Datasets:

Modalities:
Image
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 2,972 Bytes
58d1f3d
41bd6a9
58d1f3d
 
 
6bc33fa
58d1f3d
c9babb9
 
 
 
 
 
 
 
 
 
 
 
 
58d1f3d
6bc33fa
 
 
 
 
 
 
 
 
 
 
 
 
58d1f3d
 
6bc33fa
58d1f3d
c9babb9
6bc33fa
58d1f3d
 
 
 
 
 
f4c770f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70edb3c
bf9010b
70edb3c
 
3fa5fdb
70edb3c
 
3fa5fdb
 
 
 
 
 
 
70edb3c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
---
license: mit
dataset_info:
  features:
  - name: images
    dtype: image
  - name: ord_labels
    dtype:
      class_label:
        names:
          '0': airplane
          '1': automobile
          '2': bird
          '3': cat
          '4': deer
          '5': dog
          '6': frog
          '7': horse
          '8': ship
          '9': truck
  - name: cl_labels
    sequence:
      class_label:
        names:
          '0': airplane
          '1': automobile
          '2': bird
          '3': cat
          '4': deer
          '5': dog
          '6': frog
          '7': horse
          '8': ship
          '9': truck
  splits:
  - name: train
    num_bytes: 115048310.0
    num_examples: 50000
  download_size: 117804187
  dataset_size: 115048310.0
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
---
## Dataset Card for CLCIFAR10

This Complementary labeled CIFAR10 dataset contains 3 human-annotated complementary labels for all 50000 images in the training split of CIFAR10. The workers are from [Amazon Mechanical Turk]([https://www.mturk.com](https://www.mturk.com/)). We randomly sampled 4 different labels for 3 different annotators, so each image would have 3 (probably repeated) complementary labels.

For more details, please visit our [github](https://github.com/ntucllab/CLImage_Dataset) or [paper](https://arxiv.org/abs/2305.08295).

### Dataset Structure

#### Data Instances

A sample from the training set is provided below:

```
{
	'images': <PIL.PngImagePlugin.PngImageFile image mode=RGB size=32x32 at 0x799538D3D5A0>, 
	'ord_labels': 6, 
	'cl_labels': [3, 9, 6]
}
```

#### Data Fields

- `images`: A `PIL.Image.Image` object containing the 32x32 image.

- `ord_labels`: The ordinary labels of the images, and they are labeled from 0 to 9 as follows:

  0: airplane 1: automobile 2: bird 3: cat 4: deer 5: dog 6: frog 7: horse 8: ship 9: truck

- `cl_labels`: Three complementary labels for each image from three different workers.

## Annotation Task Design and Deployment on Amazon MTurk

To collect human-annotated labels, we used Amazon Mechanical Turk (MTurk) to deploy our annotation task. The layout and interface design for the MTurk task can be found in the file `design-layout-mturk.html`.

In each task, a single image was enlarged to 200 x 200 for clarity and presented alongside the question: `Choose any one "incorrect" label for this image`? Annotators were given four example labels to choose from (e.g., `dog, cat, ship, bird`), and were instructed to select the one that does not correctly describe the image.

## Citing

If you find this dataset useful, please cite the following:

```
@article{
  wang2024climage,
  title={{CLI}mage: Human-Annotated Datasets for Complementary-Label Learning},
  author={Hsiu-Hsuan Wang and Mai Tan Ha and Nai-Xuan Ye and Wei-I Lin and Hsuan-Tien Lin},
  journal={Transactions on Machine Learning Research},
  issn={2835-8856},
  year={2025}
}
```