Datasets:
Commit
·
ad17642
0
Parent(s):
Update files from the datasets library (from 1.0.0)
Browse filesRelease notes: https://github.com/huggingface/datasets/releases/tag/1.0.0
- .gitattributes +27 -0
- dataset_infos.json +1 -0
- dummy/ax/1.0.0/dummy_data.zip +3 -0
- dummy/cola/1.0.0/dummy_data.zip +3 -0
- dummy/mnli/1.0.0/dummy_data.zip +3 -0
- dummy/mrpc/1.0.0/dummy_data.zip +3 -0
- dummy/qnli/1.0.0/dummy_data.zip +3 -0
- dummy/qqp/1.0.0/dummy_data.zip +3 -0
- dummy/rte/1.0.0/dummy_data.zip +3 -0
- dummy/sst2/1.0.0/dummy_data.zip +3 -0
- dummy/stsb/1.0.0/dummy_data.zip +3 -0
- dummy/wnli/1.0.0/dummy_data.zip +3 -0
- glue.py +627 -0
.gitattributes
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
dataset_infos.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"cola": {"description": "GLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n\n", "citation": "@article{warstadt2018neural,\n title={Neural Network Acceptability Judgments},\n author={Warstadt, Alex and Singh, Amanpreet and Bowman, Samuel R},\n journal={arXiv preprint arXiv:1805.12471},\n year={2018}\n}\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n\nNote that each GLUE dataset has its own citation. Please see the source to see\nthe correct citation for each contained dataset.", "homepage": "https://nyu-mll.github.io/CoLA/", "license": "", "features": {"sentence": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["unacceptable", "acceptable"], "names_file": null, "id": null, "_type": "ClassLabel"}, "idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "glue", "config_name": "cola", "version": {"version_str": "1.0.0", "description": "", "datasets_version_to_prepare": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"test": {"name": "test", "num_bytes": 61049, "num_examples": 1063, "dataset_name": "glue"}, "train": {"name": "train", "num_bytes": 489149, "num_examples": 8551, "dataset_name": "glue"}, "validation": {"name": "validation", "num_bytes": 60850, "num_examples": 1043, "dataset_name": "glue"}}, "download_checksums": {"https://firebasestorage.googleapis.com/v0/b/mtl-sentence-representations.appspot.com/o/data%2FCoLA.zip?alt=media&token=46d5e637-3411-4188-bc44-5809b5bfb5f4": {"num_bytes": 376971, "checksum": "f212fcd832b8f7b435fb991f101abf89f96b933ab400603bf198960dfc32cbff"}}, "download_size": 376971, "dataset_size": 611048, "size_in_bytes": 988019}, "sst2": {"description": "GLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n\n", "citation": "@inproceedings{socher2013recursive,\n title={Recursive deep models for semantic compositionality over a sentiment treebank},\n author={Socher, Richard and Perelygin, Alex and Wu, Jean and Chuang, Jason and Manning, Christopher D and Ng, Andrew and Potts, Christopher},\n booktitle={Proceedings of the 2013 conference on empirical methods in natural language processing},\n pages={1631--1642},\n year={2013}\n}\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n\nNote that each GLUE dataset has its own citation. Please see the source to see\nthe correct citation for each contained dataset.", "homepage": "https://nlp.stanford.edu/sentiment/index.html", "license": "", "features": {"sentence": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["negative", "positive"], "names_file": null, "id": null, "_type": "ClassLabel"}, "idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "glue", "config_name": "sst2", "version": {"version_str": "1.0.0", "description": "", "datasets_version_to_prepare": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"test": {"name": "test", "num_bytes": 217556, "num_examples": 1821, "dataset_name": "glue"}, "train": {"name": "train", "num_bytes": 4715283, "num_examples": 67349, "dataset_name": "glue"}, "validation": {"name": "validation", "num_bytes": 106692, "num_examples": 872, "dataset_name": "glue"}}, "download_checksums": {"https://firebasestorage.googleapis.com/v0/b/mtl-sentence-representations.appspot.com/o/data%2FSST-2.zip?alt=media&token=aabc5f6b-e466-44a2-b9b4-cf6337f84ac8": {"num_bytes": 7439277, "checksum": "d67e16fb55739c1b32cdce9877596db1c127dc322d93c082281f64057c16deaa"}}, "download_size": 7439277, "dataset_size": 5039531, "size_in_bytes": 12478808}, "mrpc": {"description": "GLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n\n", "citation": "@inproceedings{dolan2005automatically,\n title={Automatically constructing a corpus of sentential paraphrases},\n author={Dolan, William B and Brockett, Chris},\n booktitle={Proceedings of the Third International Workshop on Paraphrasing (IWP2005)},\n year={2005}\n}\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n\nNote that each GLUE dataset has its own citation. Please see the source to see\nthe correct citation for each contained dataset.", "homepage": "https://www.microsoft.com/en-us/download/details.aspx?id=52398", "license": "", "features": {"sentence1": {"dtype": "string", "id": null, "_type": "Value"}, "sentence2": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["not_equivalent", "equivalent"], "names_file": null, "id": null, "_type": "ClassLabel"}, "idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "glue", "config_name": "mrpc", "version": {"version_str": "1.0.0", "description": "", "datasets_version_to_prepare": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"test": {"name": "test", "num_bytes": 443498, "num_examples": 1725, "dataset_name": "glue"}, "train": {"name": "train", "num_bytes": 946146, "num_examples": 3668, "dataset_name": "glue"}, "validation": {"name": "validation", "num_bytes": 106142, "num_examples": 408, "dataset_name": "glue"}}, "download_checksums": {"https://firebasestorage.googleapis.com/v0/b/mtl-sentence-representations.appspot.com/o/data%2Fmrpc_dev_ids.tsv?alt=media&token=ec5c0836-31d5-48f4-b431-7480817f1adc": {"num_bytes": 6222, "checksum": "971d7767d81b997fd9060ade0ec23c4fc31cbb226a55d1bd4a1bac474eb81dc7"}, "https://dl.fbaipublicfiles.com/senteval/senteval_data/msr_paraphrase_train.txt": {"num_bytes": 1047044, "checksum": "60a9b09084528f0673eedee2b69cb941920f0b8cd0eeccefc464a98768457f89"}, "https://dl.fbaipublicfiles.com/senteval/senteval_data/msr_paraphrase_test.txt": {"num_bytes": 441275, "checksum": "a04e271090879aaba6423d65b94950c089298587d9c084bf9cd7439bd785f784"}}, "download_size": 1494541, "dataset_size": 1495786, "size_in_bytes": 2990327}, "qqp": {"description": "GLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n\n", "citation": "@online{WinNT,\n author = {Iyer, Shankar and Dandekar, Nikhil and Csernai, Kornel},\n title = {First Quora Dataset Release: Question Pairs},\n year = 2017,\n url = {https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs},\n urldate = {2019-04-03}\n}\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n\nNote that each GLUE dataset has its own citation. Please see the source to see\nthe correct citation for each contained dataset.", "homepage": "https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs", "license": "", "features": {"question1": {"dtype": "string", "id": null, "_type": "Value"}, "question2": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["not_duplicate", "duplicate"], "names_file": null, "id": null, "_type": "ClassLabel"}, "idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "glue", "config_name": "qqp", "version": {"version_str": "1.0.0", "description": "", "datasets_version_to_prepare": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"test": {"name": "test", "num_bytes": 55415498, "num_examples": 390965, "dataset_name": "glue"}, "train": {"name": "train", "num_bytes": 51128510, "num_examples": 363849, "dataset_name": "glue"}, "validation": {"name": "validation", "num_bytes": 5679032, "num_examples": 40430, "dataset_name": "glue"}}, "download_checksums": {"https://firebasestorage.googleapis.com/v0/b/mtl-sentence-representations.appspot.com/o/data%2FQQP.zip?alt=media&token=700c6acf-160d-4d89-81d1-de4191d02cb5": {"num_bytes": 60534884, "checksum": "67cb8f5fe66c90a0bc1bf5792e3924f63008b064ab7a473736c919d20bb140ad"}}, "download_size": 60534884, "dataset_size": 112223040, "size_in_bytes": 172757924}, "stsb": {"description": "GLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n\n", "citation": "@article{cer2017semeval,\n title={Semeval-2017 task 1: Semantic textual similarity-multilingual and cross-lingual focused evaluation},\n author={Cer, Daniel and Diab, Mona and Agirre, Eneko and Lopez-Gazpio, Inigo and Specia, Lucia},\n journal={arXiv preprint arXiv:1708.00055},\n year={2017}\n}\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n\nNote that each GLUE dataset has its own citation. Please see the source to see\nthe correct citation for each contained dataset.", "homepage": "http://ixa2.si.ehu.es/stswiki/index.php/STSbenchmark", "license": "", "features": {"sentence1": {"dtype": "string", "id": null, "_type": "Value"}, "sentence2": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"dtype": "float32", "id": null, "_type": "Value"}, "idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "glue", "config_name": "stsb", "version": {"version_str": "1.0.0", "description": "", "datasets_version_to_prepare": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"test": {"name": "test", "num_bytes": 170847, "num_examples": 1379, "dataset_name": "glue"}, "train": {"name": "train", "num_bytes": 758394, "num_examples": 5749, "dataset_name": "glue"}, "validation": {"name": "validation", "num_bytes": 217012, "num_examples": 1500, "dataset_name": "glue"}}, "download_checksums": {"https://firebasestorage.googleapis.com/v0/b/mtl-sentence-representations.appspot.com/o/data%2FSTS-B.zip?alt=media&token=bddb94a7-8706-4e0d-a694-1109e12273b5": {"num_bytes": 802872, "checksum": "e60a6393de5a8b5b9bac5020a1554b54e3691f9d600b775bd131e613ac179c85"}}, "download_size": 802872, "dataset_size": 1146253, "size_in_bytes": 1949125}, "mnli": {"description": "GLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n\n", "citation": "@InProceedings{N18-1101,\n author = \"Williams, Adina\n and Nangia, Nikita\n and Bowman, Samuel\",\n title = \"A Broad-Coverage Challenge Corpus for\n Sentence Understanding through Inference\",\n booktitle = \"Proceedings of the 2018 Conference of\n the North American Chapter of the\n Association for Computational Linguistics:\n Human Language Technologies, Volume 1 (Long\n Papers)\",\n year = \"2018\",\n publisher = \"Association for Computational Linguistics\",\n pages = \"1112--1122\",\n location = \"New Orleans, Louisiana\",\n url = \"http://aclweb.org/anthology/N18-1101\"\n}\n@article{bowman2015large,\n title={A large annotated corpus for learning natural language inference},\n author={Bowman, Samuel R and Angeli, Gabor and Potts, Christopher and Manning, Christopher D},\n journal={arXiv preprint arXiv:1508.05326},\n year={2015}\n}\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n\nNote that each GLUE dataset has its own citation. Please see the source to see\nthe correct citation for each contained dataset.", "homepage": "http://www.nyu.edu/projects/bowman/multinli/", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}, "idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "glue", "config_name": "mnli", "version": {"version_str": "1.0.0", "description": "", "datasets_version_to_prepare": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"test_matched": {"name": "test_matched", "num_bytes": 1854787, "num_examples": 9796, "dataset_name": "glue"}, "test_mismatched": {"name": "test_mismatched", "num_bytes": 1956866, "num_examples": 9847, "dataset_name": "glue"}, "train": {"name": "train", "num_bytes": 74865118, "num_examples": 392702, "dataset_name": "glue"}, "validation_matched": {"name": "validation_matched", "num_bytes": 1839926, "num_examples": 9815, "dataset_name": "glue"}, "validation_mismatched": {"name": "validation_mismatched", "num_bytes": 1955384, "num_examples": 9832, "dataset_name": "glue"}}, "download_checksums": {"https://firebasestorage.googleapis.com/v0/b/mtl-sentence-representations.appspot.com/o/data%2FMNLI.zip?alt=media&token=50329ea1-e339-40e2-809c-10c40afff3ce": {"num_bytes": 312783507, "checksum": "e7c1d896d26ed6caf700110645df426cc2d8ebf02a5ab743d5a5c68ac1c83633"}}, "download_size": 312783507, "dataset_size": 82472081, "size_in_bytes": 395255588}, "mnli_mismatched": {"description": "GLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n\n", "citation": "@InProceedings{N18-1101,\n author = \"Williams, Adina\n and Nangia, Nikita\n and Bowman, Samuel\",\n title = \"A Broad-Coverage Challenge Corpus for\n Sentence Understanding through Inference\",\n booktitle = \"Proceedings of the 2018 Conference of\n the North American Chapter of the\n Association for Computational Linguistics:\n Human Language Technologies, Volume 1 (Long\n Papers)\",\n year = \"2018\",\n publisher = \"Association for Computational Linguistics\",\n pages = \"1112--1122\",\n location = \"New Orleans, Louisiana\",\n url = \"http://aclweb.org/anthology/N18-1101\"\n}\n@article{bowman2015large,\n title={A large annotated corpus for learning natural language inference},\n author={Bowman, Samuel R and Angeli, Gabor and Potts, Christopher and Manning, Christopher D},\n journal={arXiv preprint arXiv:1508.05326},\n year={2015}\n}\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n\nNote that each GLUE dataset has its own citation. Please see the source to see\nthe correct citation for each contained dataset.", "homepage": "http://www.nyu.edu/projects/bowman/multinli/", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}, "idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "glue", "config_name": "mnli_mismatched", "version": {"version_str": "1.0.0", "description": "", "datasets_version_to_prepare": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"test": {"name": "test", "num_bytes": 1956866, "num_examples": 9847, "dataset_name": "glue"}, "validation": {"name": "validation", "num_bytes": 1955384, "num_examples": 9832, "dataset_name": "glue"}}, "download_checksums": {"https://firebasestorage.googleapis.com/v0/b/mtl-sentence-representations.appspot.com/o/data%2FMNLI.zip?alt=media&token=50329ea1-e339-40e2-809c-10c40afff3ce": {"num_bytes": 312783507, "checksum": "e7c1d896d26ed6caf700110645df426cc2d8ebf02a5ab743d5a5c68ac1c83633"}}, "download_size": 312783507, "dataset_size": 3912250, "size_in_bytes": 316695757}, "mnli_matched": {"description": "GLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n\n", "citation": "@InProceedings{N18-1101,\n author = \"Williams, Adina\n and Nangia, Nikita\n and Bowman, Samuel\",\n title = \"A Broad-Coverage Challenge Corpus for\n Sentence Understanding through Inference\",\n booktitle = \"Proceedings of the 2018 Conference of\n the North American Chapter of the\n Association for Computational Linguistics:\n Human Language Technologies, Volume 1 (Long\n Papers)\",\n year = \"2018\",\n publisher = \"Association for Computational Linguistics\",\n pages = \"1112--1122\",\n location = \"New Orleans, Louisiana\",\n url = \"http://aclweb.org/anthology/N18-1101\"\n}\n@article{bowman2015large,\n title={A large annotated corpus for learning natural language inference},\n author={Bowman, Samuel R and Angeli, Gabor and Potts, Christopher and Manning, Christopher D},\n journal={arXiv preprint arXiv:1508.05326},\n year={2015}\n}\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n\nNote that each GLUE dataset has its own citation. Please see the source to see\nthe correct citation for each contained dataset.", "homepage": "http://www.nyu.edu/projects/bowman/multinli/", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}, "idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "glue", "config_name": "mnli_matched", "version": {"version_str": "1.0.0", "description": "", "datasets_version_to_prepare": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"test": {"name": "test", "num_bytes": 1854787, "num_examples": 9796, "dataset_name": "glue"}, "validation": {"name": "validation", "num_bytes": 1839926, "num_examples": 9815, "dataset_name": "glue"}}, "download_checksums": {"https://firebasestorage.googleapis.com/v0/b/mtl-sentence-representations.appspot.com/o/data%2FMNLI.zip?alt=media&token=50329ea1-e339-40e2-809c-10c40afff3ce": {"num_bytes": 312783507, "checksum": "e7c1d896d26ed6caf700110645df426cc2d8ebf02a5ab743d5a5c68ac1c83633"}}, "download_size": 312783507, "dataset_size": 3694713, "size_in_bytes": 316478220}, "qnli": {"description": "GLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n\n", "citation": "@article{rajpurkar2016squad,\n title={Squad: 100,000+ questions for machine comprehension of text},\n author={Rajpurkar, Pranav and Zhang, Jian and Lopyrev, Konstantin and Liang, Percy},\n journal={arXiv preprint arXiv:1606.05250},\n year={2016}\n}\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n\nNote that each GLUE dataset has its own citation. Please see the source to see\nthe correct citation for each contained dataset.", "homepage": "https://rajpurkar.github.io/SQuAD-explorer/", "license": "", "features": {"question": {"dtype": "string", "id": null, "_type": "Value"}, "sentence": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["entailment", "not_entailment"], "names_file": null, "id": null, "_type": "ClassLabel"}, "idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "glue", "config_name": "qnli", "version": {"version_str": "1.0.0", "description": "", "datasets_version_to_prepare": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"test": {"name": "test", "num_bytes": 1376516, "num_examples": 5463, "dataset_name": "glue"}, "train": {"name": "train", "num_bytes": 25677924, "num_examples": 104743, "dataset_name": "glue"}, "validation": {"name": "validation", "num_bytes": 1371727, "num_examples": 5463, "dataset_name": "glue"}}, "download_checksums": {"https://firebasestorage.googleapis.com/v0/b/mtl-sentence-representations.appspot.com/o/data%2FQNLIv2.zip?alt=media&token=6fdcf570-0fc5-4631-8456-9505272d1601": {"num_bytes": 10627589, "checksum": "e634e78627a29adaecd4f955359b22bf5e70f2cbd93b493f2d624138a0c0e5f5"}}, "download_size": 10627589, "dataset_size": 28426167, "size_in_bytes": 39053756}, "rte": {"description": "GLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n\n", "citation": "@inproceedings{dagan2005pascal,\n title={The PASCAL recognising textual entailment challenge},\n author={Dagan, Ido and Glickman, Oren and Magnini, Bernardo},\n booktitle={Machine Learning Challenges Workshop},\n pages={177--190},\n year={2005},\n organization={Springer}\n}\n@inproceedings{bar2006second,\n title={The second pascal recognising textual entailment challenge},\n author={Bar-Haim, Roy and Dagan, Ido and Dolan, Bill and Ferro, Lisa and Giampiccolo, Danilo and Magnini, Bernardo and Szpektor, Idan},\n booktitle={Proceedings of the second PASCAL challenges workshop on recognising textual entailment},\n volume={6},\n number={1},\n pages={6--4},\n year={2006},\n organization={Venice}\n}\n@inproceedings{giampiccolo2007third,\n title={The third pascal recognizing textual entailment challenge},\n author={Giampiccolo, Danilo and Magnini, Bernardo and Dagan, Ido and Dolan, Bill},\n booktitle={Proceedings of the ACL-PASCAL workshop on textual entailment and paraphrasing},\n pages={1--9},\n year={2007},\n organization={Association for Computational Linguistics}\n}\n@inproceedings{bentivogli2009fifth,\n title={The Fifth PASCAL Recognizing Textual Entailment Challenge.},\n author={Bentivogli, Luisa and Clark, Peter and Dagan, Ido and Giampiccolo, Danilo},\n booktitle={TAC},\n year={2009}\n}\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n\nNote that each GLUE dataset has its own citation. Please see the source to see\nthe correct citation for each contained dataset.", "homepage": "https://aclweb.org/aclwiki/Recognizing_Textual_Entailment", "license": "", "features": {"sentence1": {"dtype": "string", "id": null, "_type": "Value"}, "sentence2": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["entailment", "not_entailment"], "names_file": null, "id": null, "_type": "ClassLabel"}, "idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "glue", "config_name": "rte", "version": {"version_str": "1.0.0", "description": "", "datasets_version_to_prepare": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"test": {"name": "test", "num_bytes": 975936, "num_examples": 3000, "dataset_name": "glue"}, "train": {"name": "train", "num_bytes": 848888, "num_examples": 2490, "dataset_name": "glue"}, "validation": {"name": "validation", "num_bytes": 90911, "num_examples": 277, "dataset_name": "glue"}}, "download_checksums": {"https://firebasestorage.googleapis.com/v0/b/mtl-sentence-representations.appspot.com/o/data%2FRTE.zip?alt=media&token=5efa7e85-a0bb-4f19-8ea2-9e1840f077fb": {"num_bytes": 697150, "checksum": "6bf86de103ecd335f3441bd43574d23fef87ecc695977a63b82d5efb206556ee"}}, "download_size": 697150, "dataset_size": 1915735, "size_in_bytes": 2612885}, "wnli": {"description": "GLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n\n", "citation": "@inproceedings{levesque2012winograd,\n title={The winograd schema challenge},\n author={Levesque, Hector and Davis, Ernest and Morgenstern, Leora},\n booktitle={Thirteenth International Conference on the Principles of Knowledge Representation and Reasoning},\n year={2012}\n}\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n\nNote that each GLUE dataset has its own citation. Please see the source to see\nthe correct citation for each contained dataset.", "homepage": "https://cs.nyu.edu/faculty/davise/papers/WinogradSchemas/WS.html", "license": "", "features": {"sentence1": {"dtype": "string", "id": null, "_type": "Value"}, "sentence2": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["not_entailment", "entailment"], "names_file": null, "id": null, "_type": "ClassLabel"}, "idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "glue", "config_name": "wnli", "version": {"version_str": "1.0.0", "description": "", "datasets_version_to_prepare": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"test": {"name": "test", "num_bytes": 37992, "num_examples": 146, "dataset_name": "glue"}, "train": {"name": "train", "num_bytes": 107517, "num_examples": 635, "dataset_name": "glue"}, "validation": {"name": "validation", "num_bytes": 12215, "num_examples": 71, "dataset_name": "glue"}}, "download_checksums": {"https://firebasestorage.googleapis.com/v0/b/mtl-sentence-representations.appspot.com/o/data%2FWNLI.zip?alt=media&token=068ad0a0-ded7-4bd7-99a5-5e00222e0faf": {"num_bytes": 28999, "checksum": "ae0e8e4d16f4d46d4a0a566ec7ecceccfd3fbfaa4a7a4b4e02848c0f2561ac46"}}, "download_size": 28999, "dataset_size": 157724, "size_in_bytes": 186723}, "ax": {"description": "GLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n\n", "citation": "\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n\nNote that each GLUE dataset has its own citation. Please see the source to see\nthe correct citation for each contained dataset.", "homepage": "https://gluebenchmark.com/diagnostics", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}, "idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "glue", "config_name": "ax", "version": {"version_str": "1.0.0", "description": "", "datasets_version_to_prepare": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"test": {"name": "test", "num_bytes": 238392, "num_examples": 1104, "dataset_name": "glue"}}, "download_checksums": {"https://bit.ly/2BOtOJ7": {"num_bytes": 222257, "checksum": "0e13510b1bb14436ff7e2ee82338f0efb0133ecf2e73507a697dc210db3f05fd"}}, "download_size": 222257, "dataset_size": 238392, "size_in_bytes": 460649}}
|
dummy/ax/1.0.0/dummy_data.zip
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d2a34cfe9a95b80530887f488eb04e3514b322e0fa65c64f425ddb7aea449f69
|
| 3 |
+
size 509
|
dummy/cola/1.0.0/dummy_data.zip
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d678797c6eb84d3436868f8b5ac506f88f12bd51633245bd1a20af6021ac48d4
|
| 3 |
+
size 1116
|
dummy/mnli/1.0.0/dummy_data.zip
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ef46936124ebde31577df53b2ae6e381aa9c66e95a2cf50f42ba68478ec3896e
|
| 3 |
+
size 5438
|
dummy/mrpc/1.0.0/dummy_data.zip
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0bfe41b0047215524032750c1faf32c84c41566279fca9df1c35482640537aa6
|
| 3 |
+
size 4539
|
dummy/qnli/1.0.0/dummy_data.zip
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a771b312be26048e7d921ff4bf01ac7de224641cd51977629bb54b9839637fb0
|
| 3 |
+
size 1859
|
dummy/qqp/1.0.0/dummy_data.zip
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3a1f6bf7c3ae0587a99d4ecfc2c4ab900efbd23dc1c68e2556426da9feab0163
|
| 3 |
+
size 1588
|
dummy/rte/1.0.0/dummy_data.zip
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7bec2e7562503a3b7ef577986b4cd10b075818b66fb03df8d4dec79d28a5bf5f
|
| 3 |
+
size 1613
|
dummy/sst2/1.0.0/dummy_data.zip
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5ff05ebd2679fd60f174cd19415e8dd0c2f701f49f8f9dbb63f7b30707d9b06e
|
| 3 |
+
size 1143
|
dummy/stsb/1.0.0/dummy_data.zip
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8027e1188e092ea53eede8a2b2bd245f4c98f2b37132ea5d7dd173bac36e025e
|
| 3 |
+
size 1353
|
dummy/wnli/1.0.0/dummy_data.zip
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e52960c15224df1f7202371029b3a5fad3b4dfec72132d3c8b996ff03db92755
|
| 3 |
+
size 1407
|
glue.py
ADDED
|
@@ -0,0 +1,627 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
|
| 16 |
+
# Lint as: python3
|
| 17 |
+
"""The General Language Understanding Evaluation (GLUE) benchmark."""
|
| 18 |
+
|
| 19 |
+
from __future__ import absolute_import, division, print_function
|
| 20 |
+
|
| 21 |
+
import csv
|
| 22 |
+
import os
|
| 23 |
+
import textwrap
|
| 24 |
+
|
| 25 |
+
import numpy as np
|
| 26 |
+
import six
|
| 27 |
+
|
| 28 |
+
import datasets
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
_GLUE_CITATION = """\
|
| 32 |
+
@inproceedings{wang2019glue,
|
| 33 |
+
title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},
|
| 34 |
+
author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},
|
| 35 |
+
note={In the Proceedings of ICLR.},
|
| 36 |
+
year={2019}
|
| 37 |
+
}
|
| 38 |
+
"""
|
| 39 |
+
|
| 40 |
+
_GLUE_DESCRIPTION = """\
|
| 41 |
+
GLUE, the General Language Understanding Evaluation benchmark
|
| 42 |
+
(https://gluebenchmark.com/) is a collection of resources for training,
|
| 43 |
+
evaluating, and analyzing natural language understanding systems.
|
| 44 |
+
|
| 45 |
+
"""
|
| 46 |
+
|
| 47 |
+
_MRPC_DEV_IDS = "https://firebasestorage.googleapis.com/v0/b/mtl-sentence-representations.appspot.com/o/data%2Fmrpc_dev_ids.tsv?alt=media&token=ec5c0836-31d5-48f4-b431-7480817f1adc"
|
| 48 |
+
_MRPC_TRAIN = "https://dl.fbaipublicfiles.com/senteval/senteval_data/msr_paraphrase_train.txt"
|
| 49 |
+
_MRPC_TEST = "https://dl.fbaipublicfiles.com/senteval/senteval_data/msr_paraphrase_test.txt"
|
| 50 |
+
|
| 51 |
+
_MNLI_BASE_KWARGS = dict(
|
| 52 |
+
text_features={
|
| 53 |
+
"premise": "sentence1",
|
| 54 |
+
"hypothesis": "sentence2",
|
| 55 |
+
},
|
| 56 |
+
label_classes=["entailment", "neutral", "contradiction"],
|
| 57 |
+
label_column="gold_label",
|
| 58 |
+
data_url="https://firebasestorage.googleapis.com/v0/b/mtl-sentence-representations.appspot.com/o/data%2FMNLI.zip?alt=media&token=50329ea1-e339-40e2-809c-10c40afff3ce",
|
| 59 |
+
data_dir="MNLI",
|
| 60 |
+
citation=textwrap.dedent(
|
| 61 |
+
"""\
|
| 62 |
+
@InProceedings{N18-1101,
|
| 63 |
+
author = "Williams, Adina
|
| 64 |
+
and Nangia, Nikita
|
| 65 |
+
and Bowman, Samuel",
|
| 66 |
+
title = "A Broad-Coverage Challenge Corpus for
|
| 67 |
+
Sentence Understanding through Inference",
|
| 68 |
+
booktitle = "Proceedings of the 2018 Conference of
|
| 69 |
+
the North American Chapter of the
|
| 70 |
+
Association for Computational Linguistics:
|
| 71 |
+
Human Language Technologies, Volume 1 (Long
|
| 72 |
+
Papers)",
|
| 73 |
+
year = "2018",
|
| 74 |
+
publisher = "Association for Computational Linguistics",
|
| 75 |
+
pages = "1112--1122",
|
| 76 |
+
location = "New Orleans, Louisiana",
|
| 77 |
+
url = "http://aclweb.org/anthology/N18-1101"
|
| 78 |
+
}
|
| 79 |
+
@article{bowman2015large,
|
| 80 |
+
title={A large annotated corpus for learning natural language inference},
|
| 81 |
+
author={Bowman, Samuel R and Angeli, Gabor and Potts, Christopher and Manning, Christopher D},
|
| 82 |
+
journal={arXiv preprint arXiv:1508.05326},
|
| 83 |
+
year={2015}
|
| 84 |
+
}"""
|
| 85 |
+
),
|
| 86 |
+
url="http://www.nyu.edu/projects/bowman/multinli/",
|
| 87 |
+
)
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
class GlueConfig(datasets.BuilderConfig):
|
| 91 |
+
"""BuilderConfig for GLUE."""
|
| 92 |
+
|
| 93 |
+
def __init__(
|
| 94 |
+
self,
|
| 95 |
+
text_features,
|
| 96 |
+
label_column,
|
| 97 |
+
data_url,
|
| 98 |
+
data_dir,
|
| 99 |
+
citation,
|
| 100 |
+
url,
|
| 101 |
+
label_classes=None,
|
| 102 |
+
process_label=lambda x: x,
|
| 103 |
+
**kwargs,
|
| 104 |
+
):
|
| 105 |
+
"""BuilderConfig for GLUE.
|
| 106 |
+
|
| 107 |
+
Args:
|
| 108 |
+
text_features: `dict[string, string]`, map from the name of the feature
|
| 109 |
+
dict for each text field to the name of the column in the tsv file
|
| 110 |
+
label_column: `string`, name of the column in the tsv file corresponding
|
| 111 |
+
to the label
|
| 112 |
+
data_url: `string`, url to download the zip file from
|
| 113 |
+
data_dir: `string`, the path to the folder containing the tsv files in the
|
| 114 |
+
downloaded zip
|
| 115 |
+
citation: `string`, citation for the data set
|
| 116 |
+
url: `string`, url for information about the data set
|
| 117 |
+
label_classes: `list[string]`, the list of classes if the label is
|
| 118 |
+
categorical. If not provided, then the label will be of type
|
| 119 |
+
`datasets.Value('float32')`.
|
| 120 |
+
process_label: `Function[string, any]`, function taking in the raw value
|
| 121 |
+
of the label and processing it to the form required by the label feature
|
| 122 |
+
**kwargs: keyword arguments forwarded to super.
|
| 123 |
+
"""
|
| 124 |
+
super(GlueConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)
|
| 125 |
+
self.text_features = text_features
|
| 126 |
+
self.label_column = label_column
|
| 127 |
+
self.label_classes = label_classes
|
| 128 |
+
self.data_url = data_url
|
| 129 |
+
self.data_dir = data_dir
|
| 130 |
+
self.citation = citation
|
| 131 |
+
self.url = url
|
| 132 |
+
self.process_label = process_label
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
class Glue(datasets.GeneratorBasedBuilder):
|
| 136 |
+
"""The General Language Understanding Evaluation (GLUE) benchmark."""
|
| 137 |
+
|
| 138 |
+
BUILDER_CONFIGS = [
|
| 139 |
+
GlueConfig(
|
| 140 |
+
name="cola",
|
| 141 |
+
description=textwrap.dedent(
|
| 142 |
+
"""\
|
| 143 |
+
The Corpus of Linguistic Acceptability consists of English
|
| 144 |
+
acceptability judgments drawn from books and journal articles on
|
| 145 |
+
linguistic theory. Each example is a sequence of words annotated
|
| 146 |
+
with whether it is a grammatical English sentence."""
|
| 147 |
+
),
|
| 148 |
+
text_features={"sentence": "sentence"},
|
| 149 |
+
label_classes=["unacceptable", "acceptable"],
|
| 150 |
+
label_column="is_acceptable",
|
| 151 |
+
data_url="https://firebasestorage.googleapis.com/v0/b/mtl-sentence-representations.appspot.com/o/data%2FCoLA.zip?alt=media&token=46d5e637-3411-4188-bc44-5809b5bfb5f4",
|
| 152 |
+
data_dir="CoLA",
|
| 153 |
+
citation=textwrap.dedent(
|
| 154 |
+
"""\
|
| 155 |
+
@article{warstadt2018neural,
|
| 156 |
+
title={Neural Network Acceptability Judgments},
|
| 157 |
+
author={Warstadt, Alex and Singh, Amanpreet and Bowman, Samuel R},
|
| 158 |
+
journal={arXiv preprint arXiv:1805.12471},
|
| 159 |
+
year={2018}
|
| 160 |
+
}"""
|
| 161 |
+
),
|
| 162 |
+
url="https://nyu-mll.github.io/CoLA/",
|
| 163 |
+
),
|
| 164 |
+
GlueConfig(
|
| 165 |
+
name="sst2",
|
| 166 |
+
description=textwrap.dedent(
|
| 167 |
+
"""\
|
| 168 |
+
The Stanford Sentiment Treebank consists of sentences from movie reviews and
|
| 169 |
+
human annotations of their sentiment. The task is to predict the sentiment of a
|
| 170 |
+
given sentence. We use the two-way (positive/negative) class split, and use only
|
| 171 |
+
sentence-level labels."""
|
| 172 |
+
),
|
| 173 |
+
text_features={"sentence": "sentence"},
|
| 174 |
+
label_classes=["negative", "positive"],
|
| 175 |
+
label_column="label",
|
| 176 |
+
data_url="https://firebasestorage.googleapis.com/v0/b/mtl-sentence-representations.appspot.com/o/data%2FSST-2.zip?alt=media&token=aabc5f6b-e466-44a2-b9b4-cf6337f84ac8",
|
| 177 |
+
data_dir="SST-2",
|
| 178 |
+
citation=textwrap.dedent(
|
| 179 |
+
"""\
|
| 180 |
+
@inproceedings{socher2013recursive,
|
| 181 |
+
title={Recursive deep models for semantic compositionality over a sentiment treebank},
|
| 182 |
+
author={Socher, Richard and Perelygin, Alex and Wu, Jean and Chuang, Jason and Manning, Christopher D and Ng, Andrew and Potts, Christopher},
|
| 183 |
+
booktitle={Proceedings of the 2013 conference on empirical methods in natural language processing},
|
| 184 |
+
pages={1631--1642},
|
| 185 |
+
year={2013}
|
| 186 |
+
}"""
|
| 187 |
+
),
|
| 188 |
+
url="https://datasets.stanford.edu/sentiment/index.html",
|
| 189 |
+
),
|
| 190 |
+
GlueConfig(
|
| 191 |
+
name="mrpc",
|
| 192 |
+
description=textwrap.dedent(
|
| 193 |
+
"""\
|
| 194 |
+
The Microsoft Research Paraphrase Corpus (Dolan & Brockett, 2005) is a corpus of
|
| 195 |
+
sentence pairs automatically extracted from online news sources, with human annotations
|
| 196 |
+
for whether the sentences in the pair are semantically equivalent."""
|
| 197 |
+
), # pylint: disable=line-too-long
|
| 198 |
+
text_features={"sentence1": "", "sentence2": ""},
|
| 199 |
+
label_classes=["not_equivalent", "equivalent"],
|
| 200 |
+
label_column="Quality",
|
| 201 |
+
data_url="", # MRPC isn't hosted by GLUE.
|
| 202 |
+
data_dir="MRPC",
|
| 203 |
+
citation=textwrap.dedent(
|
| 204 |
+
"""\
|
| 205 |
+
@inproceedings{dolan2005automatically,
|
| 206 |
+
title={Automatically constructing a corpus of sentential paraphrases},
|
| 207 |
+
author={Dolan, William B and Brockett, Chris},
|
| 208 |
+
booktitle={Proceedings of the Third International Workshop on Paraphrasing (IWP2005)},
|
| 209 |
+
year={2005}
|
| 210 |
+
}"""
|
| 211 |
+
),
|
| 212 |
+
url="https://www.microsoft.com/en-us/download/details.aspx?id=52398",
|
| 213 |
+
),
|
| 214 |
+
GlueConfig(
|
| 215 |
+
name="qqp",
|
| 216 |
+
description=textwrap.dedent(
|
| 217 |
+
"""\
|
| 218 |
+
The Quora Question Pairs2 dataset is a collection of question pairs from the
|
| 219 |
+
community question-answering website Quora. The task is to determine whether a
|
| 220 |
+
pair of questions are semantically equivalent."""
|
| 221 |
+
),
|
| 222 |
+
text_features={
|
| 223 |
+
"question1": "question1",
|
| 224 |
+
"question2": "question2",
|
| 225 |
+
},
|
| 226 |
+
label_classes=["not_duplicate", "duplicate"],
|
| 227 |
+
label_column="is_duplicate",
|
| 228 |
+
data_url="https://firebasestorage.googleapis.com/v0/b/mtl-sentence-representations.appspot.com/o/data%2FQQP.zip?alt=media&token=700c6acf-160d-4d89-81d1-de4191d02cb5",
|
| 229 |
+
data_dir="QQP",
|
| 230 |
+
citation=textwrap.dedent(
|
| 231 |
+
"""\
|
| 232 |
+
@online{WinNT,
|
| 233 |
+
author = {Iyer, Shankar and Dandekar, Nikhil and Csernai, Kornel},
|
| 234 |
+
title = {First Quora Dataset Release: Question Pairs},
|
| 235 |
+
year = {2017},
|
| 236 |
+
url = {https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs},
|
| 237 |
+
urldate = {2019-04-03}
|
| 238 |
+
}"""
|
| 239 |
+
),
|
| 240 |
+
url="https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs",
|
| 241 |
+
),
|
| 242 |
+
GlueConfig(
|
| 243 |
+
name="stsb",
|
| 244 |
+
description=textwrap.dedent(
|
| 245 |
+
"""\
|
| 246 |
+
The Semantic Textual Similarity Benchmark (Cer et al., 2017) is a collection of
|
| 247 |
+
sentence pairs drawn from news headlines, video and image captions, and natural
|
| 248 |
+
language inference data. Each pair is human-annotated with a similarity score
|
| 249 |
+
from 1 to 5."""
|
| 250 |
+
),
|
| 251 |
+
text_features={
|
| 252 |
+
"sentence1": "sentence1",
|
| 253 |
+
"sentence2": "sentence2",
|
| 254 |
+
},
|
| 255 |
+
label_column="score",
|
| 256 |
+
data_url="https://firebasestorage.googleapis.com/v0/b/mtl-sentence-representations.appspot.com/o/data%2FSTS-B.zip?alt=media&token=bddb94a7-8706-4e0d-a694-1109e12273b5",
|
| 257 |
+
data_dir="STS-B",
|
| 258 |
+
citation=textwrap.dedent(
|
| 259 |
+
"""\
|
| 260 |
+
@article{cer2017semeval,
|
| 261 |
+
title={Semeval-2017 task 1: Semantic textual similarity-multilingual and cross-lingual focused evaluation},
|
| 262 |
+
author={Cer, Daniel and Diab, Mona and Agirre, Eneko and Lopez-Gazpio, Inigo and Specia, Lucia},
|
| 263 |
+
journal={arXiv preprint arXiv:1708.00055},
|
| 264 |
+
year={2017}
|
| 265 |
+
}"""
|
| 266 |
+
),
|
| 267 |
+
url="http://ixa2.si.ehu.es/stswiki/index.php/STSbenchmark",
|
| 268 |
+
process_label=np.float32,
|
| 269 |
+
),
|
| 270 |
+
GlueConfig(
|
| 271 |
+
name="mnli",
|
| 272 |
+
description=textwrap.dedent(
|
| 273 |
+
"""\
|
| 274 |
+
The Multi-Genre Natural Language Inference Corpus is a crowdsourced
|
| 275 |
+
collection of sentence pairs with textual entailment annotations. Given a premise sentence
|
| 276 |
+
and a hypothesis sentence, the task is to predict whether the premise entails the hypothesis
|
| 277 |
+
(entailment), contradicts the hypothesis (contradiction), or neither (neutral). The premise sentences are
|
| 278 |
+
gathered from ten different sources, including transcribed speech, fiction, and government reports.
|
| 279 |
+
We use the standard test set, for which we obtained private labels from the authors, and evaluate
|
| 280 |
+
on both the matched (in-domain) and mismatched (cross-domain) section. We also use and recommend
|
| 281 |
+
the SNLI corpus as 550k examples of auxiliary training data."""
|
| 282 |
+
),
|
| 283 |
+
**_MNLI_BASE_KWARGS,
|
| 284 |
+
),
|
| 285 |
+
GlueConfig(
|
| 286 |
+
name="mnli_mismatched",
|
| 287 |
+
description=textwrap.dedent(
|
| 288 |
+
"""\
|
| 289 |
+
The mismatched validation and test splits from MNLI.
|
| 290 |
+
See the "mnli" BuilderConfig for additional information."""
|
| 291 |
+
),
|
| 292 |
+
**_MNLI_BASE_KWARGS,
|
| 293 |
+
),
|
| 294 |
+
GlueConfig(
|
| 295 |
+
name="mnli_matched",
|
| 296 |
+
description=textwrap.dedent(
|
| 297 |
+
"""\
|
| 298 |
+
The matched validation and test splits from MNLI.
|
| 299 |
+
See the "mnli" BuilderConfig for additional information."""
|
| 300 |
+
),
|
| 301 |
+
**_MNLI_BASE_KWARGS,
|
| 302 |
+
),
|
| 303 |
+
GlueConfig(
|
| 304 |
+
name="qnli",
|
| 305 |
+
description=textwrap.dedent(
|
| 306 |
+
"""\
|
| 307 |
+
The Stanford Question Answering Dataset is a question-answering
|
| 308 |
+
dataset consisting of question-paragraph pairs, where one of the sentences in the paragraph (drawn
|
| 309 |
+
from Wikipedia) contains the answer to the corresponding question (written by an annotator). We
|
| 310 |
+
convert the task into sentence pair classification by forming a pair between each question and each
|
| 311 |
+
sentence in the corresponding context, and filtering out pairs with low lexical overlap between the
|
| 312 |
+
question and the context sentence. The task is to determine whether the context sentence contains
|
| 313 |
+
the answer to the question. This modified version of the original task removes the requirement that
|
| 314 |
+
the model select the exact answer, but also removes the simplifying assumptions that the answer
|
| 315 |
+
is always present in the input and that lexical overlap is a reliable cue."""
|
| 316 |
+
), # pylint: disable=line-too-long
|
| 317 |
+
text_features={
|
| 318 |
+
"question": "question",
|
| 319 |
+
"sentence": "sentence",
|
| 320 |
+
},
|
| 321 |
+
label_classes=["entailment", "not_entailment"],
|
| 322 |
+
label_column="label",
|
| 323 |
+
data_url="https://firebasestorage.googleapis.com/v0/b/mtl-sentence-representations.appspot.com/o/data%2FQNLIv2.zip?alt=media&token=6fdcf570-0fc5-4631-8456-9505272d1601",
|
| 324 |
+
data_dir="QNLI",
|
| 325 |
+
citation=textwrap.dedent(
|
| 326 |
+
"""\
|
| 327 |
+
@article{rajpurkar2016squad,
|
| 328 |
+
title={Squad: 100,000+ questions for machine comprehension of text},
|
| 329 |
+
author={Rajpurkar, Pranav and Zhang, Jian and Lopyrev, Konstantin and Liang, Percy},
|
| 330 |
+
journal={arXiv preprint arXiv:1606.05250},
|
| 331 |
+
year={2016}
|
| 332 |
+
}"""
|
| 333 |
+
),
|
| 334 |
+
url="https://rajpurkar.github.io/SQuAD-explorer/",
|
| 335 |
+
),
|
| 336 |
+
GlueConfig(
|
| 337 |
+
name="rte",
|
| 338 |
+
description=textwrap.dedent(
|
| 339 |
+
"""\
|
| 340 |
+
The Recognizing Textual Entailment (RTE) datasets come from a series of annual textual
|
| 341 |
+
entailment challenges. We combine the data from RTE1 (Dagan et al., 2006), RTE2 (Bar Haim
|
| 342 |
+
et al., 2006), RTE3 (Giampiccolo et al., 2007), and RTE5 (Bentivogli et al., 2009).4 Examples are
|
| 343 |
+
constructed based on news and Wikipedia text. We convert all datasets to a two-class split, where
|
| 344 |
+
for three-class datasets we collapse neutral and contradiction into not entailment, for consistency."""
|
| 345 |
+
), # pylint: disable=line-too-long
|
| 346 |
+
text_features={
|
| 347 |
+
"sentence1": "sentence1",
|
| 348 |
+
"sentence2": "sentence2",
|
| 349 |
+
},
|
| 350 |
+
label_classes=["entailment", "not_entailment"],
|
| 351 |
+
label_column="label",
|
| 352 |
+
data_url="https://firebasestorage.googleapis.com/v0/b/mtl-sentence-representations.appspot.com/o/data%2FRTE.zip?alt=media&token=5efa7e85-a0bb-4f19-8ea2-9e1840f077fb",
|
| 353 |
+
data_dir="RTE",
|
| 354 |
+
citation=textwrap.dedent(
|
| 355 |
+
"""\
|
| 356 |
+
@inproceedings{dagan2005pascal,
|
| 357 |
+
title={The PASCAL recognising textual entailment challenge},
|
| 358 |
+
author={Dagan, Ido and Glickman, Oren and Magnini, Bernardo},
|
| 359 |
+
booktitle={Machine Learning Challenges Workshop},
|
| 360 |
+
pages={177--190},
|
| 361 |
+
year={2005},
|
| 362 |
+
organization={Springer}
|
| 363 |
+
}
|
| 364 |
+
@inproceedings{bar2006second,
|
| 365 |
+
title={The second pascal recognising textual entailment challenge},
|
| 366 |
+
author={Bar-Haim, Roy and Dagan, Ido and Dolan, Bill and Ferro, Lisa and Giampiccolo, Danilo and Magnini, Bernardo and Szpektor, Idan},
|
| 367 |
+
booktitle={Proceedings of the second PASCAL challenges workshop on recognising textual entailment},
|
| 368 |
+
volume={6},
|
| 369 |
+
number={1},
|
| 370 |
+
pages={6--4},
|
| 371 |
+
year={2006},
|
| 372 |
+
organization={Venice}
|
| 373 |
+
}
|
| 374 |
+
@inproceedings{giampiccolo2007third,
|
| 375 |
+
title={The third pascal recognizing textual entailment challenge},
|
| 376 |
+
author={Giampiccolo, Danilo and Magnini, Bernardo and Dagan, Ido and Dolan, Bill},
|
| 377 |
+
booktitle={Proceedings of the ACL-PASCAL workshop on textual entailment and paraphrasing},
|
| 378 |
+
pages={1--9},
|
| 379 |
+
year={2007},
|
| 380 |
+
organization={Association for Computational Linguistics}
|
| 381 |
+
}
|
| 382 |
+
@inproceedings{bentivogli2009fifth,
|
| 383 |
+
title={The Fifth PASCAL Recognizing Textual Entailment Challenge.},
|
| 384 |
+
author={Bentivogli, Luisa and Clark, Peter and Dagan, Ido and Giampiccolo, Danilo},
|
| 385 |
+
booktitle={TAC},
|
| 386 |
+
year={2009}
|
| 387 |
+
}"""
|
| 388 |
+
),
|
| 389 |
+
url="https://aclweb.org/aclwiki/Recognizing_Textual_Entailment",
|
| 390 |
+
),
|
| 391 |
+
GlueConfig(
|
| 392 |
+
name="wnli",
|
| 393 |
+
description=textwrap.dedent(
|
| 394 |
+
"""\
|
| 395 |
+
The Winograd Schema Challenge (Levesque et al., 2011) is a reading comprehension task
|
| 396 |
+
in which a system must read a sentence with a pronoun and select the referent of that pronoun from
|
| 397 |
+
a list of choices. The examples are manually constructed to foil simple statistical methods: Each
|
| 398 |
+
one is contingent on contextual information provided by a single word or phrase in the sentence.
|
| 399 |
+
To convert the problem into sentence pair classification, we construct sentence pairs by replacing
|
| 400 |
+
the ambiguous pronoun with each possible referent. The task is to predict if the sentence with the
|
| 401 |
+
pronoun substituted is entailed by the original sentence. We use a small evaluation set consisting of
|
| 402 |
+
new examples derived from fiction books that was shared privately by the authors of the original
|
| 403 |
+
corpus. While the included training set is balanced between two classes, the test set is imbalanced
|
| 404 |
+
between them (65% not entailment). Also, due to a data quirk, the development set is adversarial:
|
| 405 |
+
hypotheses are sometimes shared between training and development examples, so if a model memorizes the
|
| 406 |
+
training examples, they will predict the wrong label on corresponding development set
|
| 407 |
+
example. As with QNLI, each example is evaluated separately, so there is not a systematic correspondence
|
| 408 |
+
between a model's score on this task and its score on the unconverted original task. We
|
| 409 |
+
call converted dataset WNLI (Winograd NLI)."""
|
| 410 |
+
),
|
| 411 |
+
text_features={
|
| 412 |
+
"sentence1": "sentence1",
|
| 413 |
+
"sentence2": "sentence2",
|
| 414 |
+
},
|
| 415 |
+
label_classes=["not_entailment", "entailment"],
|
| 416 |
+
label_column="label",
|
| 417 |
+
data_url="https://firebasestorage.googleapis.com/v0/b/mtl-sentence-representations.appspot.com/o/data%2FWNLI.zip?alt=media&token=068ad0a0-ded7-4bd7-99a5-5e00222e0faf",
|
| 418 |
+
data_dir="WNLI",
|
| 419 |
+
citation=textwrap.dedent(
|
| 420 |
+
"""\
|
| 421 |
+
@inproceedings{levesque2012winograd,
|
| 422 |
+
title={The winograd schema challenge},
|
| 423 |
+
author={Levesque, Hector and Davis, Ernest and Morgenstern, Leora},
|
| 424 |
+
booktitle={Thirteenth International Conference on the Principles of Knowledge Representation and Reasoning},
|
| 425 |
+
year={2012}
|
| 426 |
+
}"""
|
| 427 |
+
),
|
| 428 |
+
url="https://cs.nyu.edu/faculty/davise/papers/WinogradSchemas/WS.html",
|
| 429 |
+
),
|
| 430 |
+
GlueConfig(
|
| 431 |
+
name="ax",
|
| 432 |
+
description=textwrap.dedent(
|
| 433 |
+
"""\
|
| 434 |
+
A manually-curated evaluation dataset for fine-grained analysis of
|
| 435 |
+
system performance on a broad range of linguistic phenomena. This
|
| 436 |
+
dataset evaluates sentence understanding through Natural Language
|
| 437 |
+
Inference (NLI) problems. Use a model trained on MulitNLI to produce
|
| 438 |
+
predictions for this dataset."""
|
| 439 |
+
),
|
| 440 |
+
text_features={
|
| 441 |
+
"premise": "sentence1",
|
| 442 |
+
"hypothesis": "sentence2",
|
| 443 |
+
},
|
| 444 |
+
label_classes=["entailment", "neutral", "contradiction"],
|
| 445 |
+
label_column="", # No label since we only have test set.
|
| 446 |
+
# We must use a URL shortener since the URL from GLUE is very long and
|
| 447 |
+
# causes issues in TFDS.
|
| 448 |
+
data_url="https://bit.ly/2BOtOJ7",
|
| 449 |
+
data_dir="", # We are downloading a tsv.
|
| 450 |
+
citation="", # The GLUE citation is sufficient.
|
| 451 |
+
url="https://gluebenchmark.com/diagnostics",
|
| 452 |
+
),
|
| 453 |
+
]
|
| 454 |
+
|
| 455 |
+
def _info(self):
|
| 456 |
+
features = {text_feature: datasets.Value("string") for text_feature in six.iterkeys(self.config.text_features)}
|
| 457 |
+
if self.config.label_classes:
|
| 458 |
+
features["label"] = datasets.features.ClassLabel(names=self.config.label_classes)
|
| 459 |
+
else:
|
| 460 |
+
features["label"] = datasets.Value("float32")
|
| 461 |
+
features["idx"] = datasets.Value("int32")
|
| 462 |
+
return datasets.DatasetInfo(
|
| 463 |
+
description=_GLUE_DESCRIPTION,
|
| 464 |
+
features=datasets.Features(features),
|
| 465 |
+
homepage=self.config.url,
|
| 466 |
+
citation=self.config.citation + "\n" + _GLUE_CITATION,
|
| 467 |
+
)
|
| 468 |
+
|
| 469 |
+
def _split_generators(self, dl_manager):
|
| 470 |
+
if self.config.name == "ax":
|
| 471 |
+
data_file = dl_manager.download(self.config.data_url)
|
| 472 |
+
return [
|
| 473 |
+
datasets.SplitGenerator(
|
| 474 |
+
name=datasets.Split.TEST,
|
| 475 |
+
gen_kwargs={
|
| 476 |
+
"data_file": data_file,
|
| 477 |
+
"split": "test",
|
| 478 |
+
},
|
| 479 |
+
)
|
| 480 |
+
]
|
| 481 |
+
|
| 482 |
+
if self.config.name == "mrpc":
|
| 483 |
+
data_dir = None
|
| 484 |
+
mrpc_files = dl_manager.download(
|
| 485 |
+
{
|
| 486 |
+
"dev_ids": _MRPC_DEV_IDS,
|
| 487 |
+
"train": _MRPC_TRAIN,
|
| 488 |
+
"test": _MRPC_TEST,
|
| 489 |
+
}
|
| 490 |
+
)
|
| 491 |
+
else:
|
| 492 |
+
dl_dir = dl_manager.download_and_extract(self.config.data_url)
|
| 493 |
+
data_dir = os.path.join(dl_dir, self.config.data_dir)
|
| 494 |
+
mrpc_files = None
|
| 495 |
+
train_split = datasets.SplitGenerator(
|
| 496 |
+
name=datasets.Split.TRAIN,
|
| 497 |
+
gen_kwargs={
|
| 498 |
+
"data_file": os.path.join(data_dir or "", "train.tsv"),
|
| 499 |
+
"split": "train",
|
| 500 |
+
"mrpc_files": mrpc_files,
|
| 501 |
+
},
|
| 502 |
+
)
|
| 503 |
+
if self.config.name == "mnli":
|
| 504 |
+
return [
|
| 505 |
+
train_split,
|
| 506 |
+
_mnli_split_generator("validation_matched", data_dir, "dev", matched=True),
|
| 507 |
+
_mnli_split_generator("validation_mismatched", data_dir, "dev", matched=False),
|
| 508 |
+
_mnli_split_generator("test_matched", data_dir, "test", matched=True),
|
| 509 |
+
_mnli_split_generator("test_mismatched", data_dir, "test", matched=False),
|
| 510 |
+
]
|
| 511 |
+
elif self.config.name == "mnli_matched":
|
| 512 |
+
return [
|
| 513 |
+
_mnli_split_generator("validation", data_dir, "dev", matched=True),
|
| 514 |
+
_mnli_split_generator("test", data_dir, "test", matched=True),
|
| 515 |
+
]
|
| 516 |
+
elif self.config.name == "mnli_mismatched":
|
| 517 |
+
return [
|
| 518 |
+
_mnli_split_generator("validation", data_dir, "dev", matched=False),
|
| 519 |
+
_mnli_split_generator("test", data_dir, "test", matched=False),
|
| 520 |
+
]
|
| 521 |
+
else:
|
| 522 |
+
return [
|
| 523 |
+
train_split,
|
| 524 |
+
datasets.SplitGenerator(
|
| 525 |
+
name=datasets.Split.VALIDATION,
|
| 526 |
+
gen_kwargs={
|
| 527 |
+
"data_file": os.path.join(data_dir or "", "dev.tsv"),
|
| 528 |
+
"split": "dev",
|
| 529 |
+
"mrpc_files": mrpc_files,
|
| 530 |
+
},
|
| 531 |
+
),
|
| 532 |
+
datasets.SplitGenerator(
|
| 533 |
+
name=datasets.Split.TEST,
|
| 534 |
+
gen_kwargs={
|
| 535 |
+
"data_file": os.path.join(data_dir or "", "test.tsv"),
|
| 536 |
+
"split": "test",
|
| 537 |
+
"mrpc_files": mrpc_files,
|
| 538 |
+
},
|
| 539 |
+
),
|
| 540 |
+
]
|
| 541 |
+
|
| 542 |
+
def _generate_examples(self, data_file, split, mrpc_files=None):
|
| 543 |
+
if self.config.name == "mrpc":
|
| 544 |
+
# We have to prepare the MRPC dataset from the original sources ourselves.
|
| 545 |
+
examples = self._generate_example_mrpc_files(mrpc_files=mrpc_files, split=split)
|
| 546 |
+
for example in examples:
|
| 547 |
+
yield example["idx"], example
|
| 548 |
+
else:
|
| 549 |
+
process_label = self.config.process_label
|
| 550 |
+
label_classes = self.config.label_classes
|
| 551 |
+
|
| 552 |
+
# The train and dev files for CoLA are the only tsv files without a
|
| 553 |
+
# header.
|
| 554 |
+
is_cola_non_test = self.config.name == "cola" and split != "test"
|
| 555 |
+
|
| 556 |
+
with open(data_file, encoding="utf8") as f:
|
| 557 |
+
reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
| 558 |
+
if is_cola_non_test:
|
| 559 |
+
reader = csv.reader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
| 560 |
+
|
| 561 |
+
for n, row in enumerate(reader):
|
| 562 |
+
if is_cola_non_test:
|
| 563 |
+
row = {
|
| 564 |
+
"sentence": row[3],
|
| 565 |
+
"is_acceptable": row[1],
|
| 566 |
+
}
|
| 567 |
+
|
| 568 |
+
example = {feat: row[col] for feat, col in six.iteritems(self.config.text_features)}
|
| 569 |
+
example["idx"] = n
|
| 570 |
+
|
| 571 |
+
if self.config.label_column in row:
|
| 572 |
+
label = row[self.config.label_column]
|
| 573 |
+
# For some tasks, the label is represented as 0 and 1 in the tsv
|
| 574 |
+
# files and needs to be cast to integer to work with the feature.
|
| 575 |
+
if label_classes and label not in label_classes:
|
| 576 |
+
label = int(label) if label else None
|
| 577 |
+
example["label"] = process_label(label)
|
| 578 |
+
else:
|
| 579 |
+
example["label"] = process_label(-1)
|
| 580 |
+
|
| 581 |
+
# Filter out corrupted rows.
|
| 582 |
+
for value in six.itervalues(example):
|
| 583 |
+
if value is None:
|
| 584 |
+
break
|
| 585 |
+
else:
|
| 586 |
+
yield example["idx"], example
|
| 587 |
+
|
| 588 |
+
def _generate_example_mrpc_files(self, mrpc_files, split):
|
| 589 |
+
if split == "test":
|
| 590 |
+
with open(mrpc_files["test"], encoding="utf8") as f:
|
| 591 |
+
reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
| 592 |
+
for n, row in enumerate(reader):
|
| 593 |
+
yield {
|
| 594 |
+
"sentence1": row["#1 String"],
|
| 595 |
+
"sentence2": row["#2 String"],
|
| 596 |
+
"label": -1,
|
| 597 |
+
"idx": n,
|
| 598 |
+
}
|
| 599 |
+
else:
|
| 600 |
+
with open(mrpc_files["dev_ids"], encoding="utf8") as f:
|
| 601 |
+
reader = csv.reader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
| 602 |
+
dev_ids = [[row[0], row[1]] for row in reader]
|
| 603 |
+
with open(mrpc_files["train"], encoding="utf8") as f:
|
| 604 |
+
# The first 3 bytes are the utf-8 BOM \xef\xbb\xbf, which messes with
|
| 605 |
+
# the Quality key.
|
| 606 |
+
f.seek(3)
|
| 607 |
+
reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
| 608 |
+
for n, row in enumerate(reader):
|
| 609 |
+
is_row_in_dev = [row["#1 ID"], row["#2 ID"]] in dev_ids
|
| 610 |
+
if is_row_in_dev == (split == "dev"):
|
| 611 |
+
yield {
|
| 612 |
+
"sentence1": row["#1 String"],
|
| 613 |
+
"sentence2": row["#2 String"],
|
| 614 |
+
"label": int(row["Quality"]),
|
| 615 |
+
"idx": n,
|
| 616 |
+
}
|
| 617 |
+
|
| 618 |
+
|
| 619 |
+
def _mnli_split_generator(name, data_dir, split, matched):
|
| 620 |
+
return datasets.SplitGenerator(
|
| 621 |
+
name=name,
|
| 622 |
+
gen_kwargs={
|
| 623 |
+
"data_file": os.path.join(data_dir, "%s_%s.tsv" % (split, "matched" if matched else "mismatched")),
|
| 624 |
+
"split": split,
|
| 625 |
+
"mrpc_files": None,
|
| 626 |
+
},
|
| 627 |
+
)
|