|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | from itertools import product | 
					
						
						|  | import numpy as np | 
					
						
						|  | import xarray as xr | 
					
						
						|  | import netCDF4 | 
					
						
						|  | import datasets | 
					
						
						|  | from pathlib import Path | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | _CITATION = """\ | 
					
						
						|  | @ARTICLE{ | 
					
						
						|  | 9749916, | 
					
						
						|  | author={Sykas, Dimitrios and Sdraka, Maria and Zografakis, Dimitrios and Papoutsis, Ioannis}, | 
					
						
						|  | journal={IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing}, | 
					
						
						|  | title={A Sentinel-2 multi-year, multi-country benchmark dataset for crop classification and segmentation with deep learning}, | 
					
						
						|  | year={2022}, | 
					
						
						|  | doi={10.1109/JSTARS.2022.3164771} | 
					
						
						|  | } | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | _DESCRIPTION = """\ | 
					
						
						|  | Sen4AgriNet is a Sentinel-2 based time series multi country benchmark dataset, tailored for | 
					
						
						|  | agricultural monitoring applications with Machine and Deep Learning. It is annotated from | 
					
						
						|  | farmer declarations collected via the Land Parcel Identification System (LPIS) for harmonizing | 
					
						
						|  | country wide labels. These declarations have only recently been made available as open data, | 
					
						
						|  | allowing for the first time the labelling of satellite imagery from ground truth data. | 
					
						
						|  | We proceed to propose and standardise a new crop type taxonomy across Europe that address | 
					
						
						|  | Common Agriculture Policy (CAP) needs, based on the Food and Agriculture Organization (FAO) | 
					
						
						|  | Indicative Crop Classification scheme. Sen4AgriNet is the only multi-country, multi-year dataset | 
					
						
						|  | that includes all spectral information. It is constructed to cover the period 2016-2020 for | 
					
						
						|  | Catalonia and France, while it can be extended to include additional countries. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | _HOMEPAGE = "https://www.sen4agrinet.space.noa.gr/" | 
					
						
						|  |  | 
					
						
						|  | _LICENSE = "MIT License" | 
					
						
						|  |  | 
					
						
						|  | _URL = 'https://huggingface.co/datasets/paren8esis/S4A/resolve/main/data' | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | CAT_TILES = ['31TBF', '31TCF', '31TCG', '31TDF', '31TDG'] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | FR_TILES = ['31TCJ', '31TDK', '31TCL', '31TDM', '31UCP', '31UDR'] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | PATCH_IDX = { | 
					
						
						|  | '2019': { | 
					
						
						|  | '31TBF': [29, 29], | 
					
						
						|  | '31TCF': [29, 27], | 
					
						
						|  | '31TCG': [29, 29], | 
					
						
						|  | '31TDF': [15, 9], | 
					
						
						|  | '31TDG': [29, 29], | 
					
						
						|  | '31TCJ': [29, 29], | 
					
						
						|  | '31TDK': [29, 29], | 
					
						
						|  | '31TCL': [29, 29], | 
					
						
						|  | '31TDM': [29, 29], | 
					
						
						|  | '31UCP': [29, 29], | 
					
						
						|  | '31UDR': [29, 29] | 
					
						
						|  | }, | 
					
						
						|  | '2020': { | 
					
						
						|  | '31TBF': [29, 29], | 
					
						
						|  | '31TCF': [29, 27], | 
					
						
						|  | '31TCG': [29, 29], | 
					
						
						|  | '31TDF': [15, 9], | 
					
						
						|  | '31TDG': [29, 29] | 
					
						
						|  | } | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class S4A(datasets.GeneratorBasedBuilder): | 
					
						
						|  | VERSION = datasets.Version("0.0.1") | 
					
						
						|  |  | 
					
						
						|  | BUILDER_CONFIGS = [ | 
					
						
						|  | datasets.BuilderConfig(name="complete", version=VERSION, description="All Sen4AgriNet data."), | 
					
						
						|  | datasets.BuilderConfig(name="cat_2019", version=VERSION, description="Sen4AgriNet data for Catalonia 2019."), | 
					
						
						|  | datasets.BuilderConfig(name="cat_2020", version=VERSION, description="Sen4AgriNet data for Catalonia 2020."), | 
					
						
						|  | datasets.BuilderConfig(name="fr_2019", version=VERSION, description="Sen4AgriNet data for France 2019."), | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | DEFAULT_CONFIG_NAME = "complete" | 
					
						
						|  |  | 
					
						
						|  | def _info(self): | 
					
						
						|  | features = datasets.Features( | 
					
						
						|  | { | 
					
						
						|  | "patch_full_name": datasets.Value("string"), | 
					
						
						|  | "patch_year": datasets.Value("string"), | 
					
						
						|  | "patch_name": datasets.Value("string"), | 
					
						
						|  | "patch_country_code": datasets.Value("string"), | 
					
						
						|  | "patch_tile": datasets.Value("string"), | 
					
						
						|  | "B01": datasets.Array3D(shape=(None, 61, 61), dtype="uint16"), | 
					
						
						|  | "B02": datasets.Array3D(shape=(None, 366, 366), dtype="uint16"), | 
					
						
						|  | "B03": datasets.Array3D(shape=(None, 366, 366), dtype="uint16"), | 
					
						
						|  | "B04": datasets.Array3D(shape=(None, 366, 366), dtype="uint16"), | 
					
						
						|  | "B05": datasets.Array3D(shape=(None, 183, 183), dtype="uint16"), | 
					
						
						|  | "B06": datasets.Array3D(shape=(None, 183, 183), dtype="uint16"), | 
					
						
						|  | "B07": datasets.Array3D(shape=(None, 183, 183), dtype="uint16"), | 
					
						
						|  | "B08": datasets.Array3D(shape=(None, 366, 366), dtype="uint16"), | 
					
						
						|  | "B09": datasets.Array3D(shape=(None, 61, 61), dtype="uint16"), | 
					
						
						|  | "B10": datasets.Array3D(shape=(None, 61, 61), dtype="uint16"), | 
					
						
						|  | "B11": datasets.Array3D(shape=(None, 183, 183), dtype="uint16"), | 
					
						
						|  | "B12": datasets.Array3D(shape=(None, 183, 183), dtype="uint16"), | 
					
						
						|  | "B8A": datasets.Array3D(shape=(None, 183, 183), dtype="uint16"), | 
					
						
						|  | "labels": datasets.Array2D(shape=(366, 366), dtype="uint32"), | 
					
						
						|  | "parcels": datasets.Array2D(shape=(366, 366), dtype="uint32"), | 
					
						
						|  | "timestamp": datasets.Sequence(datasets.Value("timestamp[ns]")) | 
					
						
						|  | } | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | return datasets.DatasetInfo( | 
					
						
						|  |  | 
					
						
						|  | description=_DESCRIPTION, | 
					
						
						|  | features=features, | 
					
						
						|  | homepage=_HOMEPAGE, | 
					
						
						|  | license=_LICENSE, | 
					
						
						|  | citation=_CITATION, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _split_generators(self, dl_manager): | 
					
						
						|  | root_paths = [] | 
					
						
						|  | if self.config.name == "complete": | 
					
						
						|  | for year, tile in list(product(['2019'], FR_TILES)) + list(product(['2019', '2020'], CAT_TILES)): | 
					
						
						|  | x, y = PATCH_IDX[year][tile] | 
					
						
						|  | for x_i in range(x + 1): | 
					
						
						|  | for y_i in range(y + 1): | 
					
						
						|  | try: | 
					
						
						|  | downloaded_paths = dl_manager.download(_URL + f'/{year}' + f'/{tile}' + f'/{year}_{tile}_patch_{str(x_i).zfill(2)}_{str(y_i).zfill(2)}.nc') | 
					
						
						|  | root_paths.append(downloaded_paths) | 
					
						
						|  | except FileNotFoundError as e: | 
					
						
						|  | continue | 
					
						
						|  |  | 
					
						
						|  | elif self.config.name == 'cat_2019': | 
					
						
						|  | year = '2019' | 
					
						
						|  | for tile in CAT_TILES: | 
					
						
						|  | x, y = PATCH_IDX[year][tile] | 
					
						
						|  | for x_i in range(x + 1): | 
					
						
						|  | for y_i in range(y + 1): | 
					
						
						|  | try: | 
					
						
						|  | downloaded_paths = dl_manager.download(_URL + f'/{year}' + f'/{tile}' + f'/{year}_{tile}_patch_{str(x_i).zfill(2)}_{str(y_i).zfill(2)}.nc') | 
					
						
						|  | root_paths.append(downloaded_paths) | 
					
						
						|  | except FileNotFoundError as e: | 
					
						
						|  | continue | 
					
						
						|  |  | 
					
						
						|  | elif self.config.name == 'cat_2020': | 
					
						
						|  | year = '2020' | 
					
						
						|  | for tile in CAT_TILES: | 
					
						
						|  | x, y = PATCH_IDX[year][tile] | 
					
						
						|  | for x_i in range(x + 1): | 
					
						
						|  | for y_i in range(y + 1): | 
					
						
						|  | try: | 
					
						
						|  | downloaded_paths = dl_manager.download(_URL + f'/{year}' + f'/{tile}' + f'/{year}_{tile}_patch_{str(x_i).zfill(2)}_{str(y_i).zfill(2)}.nc') | 
					
						
						|  | root_paths.append(downloaded_paths) | 
					
						
						|  | except FileNotFoundError as e: | 
					
						
						|  | continue | 
					
						
						|  |  | 
					
						
						|  | elif self.config.name == 'fr_2019': | 
					
						
						|  | year = '2019' | 
					
						
						|  | for tile in FR_TILES: | 
					
						
						|  | x, y = PATCH_IDX[year][tile] | 
					
						
						|  | for x_i in range(x + 1): | 
					
						
						|  | for y_i in range(y + 1): | 
					
						
						|  | try: | 
					
						
						|  | downloaded_paths = dl_manager.download(_URL + f'/{year}' + f'/{tile}' + f'/{year}_{tile}_patch_{str(x_i).zfill(2)}_{str(y_i).zfill(2)}.nc') | 
					
						
						|  | root_paths.append(downloaded_paths) | 
					
						
						|  | except FileNotFoundError as e: | 
					
						
						|  | continue | 
					
						
						|  |  | 
					
						
						|  | return [ | 
					
						
						|  | datasets.SplitGenerator( | 
					
						
						|  | name='self.config.name', | 
					
						
						|  |  | 
					
						
						|  | gen_kwargs={ | 
					
						
						|  | "root_paths": root_paths, | 
					
						
						|  | }, | 
					
						
						|  | ), | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _generate_examples(self, root_paths): | 
					
						
						|  | for file in root_paths: | 
					
						
						|  | netcdf = netCDF4.Dataset(file) | 
					
						
						|  |  | 
					
						
						|  | res = { | 
					
						
						|  | "patch_full_name": netcdf.patch_full_name, | 
					
						
						|  | "patch_year": netcdf.patch_year, | 
					
						
						|  | "patch_name": netcdf.patch_name, | 
					
						
						|  | "patch_country_code": netcdf.patch_country_code, | 
					
						
						|  | "patch_tile": netcdf.patch_tile | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | time_recorded = False | 
					
						
						|  |  | 
					
						
						|  | for variable in ['B01', 'B02', 'B03', 'B04', 'B05', 'B06', 'B07', 'B08', 'B09', 'B10', 'B11', 'B12', 'B8A', 'labels', 'parcels']: | 
					
						
						|  | v = xr.open_dataset(xr.backends.NetCDF4DataStore(netcdf[variable])) | 
					
						
						|  | if not time_recorded: | 
					
						
						|  | res['timestamp'] = (v.time.values.astype(np.int64) // 10 ** 9).tolist() | 
					
						
						|  | time_recorded = True | 
					
						
						|  |  | 
					
						
						|  | res[variable] = getattr(v, variable).values | 
					
						
						|  |  | 
					
						
						|  | key = res['patch_full_name'] | 
					
						
						|  | yield key, res | 
					
						
						|  |  |