Duplicate from kaist-ai/CoT-Collection
Browse filesCo-authored-by: Se June Joo <[email protected]>
- .gitattributes +55 -0
- CoT-Collection.py +123 -0
- README.md +87 -0
- cot_collection.JPG +3 -0
- data/CoT_collection_en.json +3 -0
.gitattributes
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.lz4 filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
27 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
# Audio files - uncompressed
|
37 |
+
*.pcm filter=lfs diff=lfs merge=lfs -text
|
38 |
+
*.sam filter=lfs diff=lfs merge=lfs -text
|
39 |
+
*.raw filter=lfs diff=lfs merge=lfs -text
|
40 |
+
# Audio files - compressed
|
41 |
+
*.aac filter=lfs diff=lfs merge=lfs -text
|
42 |
+
*.flac filter=lfs diff=lfs merge=lfs -text
|
43 |
+
*.mp3 filter=lfs diff=lfs merge=lfs -text
|
44 |
+
*.ogg filter=lfs diff=lfs merge=lfs -text
|
45 |
+
*.wav filter=lfs diff=lfs merge=lfs -text
|
46 |
+
# Image files - uncompressed
|
47 |
+
*.bmp filter=lfs diff=lfs merge=lfs -text
|
48 |
+
*.gif filter=lfs diff=lfs merge=lfs -text
|
49 |
+
*.png filter=lfs diff=lfs merge=lfs -text
|
50 |
+
*.tiff filter=lfs diff=lfs merge=lfs -text
|
51 |
+
# Image files - compressed
|
52 |
+
*.jpg filter=lfs diff=lfs merge=lfs -text
|
53 |
+
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
54 |
+
*.webp filter=lfs diff=lfs merge=lfs -text
|
55 |
+
data/CoT_collection_en.json filter=lfs diff=lfs merge=lfs -text
|
CoT-Collection.py
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
|
16 |
+
import json
|
17 |
+
import os
|
18 |
+
|
19 |
+
import datasets
|
20 |
+
|
21 |
+
|
22 |
+
|
23 |
+
_CITATION = """\
|
24 |
+
@article{kim2023cot,
|
25 |
+
title={The CoT Collection: Improving Zero-shot and Few-shot Learning of Language Models via Chain-of-Thought Fine-Tuning},
|
26 |
+
author={Kim, Seungone and Joo, Se June and Kim, Doyoung and Jang, Joel and Ye, Seonghyeon and Shin, Jamin and Seo, Minjoon},
|
27 |
+
journal={arXiv preprint arXiv:2305.14045},
|
28 |
+
year={2023}
|
29 |
+
}
|
30 |
+
"""
|
31 |
+
|
32 |
+
_DESCRIPTION = """"""
|
33 |
+
|
34 |
+
_LICENSE = "CC BY 4.0"
|
35 |
+
|
36 |
+
_HOMEPAGE = "https://github.com/kaistAI/CoT-Collection"
|
37 |
+
|
38 |
+
_LANGUAGES = {
|
39 |
+
"en": "English",
|
40 |
+
}
|
41 |
+
# _ALL_LANGUAGES = "all_languages"
|
42 |
+
|
43 |
+
|
44 |
+
|
45 |
+
class CoTCollectionMultiConfig(datasets.BuilderConfig):
|
46 |
+
"""BuilderConfig for CoTCollectionMultiConfig."""
|
47 |
+
|
48 |
+
def __init__(self, languages=None, **kwargs):
|
49 |
+
super(CoTCollectionMultiConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs),
|
50 |
+
self.languages = languages
|
51 |
+
|
52 |
+
|
53 |
+
class CoTCollection(datasets.GeneratorBasedBuilder):
|
54 |
+
|
55 |
+
BUILDER_CONFIGS = [
|
56 |
+
CoTCollectionMultiConfig(
|
57 |
+
name=lang,
|
58 |
+
languages=[lang],
|
59 |
+
description=f"{_LANGUAGES[lang]} CoT-Collection data used in the paper 'The CoT Collection: Improving Zero-shot and Few-shot Learning of Language Models via Chain-of-Thought Fine-Tuning'",
|
60 |
+
)
|
61 |
+
for lang in _LANGUAGES
|
62 |
+
]
|
63 |
+
BUILDER_CONFIG_CLASS = CoTCollectionMultiConfig
|
64 |
+
DEFAULT_CONFIG_NAME = "en"
|
65 |
+
|
66 |
+
|
67 |
+
def _info(self):
|
68 |
+
features = datasets.Features(
|
69 |
+
{
|
70 |
+
"source": datasets.Value("string"),
|
71 |
+
"target": datasets.Value("string"),
|
72 |
+
"rationale": datasets.Value("string"),
|
73 |
+
"task": datasets.Value("string"),
|
74 |
+
"type": datasets.Value("string"),
|
75 |
+
}
|
76 |
+
)
|
77 |
+
|
78 |
+
return datasets.DatasetInfo(
|
79 |
+
description=_DESCRIPTION,
|
80 |
+
features=features,
|
81 |
+
homepage=_HOMEPAGE,
|
82 |
+
citation=_CITATION,
|
83 |
+
license=_LICENSE,
|
84 |
+
)
|
85 |
+
|
86 |
+
|
87 |
+
def _split_generators(self, dl_manager):
|
88 |
+
train_PATHS = [f"./data/CoT_collection_{lang}.json" for lang in self.config.languages]
|
89 |
+
|
90 |
+
train_paths = dl_manager.download_and_extract(train_PATHS)
|
91 |
+
|
92 |
+
return [
|
93 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_paths})
|
94 |
+
]
|
95 |
+
|
96 |
+
def _generate_examples(self, filepath):
|
97 |
+
for _file in filepath:
|
98 |
+
with open(_file, "r", encoding="utf-8") as fi:
|
99 |
+
data = json.load(fi)
|
100 |
+
buffer = []
|
101 |
+
for idx, value in data.items():
|
102 |
+
if 'rationale' in value.keys():
|
103 |
+
buffer.append({
|
104 |
+
'source': value['source'],
|
105 |
+
'target': value['target'],
|
106 |
+
'rationale': value['rationale'],
|
107 |
+
'task': value['task'],
|
108 |
+
'type': 'CoT'
|
109 |
+
})
|
110 |
+
else:
|
111 |
+
value['rationale'] = ''
|
112 |
+
buffer.append({
|
113 |
+
'source': value['source'],
|
114 |
+
'target': value['target'],
|
115 |
+
'rationale': value['rationale'],
|
116 |
+
'task': value['task'],
|
117 |
+
'type': 'Direct',
|
118 |
+
})
|
119 |
+
|
120 |
+
|
121 |
+
for idx,dat in enumerate(buffer):
|
122 |
+
yield idx, dat
|
123 |
+
|
README.md
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-4.0
|
3 |
+
task_categories:
|
4 |
+
- text-generation
|
5 |
+
- text-classification
|
6 |
+
language:
|
7 |
+
- en
|
8 |
+
size_categories:
|
9 |
+
- 1M<n<10M
|
10 |
+
---
|
11 |
+
|
12 |
+
# Dataset Card for Dataset Name
|
13 |
+
|
14 |
+
## Dataset Description
|
15 |
+
|
16 |
+
- **Homepage:https://github.com/kaistAI/CoT-Collection**
|
17 |
+
- **Repository:https://github.com/kaistAI/CoT-Collection**
|
18 |
+
- **Paper:https://arxiv.org/abs/2305.14045**
|
19 |
+
- **Point of Contact:[email protected]**
|
20 |
+
|
21 |
+
### Dataset Summary
|
22 |
+
|
23 |
+

|
24 |
+
|
25 |
+
The CoT Collection is a dataset designed to induce Chain-of-Thought (CoT) capabilities into language models.
|
26 |
+
While proprietary LLMs excel at generating Chain-of-Thoughts based on prompting, smaller LMs do not have this capability. Thus, by fine-tuning to generate Chain-of-Thoughts, it could acquire such abilities.
|
27 |
+
|
28 |
+
The CoT Collection provides 1.84 million Chain-of-Thoughts augmented across 1060 tasks from the Flan Collection.\\
|
29 |
+
Experimental results show that fine-tuning on the CoT Collection results in (1) better zero-shot performance and (2) a better base model for few-shot learning.
|
30 |
+
|
31 |
+
We also provide a multilingual version of CoT Collection at this [link](https://huggingface.co/datasets/kaist-ai/Multilingual-CoT-Collection).
|
32 |
+
|
33 |
+
### Supported Tasks and Leaderboards
|
34 |
+
|
35 |
+
1060 tasks chosen from the Flan Collection.
|
36 |
+
|
37 |
+
|
38 |
+
The list of categories within the CoT Collection are:
|
39 |
+
* Natural Language Inference
|
40 |
+
* Extractive Question Answering
|
41 |
+
* Closed Book Question Answering
|
42 |
+
* Science
|
43 |
+
* Toxic Classification
|
44 |
+
* Arithmetic
|
45 |
+
* Program Execution
|
46 |
+
* Dialogue
|
47 |
+
* Ethics
|
48 |
+
* Commonsense Reasoning
|
49 |
+
* Multiple Choice Question Answering
|
50 |
+
|
51 |
+
### Languages
|
52 |
+
|
53 |
+
English
|
54 |
+
|
55 |
+
## Dataset Structure
|
56 |
+
* source: The input that is given to the language model (LM).
|
57 |
+
* target: The ground truth answer to the source.
|
58 |
+
* rationale: The Chain of Thought (CoT) that explains how the target could be derived from the source.
|
59 |
+
* task: A category that shows which dataset the source and target was extracted from.
|
60 |
+
|
61 |
+
In our paper, we trained the underlying language model to generate in the following format:
|
62 |
+
```
|
63 |
+
\{rationale\}
|
64 |
+
[RESULT]
|
65 |
+
\{target\}
|
66 |
+
```
|
67 |
+
Then during evaluation, we parsed the prediction after the phrase ```[RESULT]```.
|
68 |
+
|
69 |
+
### Data Splits
|
70 |
+
|
71 |
+
| name | train |
|
72 |
+
|-------------------|------:|
|
73 |
+
|CoT-Collection|1837928|
|
74 |
+
|
75 |
+
|
76 |
+
|
77 |
+
### Citation Information
|
78 |
+
If you find the following model helpful, please considering citing our paper!
|
79 |
+
|
80 |
+
```
|
81 |
+
@article{kim2023cot,
|
82 |
+
title={The CoT Collection: Improving Zero-shot and Few-shot Learning of Language Models via Chain-of-Thought Fine-Tuning},
|
83 |
+
author={Kim, Seungone and Joo, Se June and Kim, Doyoung and Jang, Joel and Ye, Seonghyeon and Shin, Jamin and Seo, Minjoon},
|
84 |
+
journal={arXiv preprint arXiv:2305.14045},
|
85 |
+
year={2023}
|
86 |
+
}
|
87 |
+
```
|
cot_collection.JPG
ADDED
|
Git LFS Details
|
data/CoT_collection_en.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:88d15e99d2da0ff1e3d6b10179dbc72ee5f756ca0cc58a5dc3c345f202a98b7c
|
3 |
+
size 2362433950
|