File size: 15,058 Bytes
da45287
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
0/1 Knapsack DP
#include <stdio.h>
#include <limits.h>
void knapsack(int n, int m, int profits[], int weights[])
{
int v[n+1][m+1];
int result[n];
for(int i=0; i<=m; i++)
v[0][i] = 0;
for(int i=0; i<=n; i++)
v[i][0] = 0;
for(int i=1; i<=n; i++) {
for(int w=1; w<=m; w++) {
if(w - weights[i-1] <0) {
v[i][w] = v[i-1][w];
} else {
int val1 = v[i-1][w];
int val2 = v[i-1][w-weights[i-1]] + profits[i-1];
v[i][w] = (val1 > val2) ? val1 : val2;
}
}
}
int k=n, j=m;
while (k>0 && j>0) {
if(v[k][j] != v[k-1][j]) {
result[k-1] = 1;
j = j-weights[k-1];
}
else {
result[k-1] = 0;
}
k--;
}
for(int i=0; i<n; i++)
printf("%d ", result[i]);
}
int main()
{
int n; //No. of objects
scanf("%d", &n);
int m; //Max capacity
scanf("%d", &m);
int profits[n], weights[n];
for(int i=0; i<n; i++)
scanf("%d", &profits[i]);
for(int i=0; i<n; i++)
scanf("%d", &weights[i]);
knapsack(n, m, profits, weights);
return 0;
}
LCS
#include <stdio.h>
#include <string.h>
char S1[20], S2[20];
int i, j, m, n, LCS_table[20][20];
int max(int a, int b) {
return (a>b) ? a: b;
}
void lcsAlgo()
{
printf("Reached\n");
m = strlen(S1);
n = strlen(S2);
for(i = 0; i<=m; i++)
LCS_table[i][0] = 0;
for(i=0; i<=n; i++)
LCS_table[0][i] = 0;
for(i=1; i<=m; i++) {
for(j=1; j<=n; j++) {
if(S1[i-1] == S2[j-1])
LCS_table[i][j] = LCS_table[i-1][j-1] + 1;
else
LCS_table[i][j] = max(LCS_table[i-1][j], LCS_table[i][j-1]);
}
}
int index = LCS_table[m][n];
char LCSAlgo[index+1];
LCSAlgo[index] = '\0';
printf("%d\n", index);
i=m, j=n;
while(i>0 && j>0)
{
if(S1[i-1] == S2[j-1]) {
LCSAlgo[index-1] = S1[i-1];
i--;
j--;
index--;
} else {
//max(LCS_table[i-1][j], LCS_table[i][j-1]);
if(LCS_table[i - 1][j] > LCS_table[i][j - 1])
i--;
else
j--;
}
}
printf("%d\n", index);
printf("The LCS is %s", LCSAlgo);
}
int main()
{
scanf("%[^\n]s", &S1);
scanf("%s", &S2);
lcsAlgo();
}
Matrix Chain
#include <stdio.h>
#include <limits.h>
int MatrixChainMultiplication(int arr[], int n)
{
int minMul[n][n];
for(int i=1; i<n; i++)
minMul[i][i] = 0;
int j, q=0;
for(int L=2; L<n; L++) {
for(int i=1; i<n-L+1; i++) {
j = i+L-1;
minMul[i][j] = INT_MAX;
for(int k=i; k<=j; k++) {
q = minMul[i][k] + minMul[k+1][j] + arr[i-1]*arr[k]*arr[j];
if(q<minMul[i][j])
minMul[i][j]=q;
}
}
}
return minMul[1][n-1];
}
int main()
{
int n;
scanf("%d", &n);
int arrS[n][2];
int arr[n+1];
for(int i=0; i<n; i++) {
scanf("%d %d",&arrS[i][0], &arrS[i][1]);
}
arr[0] = arrS[0][0];
for(int i=1; i<=n; i++)
arr[i] = arrS[i-1][1];
printf("Minimum number of multiplications required for matrix
multiplication is %d\n", MatrixChainMultiplication(arr, n+1));
getchar();
return 0;
}
Assembly line scheduling
Code:
#include <stdio.h>
#include <stdlib.h>
#define min(a, b) ((a) < (b) ? (a) : (b))
int fun(int a*2+*4+, int t*2+*4+, int cl, int cs, int x1, int x2, int n);
int main() ,
 int n = 4; // number of stations
 int a*2+*4+ = , , 4, 5, 3, 2 -, , 2, 10, 1, 4 - -;
 int t*2+*4+ = , , 0, 7, 4, 5 -, , 0, 9, 2, 8 - -;
 int e1 = 10;
 int e2 = 12;
 int x1 = 18;
 int x2 = 7;
 // entry from 1st line
 int x = fun(a, t, 0, 0, x1, x2, n) + e1 + a*0+*0+;
 // entry from 2nd line
 int y = fun(a, t, 1, 0, x1, x2, n) + e2 + a*1+*0+;
 printf("%d\n", min(x, y));

 return 0;
-
int fun(int a*2+*4+, int t*2+*4+, int cl, int cs, int x1, int x2, int n) ,
 // base case
 if (cs == n - 1) ,
 if (cl == 0) , // exiting from (current) line =0
 return x1;
 - else , // exiting from line 2
 return x2;
 -
 -
 // continue on same line
 int same = fun(a, t, cl, cs + 1, x1, x2, n) + a*cl+*cs + 1+;
 // continue on different line
 int diff = fun(a, t, !cl, cs + 1, x1, x2, n) + a*!cl+*cs + 1+ + t*cl+*cs + 1+;
 return min(same, diff);
-
Max Sub Array Sum
#include <stdio.h>
#include <limits.h>
int *maxSubArraySum(int nums[], int start, int end, int *max_sum, int
*subarray_start, int *subarray_end)
{
if(start == end) {
*max_sum = nums[start];
*subarray_start = start;
*subarray_end = start;
return &nums[start];
}
int mid= (start+end)/2;
int left_subarray = maxSubArraySum(nums, start, mid, &max_sum,
&subarray_start, &subarray_end);
int right_subarray = maxSubArraySum(nums, mid+1, end, &max_sum,
&subarray_start, &subarray_end);
int left_sum=INT_MIN;
int curr_sum = 0;
int cross_start = mid;
for(int i=mid; i>=start; i--) {
curr_sum += nums[i];
if(curr_sum >= left_sum) {
left_sum = curr_sum;
cross_start = i;
}
}
int right_sum=INT_MIN;
curr_sum=0;
int cross_end = mid+1;
for(int i=mid+1; i<end; i++) {
curr_sum+=nums[i];
if(curr_sum>= right_sum) {
right_sum = curr_sum;
cross_end = i;
}
}
}
int main()
{
int n;
scanf("%d", &n);
int nums[n];
for(int i=0; i<n; i++)
scanf("%d ", &nums[i]);
int max_sum, subarray_start, subarray_end;
int *max_subarray =
maxSubArraySum(nums, 0, n-1, &max_sum, &subarray_start,
&subarray_end);
printf("The sub array [");
for(int i=subarray_start; i<=subarray_end; i++) {
if(i==subarray_end)
printf("%d", nums[i]);
else
printf("%d ", nums[i]);
}
printf("] has the largest sum %d", max_sum);
return 0;
}
KARATSUBA ALGORITHM
#include <stdio.h>
#include <string.h>
// Function to find the sum of larger
// numbers represented as a string
char* findSum(const char* str1, const char* str2)
,
// Before proceeding further, make
// sure length of str2 is larger
if (strlen(str1) > strlen(str2)) ,
const char* temp = str1;
str1 = str2;
str2 = temp;
-
// Stores the result
static char str*1000+;
// Calculate length of both strings
int n1 = strlen(str1);
int n2 = strlen(str2);
// Reverse both of strings
strrev(str1);
strrev(str2);
int carry = 0;
for (int i = 0; i < n1; i++) ,
// Find the sum of the current
// digits and carry
int sum
= ((str1*i+ - '0')
+ (str2*i+ - '0')
+ carry);
str*i+ = (sum % 10) + '0';
// Calculate carry for next step
carry = sum / 10;
-
// Add remaining digits of larger number
for (int i = n1; i < n2; i++) ,
int sum = ((str2*i+ - '0') + carry);
str*i+ = (sum % 10) + '0';
carry = sum / 10;
-
// Add remaining carry
if (carry)
str*n2+ = carry + '0';
else
str*n2+ = '\0';
// Reverse resultant string
strrev(str);
return str;
-
// Function to find difference of larger
// numbers represented as strings
char* findDiff(const char* str1, const char* str2)
,
// Stores the result of difference
static char str*1000+;
// Calculate length of both strings
int n1 = strlen(str1), n2 = strlen(str2);
// Reverse both of strings
strrev(str1);
strrev(str2);
int carry = 0;
// Run loop till small string length
// and subtract digit of str1 to str2
for (int i = 0; i < n2; i++) ,
// Compute difference of the
// current digits
int sub
= ((str1*i+ - '0')
- (str2*i+ - '0')
- carry);
// If subtraction < 0 then add 10
// into sub and take carry as 1
if (sub < 0) ,
sub = sub + 10;
carry = 1;
-
else
carry = 0;
str*i+ = sub + '0';
-
// Subtract the remaining digits of
// larger number
for (int i = n2; i < n1; i++) ,
int sub = ((str1*i+ - '0') - carry);
// If the sub value is -ve,
// then make it positive
if (sub < 0) ,
sub = sub + 10;
carry = 1;
-
else
carry = 0;
str*i+ = sub + '0';
-
// Reverse resultant string
strrev(str);
// Return answer
return str;
-
// Function to remove all leading 0s
// from a given string
char* removeLeadingZeros(char* str)
,
// Index to store the position of
// the first non-zero digit
int i, len = strlen(str);
for (i = 0; i < len - 1; i++) ,
if (str*i+ != '0')
break;
-
// Shift all non-zero digits to the
// beginning of the string
for (int j = 0; j < len - i; j++)
str*j+ = str*i + j+;
// Null terminate the string
str*len - i+ = '\0';
return str;
-
// Function to multiply two numbers
// using Karatsuba algorithm
char* multiply(const char* A, const char* B)
,
const char* str1 = A;
const char* str2 = B;
if (strlen(A) > strlen(B)) ,
str1 = B;
str2 = A;
-
// Make both numbers to have
// same digits
int n1 = strlen(str1), n2 = strlen(str2);
while (n2 > n1) ,
n1++;
-
// Base case
if (n1 == 1) ,
// If the length of strings is 1,
// then return their product
int ans = atoi(str1) * atoi(str2);
sprintf(str1, "%d", ans);
return str1;
-
// Add zeros in the beginning of
// the strings when length is odd
if (n1 % 2 == 1) ,
n1++;
char temp*1000+;
strcpy(temp, str1);
strcpy(str1, "0");
strcat(str1, temp);
strcpy(temp, str2);
strcpy(str2, "0");
strcat(str2, temp);
-
char Al*1000+, Ar*1000+, Bl*1000+, Br*1000+;
// Find the values of Al, Ar,
// Bl, and Br.
for (int i = 0; i < n1 / 2; ++i) ,
Al*i+ = str1*i+;
Bl*i+ = str2*i+;
Ar*i+ = str1*n1 / 2 + i+;
Br*i+ = str2*n1 / 2 + i+;
-
Al*n1 / 2+ = '\0';
Ar*n1 / 2+ = '\0';
Bl*n1 / 2+ = '\0';
Br*n1 / 2+ = '\0';
// Recursively call the function
// to compute smaller product
// Stores the value of Al * Bl
char* p = multiply(Al, Bl);
// Stores the value of Ar * Br
char* q = multiply(Ar, Br);
// Stores value of ((Al + Ar)*(Bl + Br)
// - Al*Bl - Ar*Br)
char* r = findDiff(
findSum(Al, Ar),
findSum(Bl, Br));
// Multiply p by 10^n
for (int i = 0; i < n1; ++i)
strcat(p, "0");
// Multiply s by 10^(n/2)
for (int i = 0; i < n1 / 2; ++i)
strcat(r, "0");
// Calculate final answer p + r + s
char* ans = findSum(p, findSum(q, r));
Subset Sum
#include <stdio.h>
#include <limits.h>
#include <stdbool.h>
bool foundSolution = false;
int weights[10];
int solution[10];
int n;
int m;
void subsetSum(int currentSum, int index)
{
if(index == n) {
if(currentSum == m) {
foundSolution = true;
for(int i=0; i<n; i++)
printf("%d ", solution[i]);
printf("\n");
}
return;
}
solution[index] = 1;
subsetSum(currentSum + weights[index], index+1);
solution[index] = 0;
subsetSum(currentSum, index + 1);
}
int main()
{
//int n, m;
scanf("%d", &n);
scanf("%d", &m);
//int weights[n];
for(int i=0; i<n; i++)
scanf("%d", &weights[i]);
subsetSum(0, 0);
if(!foundSolution)
printf("No solution found.\n");
return 0;
}
FRACTIONAL KNAPSACK GREEDY APPROACH
#include <stdio.h>
#include <stdlib.h>
// Structure for an item which stores weight and
// corresponding value of Item
struct Item ,
int profit, weight;
-;
// Comparison function to sort Item
// according to profit/weight ratio
static int cmp(const void* a, const void* b)
,
double r1 = (double)((struct Item*)b)->profit / (double)((struct Item*)b)->weight;
double r2 = (double)((struct Item*)a)->profit / (double)((struct Item*)a)->weight;
if (r1 > r2) return 1;
else if (r1 < r2) return -1;
return 0;
-
// Main greedy function to solve problem
double fractionalKnapsack(int W, struct Item arr*+, int N)
,
// Sorting Item on basis of ratio
qsort(arr, N, sizeof(struct Item), cmp);
double finalvalue = 0.0;
// Looping through all items
for (int i = 0; i < N; i++) ,
// If adding Item won't overflow,
// add it completely
if (arr*i+.weight <= W) ,
W -= arr*i+.weight;
finalvalue += arr*i+.profit;
-
// If we can't add current Item,
// add fractional part of it
else ,
finalvalue
+= arr*i+.profit
* ((double)W / (double)arr*i+.weight);
break;
-
-
// Returning final value
return finalvalue;
-
// Driver code
int main()
,
int W = 50;
struct Item arr*+ = , , 60, 10 -, , 100, 20 -, , 120, 30 - -;
int N = sizeof(arr) / sizeof(arr*0+);
// Function call
printf("%.2lf\n", fractionalKnapsack(W, arr, N));
return 0;
-
N QUENS
CODE :
// C program to solve N Queen Problem using backtracking
#define N 4
#include <stdbool.h>
#include <stdio.h>
// A utility function to print solution
void printSolution(int board*N+*N+)
,
for (int i = 0; i < N; i++) ,
for (int j = 0; j < N; j++) ,
if(board*i+*j+)
printf("Q ");
else
printf(". ");
-
printf("\n");
-
-
// A utility function to check if a queen can
// be placed on board*row+*col+. Note that this
// function is called when "col" queens are
// already placed in columns from 0 to col -1.
// So we need to check only left side for
// attacking queens
bool isSafe(int board*N+*N+, int row, int col)
,
int i, j;
// Check this row on left side
for (i = 0; i < col; i++)
if (board*row+*i+)
return false;
// Check upper diagonal on left side
for (i = row, j = col; i >= 0 && j >= 0; i--, j--)
if (board*i+*j+)
return false;
// Check lower diagonal on left side
for (i = row, j = col; j >= 0 && i < N; i++, j--)
if (board*i+*j+)
return false;
return true;
-
// A recursive utility function to solve N
// Queen problem
bool solveNQUtil(int board*N+*N+, int col)
,
// Base case: If all queens are placed
// then return true
if (col >= N)
return true;
// Consider this column and try placing
// this queen in all rows one by one
for (int i = 0; i < N; i++) ,
// Check if the queen can be placed on
// board*i+*col+
if (isSafe(board, i, col)) ,
// Place this queen in board*i+*col+
board*i+*col+ = 1;
// Recur to place rest of the queens
if (solveNQUtil(board, col + 1))
return true;
// If placing queen in board*i+*col+
// doesn't lead to a solution, then
// remove queen from board*i+*col+
board*i+*col+ = 0; // BACKTRACK
-
-
// If the queen cannot be placed in any row in
// this column col then return false
return false;
-
// This function solves the N Queen problem using
// Backtracking. It mainly uses solveNQUtil() to
// solve the problem. It returns false if queens
// cannot be placed, otherwise, return true and
// prints placement of queens in the form of 1s.
// Please note that there may be more than one
// solutions, this function prints one of the
// feasible solutions.
bool solveNQ()
,
int board*N+*N+ = , , 0, 0, 0, 0 -,
, 0, 0, 0, 0 -,
, 0, 0, 0, 0 -,
, 0, 0, 0, 0 - -;
if (solveNQUtil(board, 0) == false) ,
printf("Solution does not exist");
return false;
-
printSolution(board);
return true;
-
// Driver program to test above function
int main()
,
solveNQ();
return 0;
-
// This code is contributed by Aditya Kumar (adityakumar129)
RANDOMIZED QUICK SORT
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
int partition(int arr*+, int low, int high)
,
int pivot = arr*low+;
int i = low - 1, j = high + 1;
while (1) ,
do ,
i++;
- while (arr*i+ < pivot);
do ,
j--;
- while (arr*j+ > pivot);
if (i >= j)
return j;
int temp = arr*i+;
arr*i+ = arr*j+;
arr*j+ = temp;
-
-
int partition_r(int arr*+, int low, int high)
,
srand(time(0));
int random = low + rand() % (high - low);
int temp = arr*random+;
arr*random+ = arr*low+;
arr*low+ = temp;
return partition(arr, low, high);
-
void quickSort(int arr*+, int low, int high)
,
if (low < high) ,
int pi = partition_r(arr, low, high);
quickSort(arr, low, pi);
quickSort(arr, pi + 1, high);
-
-
void printArray(int arr*+, int n)
,
for (int i = 0; i < n; i++)
printf("%d ", arr*i+);
printf("\n");
-
int main()
,
int arr*+ = , 10, 7, 8, 9, 1, 5 -;
int n = sizeof(arr) / sizeof(arr*0+);
quickSort(arr, 0, n - 1);
printf("Sorted array: \n");
printArray(arr, n);
return 0;
-