by undergraduate student workers. They were provided with an interactive Python environment with which they interacted via various prompts and inputs.

> The annotation proceeds as follows: The annotators are provided with an image and decide if the image is suitable for editing. If yes, they input the prompt for the object that should be replaced. 
Using the open vocabulary segmentation model [CLIPSeg](https://huggingface.co/CIDAS/clipseg-rd64-refined) ([Lüddecke and Ecker, 2022](https://openaccess.thecvf.com/content/CVPR2022/html/Luddecke_Image_Segmentation_Using_Text_and_Image_Prompts_CVPR_2022_paper.html)) we obtain a mask for our object of interest (i.e., "fire hydrant"). Then, the annotator inputs a prompt for [Stable Diffusion v2 Inpainting](https://huggingface.co/stabilityai/stable-diffusion-2-inpainting) ([Rombach et al., 2022](https://ommer-lab.com/research/latent-diffusion-models/)) (e.g. with the prompt "yellow fire hydrant"), which shows three candidate images.
The annotators can try new prompts or skip the current image if the result is insufficient. Finally, the annotator enters a new caption that matches the edited image.


#### Source Data

InpaintCOCO is based on MS COCO 2017 validation set ([image](http://images.cocodataset.org/zips/val2017.zip), [annotations](http://images.cocodataset.org/annotations/annotations_trainval2014.zip)).

```
@misc{lin2015microsoft,
      title={Microsoft COCO: Common Objects in Context}, 
      author={Tsung-Yi Lin and Michael Maire and Serge Belongie and Lubomir Bourdev and Ross Girshick and James Hays and Pietro Perona and Deva Ramanan and C. Lawrence Zitnick and Piotr Dollár},
      year={2015},
      eprint={1405.0312},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
```
## Limitations

> The images in the COCO dataset come from Flickr from 2014; therefore, they reflect the Flickr user structure at that time, i.e., the images mostly show the Western world and/or other countries from the Western perspective. The captions are in English. Thus, the model we developed does not generalize well beyond the Western world

## Licensing Information

* Images come with individual licenses (`image_license`) based on their Flickr source. The possible licenses are 
	* [CC BY-NC-SA 2.0 Deed](https://creativecommons.org/licenses/by-nc-sa/2.0/),
	* [CC BY-NC 2.0 Deed](https://creativecommons.org/licenses/by-nc/2.0/),
	* [CC BY 2.0 Deed](https://creativecommons.org/licenses/by/2.0/), and
	* [CC BY-SA 2.0 Deed](https://creativecommons.org/licenses/by-sa/2.0/).
* The remaining work comes with the [CC BY 4.0 Legal Code](https://creativecommons.org/licenses/by/4.0/legalcode) license.


## Citation Information

Our [InpaintCOCO](https://aclanthology.org/2024.alvr-1.9.pdf) dataset:

```
@misc{roesch2024enhancing,
      title={Enhancing Conceptual Understanding in Multimodal Contrastive Learning through Hard Negative Samples}, 
      author={Philipp J. Rösch and Norbert Oswald and Michaela Geierhos and Jindřich Libovický},
      year={2024},
      eprint={2403.02875},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
```

For the MS COCO dataset please see above.