nnilayy commited on
Commit
98e3dcc
·
verified ·
1 Parent(s): 02bd74c

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +4 -0
  2. lib/python3.10/site-packages/attrs-25.3.0.dist-info/INSTALLER +1 -0
  3. lib/python3.10/site-packages/attrs-25.3.0.dist-info/METADATA +232 -0
  4. lib/python3.10/site-packages/attrs-25.3.0.dist-info/RECORD +37 -0
  5. lib/python3.10/site-packages/attrs-25.3.0.dist-info/REQUESTED +0 -0
  6. lib/python3.10/site-packages/attrs-25.3.0.dist-info/WHEEL +4 -0
  7. lib/python3.10/site-packages/attrs-25.3.0.dist-info/licenses/LICENSE +21 -0
  8. lib/python3.10/site-packages/babel/locale-data/ccp.dat +3 -0
  9. lib/python3.10/site-packages/babel/locale-data/mn.dat +3 -0
  10. lib/python3.10/site-packages/babel/locale-data/ro.dat +3 -0
  11. lib/python3.10/site-packages/babel/locale-data/tg.dat +3 -0
  12. lib/python3.10/site-packages/csvw-3.5.1.dist-info/INSTALLER +1 -0
  13. lib/python3.10/site-packages/csvw-3.5.1.dist-info/RECORD +24 -0
  14. lib/python3.10/site-packages/csvw-3.5.1.dist-info/REQUESTED +0 -0
  15. lib/python3.10/site-packages/csvw-3.5.1.dist-info/WHEEL +6 -0
  16. lib/python3.10/site-packages/csvw-3.5.1.dist-info/entry_points.txt +7 -0
  17. lib/python3.10/site-packages/onnx-1.17.0.dist-info/LICENSE +202 -0
  18. lib/python3.10/site-packages/onnx-1.17.0.dist-info/METADATA +350 -0
  19. lib/python3.10/site-packages/onnx-1.17.0.dist-info/RECORD +0 -0
  20. lib/python3.10/site-packages/onnx-1.17.0.dist-info/WHEEL +6 -0
  21. lib/python3.10/site-packages/onnx-1.17.0.dist-info/top_level.txt +1 -0
  22. lib/python3.10/site-packages/parameterized/__init__.py +3 -0
  23. lib/python3.10/site-packages/parameterized/parameterized.py +732 -0
  24. lib/python3.10/site-packages/parameterized/test.py +695 -0
  25. lib/python3.10/site-packages/torch/_C.cpython-310-x86_64-linux-gnu.so +0 -0
  26. lib/python3.10/site-packages/torch/_VF.py +31 -0
  27. lib/python3.10/site-packages/torch/_VF.pyi +0 -0
  28. lib/python3.10/site-packages/torch/__config__.py +23 -0
  29. lib/python3.10/site-packages/torch/__future__.py +75 -0
  30. lib/python3.10/site-packages/torch/__init__.py +0 -0
  31. lib/python3.10/site-packages/torch/_appdirs.py +667 -0
  32. lib/python3.10/site-packages/torch/_classes.py +56 -0
  33. lib/python3.10/site-packages/torch/_compile.py +38 -0
  34. lib/python3.10/site-packages/torch/_custom_ops.py +324 -0
  35. lib/python3.10/site-packages/torch/_deploy.py +104 -0
  36. lib/python3.10/site-packages/torch/_environment.py +2 -0
  37. lib/python3.10/site-packages/torch/_linalg_utils.py +150 -0
  38. lib/python3.10/site-packages/torch/_namedtensor_internals.py +159 -0
  39. lib/python3.10/site-packages/torch/_ops.py +1362 -0
  40. lib/python3.10/site-packages/torch/_python_dispatcher.py +182 -0
  41. lib/python3.10/site-packages/torch/_size_docs.py +39 -0
  42. lib/python3.10/site-packages/torch/_streambase.py +20 -0
  43. lib/python3.10/site-packages/torch/_tensor.py +1775 -0
  44. lib/python3.10/site-packages/torch/_tensor_docs.py +0 -0
  45. lib/python3.10/site-packages/torch/_tensor_str.py +704 -0
  46. lib/python3.10/site-packages/torch/_torch_docs.py +0 -0
  47. lib/python3.10/site-packages/torch/_utils.py +1056 -0
  48. lib/python3.10/site-packages/torch/_utils_internal.py +274 -0
  49. lib/python3.10/site-packages/torch/_vmap_internals.py +245 -0
  50. lib/python3.10/site-packages/torch/_weights_only_unpickler.py +553 -0
.gitattributes CHANGED
@@ -140,3 +140,7 @@ lib/python3.10/site-packages/babel/locale-data/to.dat filter=lfs diff=lfs merge=
140
  lib/python3.10/site-packages/babel/locale-data/yrl.dat filter=lfs diff=lfs merge=lfs -text
141
  lib/python3.10/site-packages/babel/locale-data/yo.dat filter=lfs diff=lfs merge=lfs -text
142
  lib/python3.10/site-packages/babel/locale-data/uk.dat filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
140
  lib/python3.10/site-packages/babel/locale-data/yrl.dat filter=lfs diff=lfs merge=lfs -text
141
  lib/python3.10/site-packages/babel/locale-data/yo.dat filter=lfs diff=lfs merge=lfs -text
142
  lib/python3.10/site-packages/babel/locale-data/uk.dat filter=lfs diff=lfs merge=lfs -text
143
+ lib/python3.10/site-packages/babel/locale-data/ccp.dat filter=lfs diff=lfs merge=lfs -text
144
+ lib/python3.10/site-packages/babel/locale-data/ro.dat filter=lfs diff=lfs merge=lfs -text
145
+ lib/python3.10/site-packages/babel/locale-data/tg.dat filter=lfs diff=lfs merge=lfs -text
146
+ lib/python3.10/site-packages/babel/locale-data/mn.dat filter=lfs diff=lfs merge=lfs -text
lib/python3.10/site-packages/attrs-25.3.0.dist-info/INSTALLER ADDED
@@ -0,0 +1 @@
 
 
1
+ uv
lib/python3.10/site-packages/attrs-25.3.0.dist-info/METADATA ADDED
@@ -0,0 +1,232 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Metadata-Version: 2.4
2
+ Name: attrs
3
+ Version: 25.3.0
4
+ Summary: Classes Without Boilerplate
5
+ Project-URL: Documentation, https://www.attrs.org/
6
+ Project-URL: Changelog, https://www.attrs.org/en/stable/changelog.html
7
+ Project-URL: GitHub, https://github.com/python-attrs/attrs
8
+ Project-URL: Funding, https://github.com/sponsors/hynek
9
+ Project-URL: Tidelift, https://tidelift.com/subscription/pkg/pypi-attrs?utm_source=pypi-attrs&utm_medium=pypi
10
+ Author-email: Hynek Schlawack <[email protected]>
11
+ License-Expression: MIT
12
+ License-File: LICENSE
13
+ Keywords: attribute,boilerplate,class
14
+ Classifier: Development Status :: 5 - Production/Stable
15
+ Classifier: Programming Language :: Python :: 3.8
16
+ Classifier: Programming Language :: Python :: 3.9
17
+ Classifier: Programming Language :: Python :: 3.10
18
+ Classifier: Programming Language :: Python :: 3.11
19
+ Classifier: Programming Language :: Python :: 3.12
20
+ Classifier: Programming Language :: Python :: 3.13
21
+ Classifier: Programming Language :: Python :: Implementation :: CPython
22
+ Classifier: Programming Language :: Python :: Implementation :: PyPy
23
+ Classifier: Typing :: Typed
24
+ Requires-Python: >=3.8
25
+ Provides-Extra: benchmark
26
+ Requires-Dist: cloudpickle; (platform_python_implementation == 'CPython') and extra == 'benchmark'
27
+ Requires-Dist: hypothesis; extra == 'benchmark'
28
+ Requires-Dist: mypy>=1.11.1; (platform_python_implementation == 'CPython' and python_version >= '3.10') and extra == 'benchmark'
29
+ Requires-Dist: pympler; extra == 'benchmark'
30
+ Requires-Dist: pytest-codspeed; extra == 'benchmark'
31
+ Requires-Dist: pytest-mypy-plugins; (platform_python_implementation == 'CPython' and python_version >= '3.10') and extra == 'benchmark'
32
+ Requires-Dist: pytest-xdist[psutil]; extra == 'benchmark'
33
+ Requires-Dist: pytest>=4.3.0; extra == 'benchmark'
34
+ Provides-Extra: cov
35
+ Requires-Dist: cloudpickle; (platform_python_implementation == 'CPython') and extra == 'cov'
36
+ Requires-Dist: coverage[toml]>=5.3; extra == 'cov'
37
+ Requires-Dist: hypothesis; extra == 'cov'
38
+ Requires-Dist: mypy>=1.11.1; (platform_python_implementation == 'CPython' and python_version >= '3.10') and extra == 'cov'
39
+ Requires-Dist: pympler; extra == 'cov'
40
+ Requires-Dist: pytest-mypy-plugins; (platform_python_implementation == 'CPython' and python_version >= '3.10') and extra == 'cov'
41
+ Requires-Dist: pytest-xdist[psutil]; extra == 'cov'
42
+ Requires-Dist: pytest>=4.3.0; extra == 'cov'
43
+ Provides-Extra: dev
44
+ Requires-Dist: cloudpickle; (platform_python_implementation == 'CPython') and extra == 'dev'
45
+ Requires-Dist: hypothesis; extra == 'dev'
46
+ Requires-Dist: mypy>=1.11.1; (platform_python_implementation == 'CPython' and python_version >= '3.10') and extra == 'dev'
47
+ Requires-Dist: pre-commit-uv; extra == 'dev'
48
+ Requires-Dist: pympler; extra == 'dev'
49
+ Requires-Dist: pytest-mypy-plugins; (platform_python_implementation == 'CPython' and python_version >= '3.10') and extra == 'dev'
50
+ Requires-Dist: pytest-xdist[psutil]; extra == 'dev'
51
+ Requires-Dist: pytest>=4.3.0; extra == 'dev'
52
+ Provides-Extra: docs
53
+ Requires-Dist: cogapp; extra == 'docs'
54
+ Requires-Dist: furo; extra == 'docs'
55
+ Requires-Dist: myst-parser; extra == 'docs'
56
+ Requires-Dist: sphinx; extra == 'docs'
57
+ Requires-Dist: sphinx-notfound-page; extra == 'docs'
58
+ Requires-Dist: sphinxcontrib-towncrier; extra == 'docs'
59
+ Requires-Dist: towncrier; extra == 'docs'
60
+ Provides-Extra: tests
61
+ Requires-Dist: cloudpickle; (platform_python_implementation == 'CPython') and extra == 'tests'
62
+ Requires-Dist: hypothesis; extra == 'tests'
63
+ Requires-Dist: mypy>=1.11.1; (platform_python_implementation == 'CPython' and python_version >= '3.10') and extra == 'tests'
64
+ Requires-Dist: pympler; extra == 'tests'
65
+ Requires-Dist: pytest-mypy-plugins; (platform_python_implementation == 'CPython' and python_version >= '3.10') and extra == 'tests'
66
+ Requires-Dist: pytest-xdist[psutil]; extra == 'tests'
67
+ Requires-Dist: pytest>=4.3.0; extra == 'tests'
68
+ Provides-Extra: tests-mypy
69
+ Requires-Dist: mypy>=1.11.1; (platform_python_implementation == 'CPython' and python_version >= '3.10') and extra == 'tests-mypy'
70
+ Requires-Dist: pytest-mypy-plugins; (platform_python_implementation == 'CPython' and python_version >= '3.10') and extra == 'tests-mypy'
71
+ Description-Content-Type: text/markdown
72
+
73
+ <p align="center">
74
+ <a href="https://www.attrs.org/">
75
+ <img src="https://raw.githubusercontent.com/python-attrs/attrs/main/docs/_static/attrs_logo.svg" width="35%" alt="attrs" />
76
+ </a>
77
+ </p>
78
+
79
+
80
+ *attrs* is the Python package that will bring back the **joy** of **writing classes** by relieving you from the drudgery of implementing object protocols (aka [dunder methods](https://www.attrs.org/en/latest/glossary.html#term-dunder-methods)).
81
+ [Trusted by NASA](https://docs.github.com/en/account-and-profile/setting-up-and-managing-your-github-profile/customizing-your-profile/personalizing-your-profile#list-of-qualifying-repositories-for-mars-2020-helicopter-contributor-achievement) for Mars missions since 2020!
82
+
83
+ Its main goal is to help you to write **concise** and **correct** software without slowing down your code.
84
+
85
+
86
+ ## Sponsors
87
+
88
+ *attrs* would not be possible without our [amazing sponsors](https://github.com/sponsors/hynek).
89
+ Especially those generously supporting us at the *The Organization* tier and higher:
90
+
91
+ <!-- sponsor-break-begin -->
92
+
93
+ <p align="center">
94
+
95
+ <!-- [[[cog
96
+ import pathlib, tomllib
97
+
98
+ for sponsor in tomllib.loads(pathlib.Path("pyproject.toml").read_text())["tool"]["sponcon"]["sponsors"]:
99
+ print(f'<a href="{sponsor["url"]}"><img title="{sponsor["title"]}" src="https://www.attrs.org/en/25.3.0/_static/sponsors/{sponsor["img"]}" width="190" /></a>')
100
+ ]]] -->
101
+ <a href="https://www.variomedia.de/"><img title="Variomedia AG" src="https://www.attrs.org/en/25.3.0/_static/sponsors/Variomedia.svg" width="190" /></a>
102
+ <a href="https://tidelift.com/?utm_source=lifter&utm_medium=referral&utm_campaign=hynek"><img title="Tidelift" src="https://www.attrs.org/en/25.3.0/_static/sponsors/Tidelift.svg" width="190" /></a>
103
+ <a href="https://klaviyo.com/"><img title="Klaviyo" src="https://www.attrs.org/en/25.3.0/_static/sponsors/Klaviyo.svg" width="190" /></a>
104
+ <a href="https://privacy-solutions.org/"><img title="Privacy Solutions" src="https://www.attrs.org/en/25.3.0/_static/sponsors/Privacy-Solutions.svg" width="190" /></a>
105
+ <a href="https://www.emsys-renewables.com/"><img title="emsys renewables" src="https://www.attrs.org/en/25.3.0/_static/sponsors/emsys-renewables.svg" width="190" /></a>
106
+ <a href="https://filepreviews.io/"><img title="FilePreviews" src="https://www.attrs.org/en/25.3.0/_static/sponsors/FilePreviews.svg" width="190" /></a>
107
+ <a href="https://polar.sh/"><img title="Polar" src="https://www.attrs.org/en/25.3.0/_static/sponsors/Polar.svg" width="190" /></a>
108
+ <!-- [[[end]]] -->
109
+
110
+ </p>
111
+
112
+ <!-- sponsor-break-end -->
113
+
114
+ <p align="center">
115
+ <strong>Please consider <a href="https://github.com/sponsors/hynek">joining them</a> to help make <em>attrs</em>’s maintenance more sustainable!</strong>
116
+ </p>
117
+
118
+ <!-- teaser-end -->
119
+
120
+ ## Example
121
+
122
+ *attrs* gives you a class decorator and a way to declaratively define the attributes on that class:
123
+
124
+ <!-- code-begin -->
125
+
126
+ ```pycon
127
+ >>> from attrs import asdict, define, make_class, Factory
128
+
129
+ >>> @define
130
+ ... class SomeClass:
131
+ ... a_number: int = 42
132
+ ... list_of_numbers: list[int] = Factory(list)
133
+ ...
134
+ ... def hard_math(self, another_number):
135
+ ... return self.a_number + sum(self.list_of_numbers) * another_number
136
+
137
+
138
+ >>> sc = SomeClass(1, [1, 2, 3])
139
+ >>> sc
140
+ SomeClass(a_number=1, list_of_numbers=[1, 2, 3])
141
+
142
+ >>> sc.hard_math(3)
143
+ 19
144
+ >>> sc == SomeClass(1, [1, 2, 3])
145
+ True
146
+ >>> sc != SomeClass(2, [3, 2, 1])
147
+ True
148
+
149
+ >>> asdict(sc)
150
+ {'a_number': 1, 'list_of_numbers': [1, 2, 3]}
151
+
152
+ >>> SomeClass()
153
+ SomeClass(a_number=42, list_of_numbers=[])
154
+
155
+ >>> C = make_class("C", ["a", "b"])
156
+ >>> C("foo", "bar")
157
+ C(a='foo', b='bar')
158
+ ```
159
+
160
+ After *declaring* your attributes, *attrs* gives you:
161
+
162
+ - a concise and explicit overview of the class's attributes,
163
+ - a nice human-readable `__repr__`,
164
+ - equality-checking methods,
165
+ - an initializer,
166
+ - and much more,
167
+
168
+ *without* writing dull boilerplate code again and again and *without* runtime performance penalties.
169
+
170
+ ---
171
+
172
+ This example uses *attrs*'s modern APIs that have been introduced in version 20.1.0, and the *attrs* package import name that has been added in version 21.3.0.
173
+ The classic APIs (`@attr.s`, `attr.ib`, plus their serious-business aliases) and the `attr` package import name will remain **indefinitely**.
174
+
175
+ Check out [*On The Core API Names*](https://www.attrs.org/en/latest/names.html) for an in-depth explanation!
176
+
177
+
178
+ ### Hate Type Annotations!?
179
+
180
+ No problem!
181
+ Types are entirely **optional** with *attrs*.
182
+ Simply assign `attrs.field()` to the attributes instead of annotating them with types:
183
+
184
+ ```python
185
+ from attrs import define, field
186
+
187
+ @define
188
+ class SomeClass:
189
+ a_number = field(default=42)
190
+ list_of_numbers = field(factory=list)
191
+ ```
192
+
193
+
194
+ ## Data Classes
195
+
196
+ On the tin, *attrs* might remind you of `dataclasses` (and indeed, `dataclasses` [are a descendant](https://hynek.me/articles/import-attrs/) of *attrs*).
197
+ In practice it does a lot more and is more flexible.
198
+ For instance, it allows you to define [special handling of NumPy arrays for equality checks](https://www.attrs.org/en/stable/comparison.html#customization), allows more ways to [plug into the initialization process](https://www.attrs.org/en/stable/init.html#hooking-yourself-into-initialization), has a replacement for `__init_subclass__`, and allows for stepping through the generated methods using a debugger.
199
+
200
+ For more details, please refer to our [comparison page](https://www.attrs.org/en/stable/why.html#data-classes), but generally speaking, we are more likely to commit crimes against nature to make things work that one would expect to work, but that are quite complicated in practice.
201
+
202
+
203
+ ## Project Information
204
+
205
+ - [**Changelog**](https://www.attrs.org/en/stable/changelog.html)
206
+ - [**Documentation**](https://www.attrs.org/)
207
+ - [**PyPI**](https://pypi.org/project/attrs/)
208
+ - [**Source Code**](https://github.com/python-attrs/attrs)
209
+ - [**Contributing**](https://github.com/python-attrs/attrs/blob/main/.github/CONTRIBUTING.md)
210
+ - [**Third-party Extensions**](https://github.com/python-attrs/attrs/wiki/Extensions-to-attrs)
211
+ - **Get Help**: use the `python-attrs` tag on [Stack Overflow](https://stackoverflow.com/questions/tagged/python-attrs)
212
+
213
+
214
+ ### *attrs* for Enterprise
215
+
216
+ Available as part of the [Tidelift Subscription](https://tidelift.com/?utm_source=lifter&utm_medium=referral&utm_campaign=hynek).
217
+
218
+ The maintainers of *attrs* and thousands of other packages are working with Tidelift to deliver commercial support and maintenance for the open source packages you use to build your applications.
219
+ Save time, reduce risk, and improve code health, while paying the maintainers of the exact packages you use.
220
+
221
+ ## Release Information
222
+
223
+ ### Changes
224
+
225
+ - Restore support for generator-based `field_transformer`s.
226
+ [#1417](https://github.com/python-attrs/attrs/issues/1417)
227
+
228
+
229
+
230
+ ---
231
+
232
+ [Full changelog →](https://www.attrs.org/en/stable/changelog.html)
lib/python3.10/site-packages/attrs-25.3.0.dist-info/RECORD ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ attr/__init__.py,sha256=fOYIvt1eGSqQre4uCS3sJWKZ0mwAuC8UD6qba5OS9_U,2057
2
+ attr/__init__.pyi,sha256=QIXnnHPoucmDWkbpNsWTP-cgJ1bn8le7DjyRa_wYdew,11281
3
+ attr/_cmp.py,sha256=3Nn1TjxllUYiX_nJoVnEkXoDk0hM1DYKj5DE7GZe4i0,4117
4
+ attr/_cmp.pyi,sha256=U-_RU_UZOyPUEQzXE6RMYQQcjkZRY25wTH99sN0s7MM,368
5
+ attr/_compat.py,sha256=4hlXbWhdDjQCDK6FKF1EgnZ3POiHgtpp54qE0nxaGHg,2704
6
+ attr/_config.py,sha256=dGq3xR6fgZEF6UBt_L0T-eUHIB4i43kRmH0P28sJVw8,843
7
+ attr/_funcs.py,sha256=5-tUKJtp3h5El55EcDl6GWXFp68fT8D8U7uCRN6497I,15854
8
+ attr/_make.py,sha256=lBUPPmxiA1BeHzB6OlHoCEh--tVvM1ozXO8eXOa6g4c,96664
9
+ attr/_next_gen.py,sha256=7FRkbtl_N017SuBhf_Vw3mw2c2pGZhtCGOzadgz7tp4,24395
10
+ attr/_typing_compat.pyi,sha256=XDP54TUn-ZKhD62TOQebmzrwFyomhUCoGRpclb6alRA,469
11
+ attr/_version_info.py,sha256=exSqb3b5E-fMSsgZAlEw9XcLpEgobPORCZpcaEglAM4,2121
12
+ attr/_version_info.pyi,sha256=x_M3L3WuB7r_ULXAWjx959udKQ4HLB8l-hsc1FDGNvk,209
13
+ attr/converters.py,sha256=GlDeOzPeTFgeBBLbj9G57Ez5lAk68uhSALRYJ_exe84,3861
14
+ attr/converters.pyi,sha256=orU2bff-VjQa2kMDyvnMQV73oJT2WRyQuw4ZR1ym1bE,643
15
+ attr/exceptions.py,sha256=HRFq4iybmv7-DcZwyjl6M1euM2YeJVK_hFxuaBGAngI,1977
16
+ attr/exceptions.pyi,sha256=zZq8bCUnKAy9mDtBEw42ZhPhAUIHoTKedDQInJD883M,539
17
+ attr/filters.py,sha256=ZBiKWLp3R0LfCZsq7X11pn9WX8NslS2wXM4jsnLOGc8,1795
18
+ attr/filters.pyi,sha256=3J5BG-dTxltBk1_-RuNRUHrv2qu1v8v4aDNAQ7_mifA,208
19
+ attr/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
20
+ attr/setters.py,sha256=5-dcT63GQK35ONEzSgfXCkbB7pPkaR-qv15mm4PVSzQ,1617
21
+ attr/setters.pyi,sha256=NnVkaFU1BB4JB8E4JuXyrzTUgvtMpj8p3wBdJY7uix4,584
22
+ attr/validators.py,sha256=WaB1HLAHHqRHWsrv_K9H-sJ7ESil3H3Cmv2d8TtVZx4,20046
23
+ attr/validators.pyi,sha256=s2WhKPqskxbsckJfKk8zOuuB088GfgpyxcCYSNFLqNU,2603
24
+ attrs-25.3.0.dist-info/INSTALLER,sha256=5hhM4Q4mYTT9z6QB6PGpUAW81PGNFrYrdXMj4oM_6ak,2
25
+ attrs-25.3.0.dist-info/METADATA,sha256=W38cREj7s1wqNf1fg4hVwZmL1xh0AdSp4IhtTMROinw,10993
26
+ attrs-25.3.0.dist-info/RECORD,,
27
+ attrs-25.3.0.dist-info/REQUESTED,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
28
+ attrs-25.3.0.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
29
+ attrs-25.3.0.dist-info/licenses/LICENSE,sha256=iCEVyV38KvHutnFPjsbVy8q_Znyv-HKfQkINpj9xTp8,1109
30
+ attrs/__init__.py,sha256=qeQJZ4O08yczSn840v9bYOaZyRE81WsVi-QCrY3krCU,1107
31
+ attrs/__init__.pyi,sha256=nZmInocjM7tHV4AQw0vxO_fo6oJjL_PonlV9zKKW8DY,7931
32
+ attrs/converters.py,sha256=8kQljrVwfSTRu8INwEk8SI0eGrzmWftsT7rM0EqyohM,76
33
+ attrs/exceptions.py,sha256=ACCCmg19-vDFaDPY9vFl199SPXCQMN_bENs4DALjzms,76
34
+ attrs/filters.py,sha256=VOUMZug9uEU6dUuA0dF1jInUK0PL3fLgP0VBS5d-CDE,73
35
+ attrs/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
36
+ attrs/setters.py,sha256=eL1YidYQV3T2h9_SYIZSZR1FAcHGb1TuCTy0E0Lv2SU,73
37
+ attrs/validators.py,sha256=xcy6wD5TtTkdCG1f4XWbocPSO0faBjk5IfVJfP6SUj0,76
lib/python3.10/site-packages/attrs-25.3.0.dist-info/REQUESTED ADDED
File without changes
lib/python3.10/site-packages/attrs-25.3.0.dist-info/WHEEL ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ Wheel-Version: 1.0
2
+ Generator: hatchling 1.27.0
3
+ Root-Is-Purelib: true
4
+ Tag: py3-none-any
lib/python3.10/site-packages/attrs-25.3.0.dist-info/licenses/LICENSE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ The MIT License (MIT)
2
+
3
+ Copyright (c) 2015 Hynek Schlawack and the attrs contributors
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
lib/python3.10/site-packages/babel/locale-data/ccp.dat ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:267fcee4cc0de83306c4dad752976b853ff3e59398877f929b9c8651c57c6c82
3
+ size 207292
lib/python3.10/site-packages/babel/locale-data/mn.dat ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3b7a12a670dddcfb7e751af0760d6fdb8e52e88ca6dd2067659de0a8e8505b90
3
+ size 183647
lib/python3.10/site-packages/babel/locale-data/ro.dat ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d7752947aea3fa7420e246e0187e236baca00ead64dc2084af290459e786f326
3
+ size 200714
lib/python3.10/site-packages/babel/locale-data/tg.dat ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:12b32fd18e121a7a3d8134896e13152995e249efca3525056a805e20368ff2d9
3
+ size 117163
lib/python3.10/site-packages/csvw-3.5.1.dist-info/INSTALLER ADDED
@@ -0,0 +1 @@
 
 
1
+ uv
lib/python3.10/site-packages/csvw-3.5.1.dist-info/RECORD ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ../../../bin/csvw2datasette,sha256=idn-zDFxQgtqizjVsFqzZN1EMbYENQKi12Xw0QMn-XA,344
2
+ ../../../bin/csvw2json,sha256=AqA3j0EMLtP0vSpSZXb1skG2wrim_ZEY3co30lraHdg,334
3
+ ../../../bin/csvw2markdown,sha256=jsHR8SPiB14K6ukm0x_Lnl3Cj1pM4E5ab6DIsjXFctg,342
4
+ ../../../bin/csvw2sqlite,sha256=WP2TwzIfvvN-KiLHVqbvmKKDzg7s_2jk7v7pqGn3cJE,338
5
+ ../../../bin/csvwdescribe,sha256=kosAokPfV39E5w_C3e0fdiHus6FAv5Aoigj1siG2NJA,340
6
+ ../../../bin/csvwvalidate,sha256=MtOnfL_1X_t88S9OnRmyqGH6EUszXjQC-_bAQeSHUN0,340
7
+ csvw-3.5.1.dist-info/INSTALLER,sha256=5hhM4Q4mYTT9z6QB6PGpUAW81PGNFrYrdXMj4oM_6ak,2
8
+ csvw-3.5.1.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
9
+ csvw-3.5.1.dist-info/METADATA,sha256=khGOskjHlAs3P3SD-ZhmcQnULLZqO2UnFvRF23akSvs,10158
10
+ csvw-3.5.1.dist-info/RECORD,,
11
+ csvw-3.5.1.dist-info/REQUESTED,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
12
+ csvw-3.5.1.dist-info/WHEEL,sha256=TJ49d73sNs10F0aze1W_bTW2P_X7-F4YXOlBqoqA-jY,109
13
+ csvw-3.5.1.dist-info/entry_points.txt,sha256=fk9IQtAGIpAeWAXe3I3xGNozh4ww_7b80c_vD2GFuEI,268
14
+ csvw-3.5.1.dist-info/top_level.txt,sha256=mkl3l5vQaigdnccNcB3IT5J_Puu2Rp5PVYHqoUOh0Vo,5
15
+ csvw/__init__.py,sha256=rvhNNJEynZvUYykkF_Z7-zBS8xeg_3IO1ioj77XRDqA,781
16
+ csvw/__main__.py,sha256=N1Ff8Buz8_xp1Fbw_nNHEcmq_WW2k8SKiLeguQ5_F5Q,5622
17
+ csvw/datatypes.py,sha256=gKWd-WmoDgyoprmUioU3W7nsMu4N52cP1o45HyeJ3QQ,38609
18
+ csvw/db.py,sha256=2iyFhMmioPJwww447wN1S6o1TcpW0Vz5cnR4zAfxwSU,25011
19
+ csvw/dsv.py,sha256=Fy05xY-ffwG41kJHeaaJ-bicoDprKaYH_98ED1YjVFY,15897
20
+ csvw/dsv_dialects.py,sha256=TUVi-gtYXC-OhHQbZZykpvnOfHgghsFKk0wE7jokAaQ,5177
21
+ csvw/frictionless.py,sha256=YuC36bL7Bs3elZ-MIpLBpcNIkKCt49jA0-VqGyNW4-0,8284
22
+ csvw/jsonld.py,sha256=Nw-Vl8HG3gKCrAW5WdDs3wctr18Fc_R_rTSxqGyZqE8,6535
23
+ csvw/metadata.py,sha256=lVE1vNpXRcIxV8e4rcZp5t2ShWMmH6GbcHJrPP6ufEc,71853
24
+ csvw/utils.py,sha256=46wWXpjmpd7esW96MeCPydqCMQoXYxmblalwKmbnzrc,8280
lib/python3.10/site-packages/csvw-3.5.1.dist-info/REQUESTED ADDED
File without changes
lib/python3.10/site-packages/csvw-3.5.1.dist-info/WHEEL ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ Wheel-Version: 1.0
2
+ Generator: setuptools (75.2.0)
3
+ Root-Is-Purelib: true
4
+ Tag: py2-none-any
5
+ Tag: py3-none-any
6
+
lib/python3.10/site-packages/csvw-3.5.1.dist-info/entry_points.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ [console_scripts]
2
+ csvw2datasette = csvw.__main__:csvw2datasette
3
+ csvw2json = csvw.__main__:csvw2json
4
+ csvw2markdown = csvw.__main__:csvw2markdown
5
+ csvw2sqlite = csvw.__main__:csvw2sqlite
6
+ csvwdescribe = csvw.__main__:csvwdescribe
7
+ csvwvalidate = csvw.__main__:csvwvalidate
lib/python3.10/site-packages/onnx-1.17.0.dist-info/LICENSE ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ Apache License
3
+ Version 2.0, January 2004
4
+ http://www.apache.org/licenses/
5
+
6
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
7
+
8
+ 1. Definitions.
9
+
10
+ "License" shall mean the terms and conditions for use, reproduction,
11
+ and distribution as defined by Sections 1 through 9 of this document.
12
+
13
+ "Licensor" shall mean the copyright owner or entity authorized by
14
+ the copyright owner that is granting the License.
15
+
16
+ "Legal Entity" shall mean the union of the acting entity and all
17
+ other entities that control, are controlled by, or are under common
18
+ control with that entity. For the purposes of this definition,
19
+ "control" means (i) the power, direct or indirect, to cause the
20
+ direction or management of such entity, whether by contract or
21
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
22
+ outstanding shares, or (iii) beneficial ownership of such entity.
23
+
24
+ "You" (or "Your") shall mean an individual or Legal Entity
25
+ exercising permissions granted by this License.
26
+
27
+ "Source" form shall mean the preferred form for making modifications,
28
+ including but not limited to software source code, documentation
29
+ source, and configuration files.
30
+
31
+ "Object" form shall mean any form resulting from mechanical
32
+ transformation or translation of a Source form, including but
33
+ not limited to compiled object code, generated documentation,
34
+ and conversions to other media types.
35
+
36
+ "Work" shall mean the work of authorship, whether in Source or
37
+ Object form, made available under the License, as indicated by a
38
+ copyright notice that is included in or attached to the work
39
+ (an example is provided in the Appendix below).
40
+
41
+ "Derivative Works" shall mean any work, whether in Source or Object
42
+ form, that is based on (or derived from) the Work and for which the
43
+ editorial revisions, annotations, elaborations, or other modifications
44
+ represent, as a whole, an original work of authorship. For the purposes
45
+ of this License, Derivative Works shall not include works that remain
46
+ separable from, or merely link (or bind by name) to the interfaces of,
47
+ the Work and Derivative Works thereof.
48
+
49
+ "Contribution" shall mean any work of authorship, including
50
+ the original version of the Work and any modifications or additions
51
+ to that Work or Derivative Works thereof, that is intentionally
52
+ submitted to Licensor for inclusion in the Work by the copyright owner
53
+ or by an individual or Legal Entity authorized to submit on behalf of
54
+ the copyright owner. For the purposes of this definition, "submitted"
55
+ means any form of electronic, verbal, or written communication sent
56
+ to the Licensor or its representatives, including but not limited to
57
+ communication on electronic mailing lists, source code control systems,
58
+ and issue tracking systems that are managed by, or on behalf of, the
59
+ Licensor for the purpose of discussing and improving the Work, but
60
+ excluding communication that is conspicuously marked or otherwise
61
+ designated in writing by the copyright owner as "Not a Contribution."
62
+
63
+ "Contributor" shall mean Licensor and any individual or Legal Entity
64
+ on behalf of whom a Contribution has been received by Licensor and
65
+ subsequently incorporated within the Work.
66
+
67
+ 2. Grant of Copyright License. Subject to the terms and conditions of
68
+ this License, each Contributor hereby grants to You a perpetual,
69
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
70
+ copyright license to reproduce, prepare Derivative Works of,
71
+ publicly display, publicly perform, sublicense, and distribute the
72
+ Work and such Derivative Works in Source or Object form.
73
+
74
+ 3. Grant of Patent License. Subject to the terms and conditions of
75
+ this License, each Contributor hereby grants to You a perpetual,
76
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
77
+ (except as stated in this section) patent license to make, have made,
78
+ use, offer to sell, sell, import, and otherwise transfer the Work,
79
+ where such license applies only to those patent claims licensable
80
+ by such Contributor that are necessarily infringed by their
81
+ Contribution(s) alone or by combination of their Contribution(s)
82
+ with the Work to which such Contribution(s) was submitted. If You
83
+ institute patent litigation against any entity (including a
84
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
85
+ or a Contribution incorporated within the Work constitutes direct
86
+ or contributory patent infringement, then any patent licenses
87
+ granted to You under this License for that Work shall terminate
88
+ as of the date such litigation is filed.
89
+
90
+ 4. Redistribution. You may reproduce and distribute copies of the
91
+ Work or Derivative Works thereof in any medium, with or without
92
+ modifications, and in Source or Object form, provided that You
93
+ meet the following conditions:
94
+
95
+ (a) You must give any other recipients of the Work or
96
+ Derivative Works a copy of this License; and
97
+
98
+ (b) You must cause any modified files to carry prominent notices
99
+ stating that You changed the files; and
100
+
101
+ (c) You must retain, in the Source form of any Derivative Works
102
+ that You distribute, all copyright, patent, trademark, and
103
+ attribution notices from the Source form of the Work,
104
+ excluding those notices that do not pertain to any part of
105
+ the Derivative Works; and
106
+
107
+ (d) If the Work includes a "NOTICE" text file as part of its
108
+ distribution, then any Derivative Works that You distribute must
109
+ include a readable copy of the attribution notices contained
110
+ within such NOTICE file, excluding those notices that do not
111
+ pertain to any part of the Derivative Works, in at least one
112
+ of the following places: within a NOTICE text file distributed
113
+ as part of the Derivative Works; within the Source form or
114
+ documentation, if provided along with the Derivative Works; or,
115
+ within a display generated by the Derivative Works, if and
116
+ wherever such third-party notices normally appear. The contents
117
+ of the NOTICE file are for informational purposes only and
118
+ do not modify the License. You may add Your own attribution
119
+ notices within Derivative Works that You distribute, alongside
120
+ or as an addendum to the NOTICE text from the Work, provided
121
+ that such additional attribution notices cannot be construed
122
+ as modifying the License.
123
+
124
+ You may add Your own copyright statement to Your modifications and
125
+ may provide additional or different license terms and conditions
126
+ for use, reproduction, or distribution of Your modifications, or
127
+ for any such Derivative Works as a whole, provided Your use,
128
+ reproduction, and distribution of the Work otherwise complies with
129
+ the conditions stated in this License.
130
+
131
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
132
+ any Contribution intentionally submitted for inclusion in the Work
133
+ by You to the Licensor shall be under the terms and conditions of
134
+ this License, without any additional terms or conditions.
135
+ Notwithstanding the above, nothing herein shall supersede or modify
136
+ the terms of any separate license agreement you may have executed
137
+ with Licensor regarding such Contributions.
138
+
139
+ 6. Trademarks. This License does not grant permission to use the trade
140
+ names, trademarks, service marks, or product names of the Licensor,
141
+ except as required for reasonable and customary use in describing the
142
+ origin of the Work and reproducing the content of the NOTICE file.
143
+
144
+ 7. Disclaimer of Warranty. Unless required by applicable law or
145
+ agreed to in writing, Licensor provides the Work (and each
146
+ Contributor provides its Contributions) on an "AS IS" BASIS,
147
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
148
+ implied, including, without limitation, any warranties or conditions
149
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
150
+ PARTICULAR PURPOSE. You are solely responsible for determining the
151
+ appropriateness of using or redistributing the Work and assume any
152
+ risks associated with Your exercise of permissions under this License.
153
+
154
+ 8. Limitation of Liability. In no event and under no legal theory,
155
+ whether in tort (including negligence), contract, or otherwise,
156
+ unless required by applicable law (such as deliberate and grossly
157
+ negligent acts) or agreed to in writing, shall any Contributor be
158
+ liable to You for damages, including any direct, indirect, special,
159
+ incidental, or consequential damages of any character arising as a
160
+ result of this License or out of the use or inability to use the
161
+ Work (including but not limited to damages for loss of goodwill,
162
+ work stoppage, computer failure or malfunction, or any and all
163
+ other commercial damages or losses), even if such Contributor
164
+ has been advised of the possibility of such damages.
165
+
166
+ 9. Accepting Warranty or Additional Liability. While redistributing
167
+ the Work or Derivative Works thereof, You may choose to offer,
168
+ and charge a fee for, acceptance of support, warranty, indemnity,
169
+ or other liability obligations and/or rights consistent with this
170
+ License. However, in accepting such obligations, You may act only
171
+ on Your own behalf and on Your sole responsibility, not on behalf
172
+ of any other Contributor, and only if You agree to indemnify,
173
+ defend, and hold each Contributor harmless for any liability
174
+ incurred by, or claims asserted against, such Contributor by reason
175
+ of your accepting any such warranty or additional liability.
176
+
177
+ END OF TERMS AND CONDITIONS
178
+
179
+ APPENDIX: How to apply the Apache License to your work.
180
+
181
+ To apply the Apache License to your work, attach the following
182
+ boilerplate notice, with the fields enclosed by brackets "[]"
183
+ replaced with your own identifying information. (Don't include
184
+ the brackets!) The text should be enclosed in the appropriate
185
+ comment syntax for the file format. We also recommend that a
186
+ file or class name and description of purpose be included on the
187
+ same "printed page" as the copyright notice for easier
188
+ identification within third-party archives.
189
+
190
+ Copyright [yyyy] [name of copyright owner]
191
+
192
+ Licensed under the Apache License, Version 2.0 (the "License");
193
+ you may not use this file except in compliance with the License.
194
+ You may obtain a copy of the License at
195
+
196
+ http://www.apache.org/licenses/LICENSE-2.0
197
+
198
+ Unless required by applicable law or agreed to in writing, software
199
+ distributed under the License is distributed on an "AS IS" BASIS,
200
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
201
+ See the License for the specific language governing permissions and
202
+ limitations under the License.
lib/python3.10/site-packages/onnx-1.17.0.dist-info/METADATA ADDED
@@ -0,0 +1,350 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Metadata-Version: 2.1
2
+ Name: onnx
3
+ Version: 1.17.0
4
+ Summary: Open Neural Network Exchange
5
+ Author-email: ONNX Contributors <[email protected]>
6
+ License: Apache License v2.0
7
+ Project-URL: Homepage, https://onnx.ai/
8
+ Project-URL: Repository, https://github.com/onnx/onnx
9
+ Classifier: Programming Language :: Python :: 3
10
+ Requires-Python: >=3.8
11
+ Description-Content-Type: text/markdown
12
+ License-File: LICENSE
13
+ Requires-Dist: numpy >=1.20
14
+ Requires-Dist: protobuf >=3.20.2
15
+ Provides-Extra: reference
16
+ Requires-Dist: google-re2 ; extra == 'reference'
17
+ Requires-Dist: Pillow ; extra == 'reference'
18
+
19
+ <!--
20
+ Copyright (c) ONNX Project Contributors
21
+
22
+ SPDX-License-Identifier: Apache-2.0
23
+ -->
24
+
25
+ <p align="center"><img width="40%" src="https://github.com/onnx/onnx/raw/main/docs/onnx-horizontal-color.png" /></p>
26
+
27
+ [![PyPI - Version](https://img.shields.io/pypi/v/onnx.svg)](https://pypi.org/project/onnx)
28
+ [![CI](https://github.com/onnx/onnx/actions/workflows/main.yml/badge.svg)](https://github.com/onnx/onnx/actions/workflows/main.yml)
29
+ [![CII Best Practices](https://bestpractices.coreinfrastructure.org/projects/3313/badge)](https://bestpractices.coreinfrastructure.org/projects/3313)
30
+ [![OpenSSF Scorecard](https://api.securityscorecards.dev/projects/github.com/onnx/onnx/badge)](https://api.securityscorecards.dev/projects/github.com/onnx/onnx)
31
+ [![REUSE compliant](https://api.reuse.software/badge/github.com/onnx/onnx)](https://api.reuse.software/info/github.com/onnx/onnx)
32
+ [![Ruff](https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/astral-sh/ruff/main/assets/badge/v2.json)](https://github.com/astral-sh/ruff)
33
+ [![Black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)
34
+
35
+ [Open Neural Network Exchange (ONNX)](https://onnx.ai) is an open ecosystem that empowers AI developers
36
+ to choose the right tools as their project evolves. ONNX provides an open source format for AI models, both deep learning and traditional ML. It defines an extensible computation graph model, as well as definitions of built-in operators and standard
37
+ data types. Currently we focus on the capabilities needed for inferencing (scoring).
38
+
39
+ ONNX is [widely supported](http://onnx.ai/supported-tools) and can be found in many frameworks, tools, and hardware. Enabling interoperability between different frameworks and streamlining the path from research to production helps increase the speed of innovation in the AI community. We invite the community to join us and further evolve ONNX.
40
+
41
+ # Use ONNX
42
+
43
+ * [Documentation of ONNX Python Package](https://onnx.ai/onnx/)
44
+ * [Tutorials for creating ONNX models](https://github.com/onnx/tutorials)
45
+ * [Pre-trained ONNX models](https://github.com/onnx/models)
46
+
47
+ # Learn about the ONNX spec
48
+
49
+ * [Overview](https://github.com/onnx/onnx/blob/main/docs/Overview.md)
50
+ * [ONNX intermediate representation spec](https://github.com/onnx/onnx/blob/main/docs/IR.md)
51
+ * [Versioning principles of the spec](https://github.com/onnx/onnx/blob/main/docs/Versioning.md)
52
+ * [Operators documentation](https://github.com/onnx/onnx/blob/main/docs/Operators.md)
53
+ * [Operators documentation](https://onnx.ai/onnx/operators/index.html) (latest release)
54
+ * [Python API Overview](https://github.com/onnx/onnx/blob/main/docs/PythonAPIOverview.md)
55
+
56
+ # Programming utilities for working with ONNX Graphs
57
+
58
+ * [Shape and Type Inference](https://github.com/onnx/onnx/blob/main/docs/ShapeInference.md)
59
+ * [Graph Optimization](https://github.com/onnx/optimizer)
60
+ * [Opset Version Conversion](https://github.com/onnx/onnx/blob/main/docs/docsgen/source/api/version_converter.md)
61
+
62
+ # Contribute
63
+
64
+ ONNX is a community project and the open governance model is described [here](https://github.com/onnx/onnx/blob/main/community/readme.md). We encourage you to join the effort and contribute feedback, ideas, and code. You can participate in the [Special Interest Groups](https://github.com/onnx/onnx/blob/main/community/sigs.md) and [Working Groups](https://github.com/onnx/onnx/blob/main/community/working-groups.md) to shape the future of ONNX.
65
+
66
+ Check out our [contribution guide](https://github.com/onnx/onnx/blob/main/CONTRIBUTING.md) to get started.
67
+
68
+ If you think some operator should be added to ONNX specification, please read
69
+ [this document](https://github.com/onnx/onnx/blob/main/docs/AddNewOp.md).
70
+
71
+ # Community meetings
72
+
73
+ The schedules of the regular meetings of the Steering Committee, the working groups and the SIGs can be found [here](https://onnx.ai/calendar)
74
+
75
+ Community Meetups are held at least once a year. Content from previous community meetups are at:
76
+
77
+ * 2020.04.09 <https://wiki.lfaidata.foundation/display/DL/LF+AI+Day+-ONNX+Community+Virtual+Meetup+-+Silicon+Valley+-+April+9>
78
+ * 2020.10.14 <https://wiki.lfaidata.foundation/display/DL/LF+AI+Day+-+ONNX+Community+Workshop+-+October+14>
79
+ * 2021.03.24 <https://wiki.lfaidata.foundation/pages/viewpage.action?pageId=35160391>
80
+ * 2021.10.21 <https://wiki.lfaidata.foundation/pages/viewpage.action?pageId=46989689>
81
+ * 2022.06.24 <https://wiki.lfaidata.foundation/display/DL/ONNX+Community+Day+-+June+24>
82
+ * 2023.06.28 <https://wiki.lfaidata.foundation/display/DL/ONNX+Community+Day+2023+-+June+28>
83
+
84
+ # Discuss
85
+
86
+ We encourage you to open [Issues](https://github.com/onnx/onnx/issues), or use [Slack](https://lfaifoundation.slack.com/) (If you have not joined yet, please use this [link](https://join.slack.com/t/lfaifoundation/shared_invite/zt-o65errpw-gMTbwNr7FnNbVXNVFkmyNA) to join the group) for more real-time discussion.
87
+
88
+ # Follow Us
89
+
90
+ Stay up to date with the latest ONNX news. [[Facebook](https://www.facebook.com/onnxai/)] [[Twitter](https://twitter.com/onnxai)]
91
+
92
+ # Roadmap
93
+
94
+ A roadmap process takes place every year. More details can be found [here](https://github.com/onnx/steering-committee/tree/main/roadmap)
95
+
96
+ # Installation
97
+
98
+ ## Official Python packages
99
+
100
+ ONNX released packages are published in PyPi.
101
+
102
+ ```sh
103
+ pip install onnx # or pip install onnx[reference] for optional reference implementation dependencies
104
+ ```
105
+
106
+ [ONNX weekly packages](https://pypi.org/project/onnx-weekly/) are published in PyPI to enable experimentation and early testing.
107
+
108
+ ## vcpkg packages
109
+
110
+ onnx is in the maintenance list of [vcpkg](https://github.com/microsoft/vcpkg), you can easily use vcpkg to build and install it.
111
+
112
+ ```sh
113
+ git clone https://github.com/microsoft/vcpkg.git
114
+ cd vcpkg
115
+ ./bootstrap-vcpkg.bat # For powershell
116
+ ./bootstrap-vcpkg.sh # For bash
117
+ ./vcpkg install onnx
118
+ ```
119
+
120
+ ## Conda packages
121
+
122
+ A binary build of ONNX is available from [Conda](https://conda.io), in [conda-forge](https://conda-forge.org/):
123
+
124
+ ```sh
125
+ conda install -c conda-forge onnx
126
+ ```
127
+
128
+ ## Build ONNX from Source
129
+
130
+ Before building from source uninstall any existing versions of onnx `pip uninstall onnx`.
131
+
132
+ c++17 or higher C++ compiler version is required to build ONNX from source. Still, users can specify their own `CMAKE_CXX_STANDARD` version for building ONNX.
133
+
134
+ If you don't have protobuf installed, ONNX will internally download and build protobuf for ONNX build.
135
+
136
+ Or, you can manually install [protobuf C/C++ libraries and tools](https://github.com/protocolbuffers/protobuf) with specified version before proceeding forward. Then depending on how you installed protobuf, you need to set environment variable CMAKE_ARGS to "-DONNX_USE_PROTOBUF_SHARED_LIBS=ON" or "-DONNX_USE_PROTOBUF_SHARED_LIBS=OFF". For example, you may need to run the following command:
137
+
138
+ Linux:
139
+
140
+ ```sh
141
+ export CMAKE_ARGS="-DONNX_USE_PROTOBUF_SHARED_LIBS=ON"
142
+ ```
143
+
144
+ Windows:
145
+
146
+ ```bat
147
+ set CMAKE_ARGS="-DONNX_USE_PROTOBUF_SHARED_LIBS=ON"
148
+ ```
149
+
150
+ The ON/OFF depends on what kind of protobuf library you have. Shared libraries are files ending with \*.dll/\*.so/\*.dylib. Static libraries are files ending with \*.a/\*.lib. This option depends on how you get your protobuf library and how it was built. And it is default OFF. You don't need to run the commands above if you'd prefer to use a static protobuf library.
151
+
152
+ ### Windows
153
+
154
+ If you are building ONNX from source, it is recommended that you also build Protobuf locally as a static library. The version distributed with conda-forge is a DLL, but ONNX expects it to be a static library. Building protobuf locally also lets you control the version of protobuf. The tested and recommended version is 3.21.12.
155
+
156
+ The instructions in this README assume you are using Visual Studio. It is recommended that you run all the commands from a shell started from "x64 Native Tools Command Prompt for VS 2019" and keep the build system generator for cmake (e.g., cmake -G "Visual Studio 16 2019") consistent while building protobuf as well as ONNX.
157
+
158
+ You can get protobuf by running the following commands:
159
+
160
+ ```bat
161
+ git clone https://github.com/protocolbuffers/protobuf.git
162
+ cd protobuf
163
+ git checkout v21.12
164
+ cd cmake
165
+ cmake -G "Visual Studio 16 2019" -A x64 -DCMAKE_INSTALL_PREFIX=<protobuf_install_dir> -Dprotobuf_MSVC_STATIC_RUNTIME=OFF -Dprotobuf_BUILD_SHARED_LIBS=OFF -Dprotobuf_BUILD_TESTS=OFF -Dprotobuf_BUILD_EXAMPLES=OFF .
166
+ msbuild protobuf.sln /m /p:Configuration=Release
167
+ msbuild INSTALL.vcxproj /p:Configuration=Release
168
+ ```
169
+
170
+ Then it will be built as a static library and installed to <protobuf_install_dir>. Please add the bin directory(which contains protoc.exe) to your PATH.
171
+
172
+ ```bat
173
+ set CMAKE_PREFIX_PATH=<protobuf_install_dir>;%CMAKE_PREFIX_PATH%
174
+ ```
175
+
176
+ Please note: if your protobuf_install_dir contains spaces, **do not** add quotation marks around it.
177
+
178
+ Alternative: if you don't want to change your PATH, you can set ONNX_PROTOC_EXECUTABLE instead.
179
+
180
+ ```bat
181
+ set CMAKE_ARGS=-DONNX_PROTOC_EXECUTABLE=<full_path_to_protoc.exe>
182
+ ```
183
+
184
+ Then you can build ONNX as:
185
+
186
+ ```
187
+ git clone https://github.com/onnx/onnx.git
188
+ cd onnx
189
+ git submodule update --init --recursive
190
+ # prefer lite proto
191
+ set CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
192
+ pip install -e . -v
193
+ ```
194
+
195
+ ### Linux
196
+
197
+ First, you need to install protobuf. The minimum Protobuf compiler (protoc) version required by ONNX is 3.6.1. Please note that old protoc versions might not work with `CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON`.
198
+
199
+ Ubuntu 20.04 (and newer) users may choose to install protobuf via
200
+
201
+ ```sh
202
+ apt-get install python3-pip python3-dev libprotobuf-dev protobuf-compiler
203
+ ```
204
+
205
+ In this case, it is required to add `-DONNX_USE_PROTOBUF_SHARED_LIBS=ON` to CMAKE_ARGS in the ONNX build step.
206
+
207
+ A more general way is to build and install it from source. See the instructions below for more details.
208
+
209
+ <details>
210
+ <summary> Installing Protobuf from source </summary>
211
+
212
+ Debian/Ubuntu:
213
+
214
+ ```sh
215
+ git clone https://github.com/protocolbuffers/protobuf.git
216
+ cd protobuf
217
+ git checkout v21.12
218
+ git submodule update --init --recursive
219
+ mkdir build_source && cd build_source
220
+ cmake ../cmake -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_INSTALL_SYSCONFDIR=/etc -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
221
+ make -j$(nproc)
222
+ make install
223
+ ```
224
+
225
+ CentOS/RHEL/Fedora:
226
+
227
+ ```sh
228
+ git clone https://github.com/protocolbuffers/protobuf.git
229
+ cd protobuf
230
+ git checkout v21.12
231
+ git submodule update --init --recursive
232
+ mkdir build_source && cd build_source
233
+ cmake ../cmake -DCMAKE_INSTALL_LIBDIR=lib64 -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_INSTALL_SYSCONFDIR=/etc -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
234
+ make -j$(nproc)
235
+ make install
236
+ ```
237
+
238
+ Here "-DCMAKE_POSITION_INDEPENDENT_CODE=ON" is crucial. By default static libraries are built without "-fPIC" flag, they are not position independent code. But shared libraries must be position independent code. Python C/C++ extensions(like ONNX) are shared libraries. So if a static library was not built with "-fPIC", it can't be linked to such a shared library.
239
+
240
+ Once build is successful, update PATH to include protobuf paths.
241
+
242
+ </details>
243
+
244
+ Then you can build ONNX as:
245
+
246
+ ```sh
247
+ git clone https://github.com/onnx/onnx.git
248
+ cd onnx
249
+ git submodule update --init --recursive
250
+ # Optional: prefer lite proto
251
+ export CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
252
+ pip install -e . -v
253
+ ```
254
+
255
+ ### Mac
256
+
257
+ ```sh
258
+ export NUM_CORES=`sysctl -n hw.ncpu`
259
+ brew update
260
+ brew install autoconf && brew install automake
261
+ wget https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protobuf-cpp-3.21.12.tar.gz
262
+ tar -xvf protobuf-cpp-3.21.12.tar.gz
263
+ cd protobuf-3.21.12
264
+ mkdir build_source && cd build_source
265
+ cmake ../cmake -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
266
+ make -j${NUM_CORES}
267
+ make install
268
+ ```
269
+
270
+ Once build is successful, update PATH to include protobuf paths.
271
+
272
+ Then you can build ONNX as:
273
+
274
+ ```sh
275
+ git clone --recursive https://github.com/onnx/onnx.git
276
+ cd onnx
277
+ # Optional: prefer lite proto
278
+ set CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
279
+ pip install -e . -v
280
+ ```
281
+
282
+ ## Verify Installation
283
+
284
+ After installation, run
285
+
286
+ ```sh
287
+ python -c "import onnx"
288
+ ```
289
+
290
+ to verify it works.
291
+
292
+ ## Common Build Options
293
+
294
+ For full list refer to CMakeLists.txt
295
+
296
+ ### Environment variables
297
+
298
+ * `USE_MSVC_STATIC_RUNTIME` should be 1 or 0, not ON or OFF. When set to 1 onnx links statically to runtime library.
299
+ **Default**: `USE_MSVC_STATIC_RUNTIME=0`
300
+
301
+ * `DEBUG` should be 0 or 1. When set to 1 onnx is built in debug mode. or debug versions of the dependencies, you need to open the [CMakeLists file](https://github.com/onnx/onnx/blob/main/CMakeLists.txt) and append a letter `d` at the end of the package name lines. For example, `NAMES protobuf-lite` would become `NAMES protobuf-lited`.
302
+ **Default**: `Debug=0`
303
+
304
+ ### CMake variables
305
+
306
+ * `ONNX_USE_PROTOBUF_SHARED_LIBS` should be `ON` or `OFF`.
307
+ **Default**: `ONNX_USE_PROTOBUF_SHARED_LIBS=OFF USE_MSVC_STATIC_RUNTIME=0`
308
+ `ONNX_USE_PROTOBUF_SHARED_LIBS` determines how onnx links to protobuf libraries.
309
+ * When set to `ON` - onnx will dynamically link to protobuf shared libs, PROTOBUF_USE_DLLS will be defined as described [here](https://github.com/protocolbuffers/protobuf/blob/main/cmake/README.md#dlls-vs-static-linking), Protobuf_USE_STATIC_LIBS will be set to `OFF` and `USE_MSVC_STATIC_RUNTIME` must be 0.
310
+ * When set to `OFF` - onnx will link statically to protobuf, and Protobuf_USE_STATIC_LIBS will be set to `ON` (to force the use of the static libraries) and `USE_MSVC_STATIC_RUNTIME` can be `0` or `1`.
311
+
312
+ * `ONNX_USE_LITE_PROTO` should be `ON` or `OFF`. When set to `ON` onnx uses lite protobuf instead of full protobuf.
313
+ **Default**: `ONNX_USE_LITE_PROTO=OFF`
314
+
315
+ * `ONNX_WERROR` should be `ON` or `OFF`. When set to `ON` warnings are treated as errors.
316
+ **Default**: `ONNX_WERROR=OFF` in local builds, `ON` in CI and release pipelines.
317
+
318
+ ## Common Errors
319
+
320
+ * Note: the `import onnx` command does not work from the source checkout directory; in this case you'll see `ModuleNotFoundError: No module named 'onnx.onnx_cpp2py_export'`. Change into another directory to fix this error.
321
+
322
+ * If you run into any issues while building Protobuf as a static library, please ensure that shared Protobuf libraries, like libprotobuf, are not installed on your device or in the conda environment. If these shared libraries exist, either remove them to build Protobuf from source as a static library, or skip the Protobuf build from source to use the shared version directly.
323
+
324
+ * If you run into any issues while building ONNX from source, and your error message reads, `Could not find pythonXX.lib`, ensure that you have consistent Python versions for common commands, such as `python` and `pip`. Clean all existing build files and rebuild ONNX again.
325
+
326
+ # Testing
327
+
328
+ ONNX uses [pytest](https://docs.pytest.org) as test driver. In order to run tests, you will first need to install `pytest`:
329
+
330
+ ```sh
331
+ pip install pytest nbval
332
+ ```
333
+
334
+ After installing pytest, use the following command to run tests.
335
+
336
+ ```sh
337
+ pytest
338
+ ```
339
+
340
+ # Development
341
+
342
+ Check out the [contributor guide](https://github.com/onnx/onnx/blob/main/CONTRIBUTING.md) for instructions.
343
+
344
+ # License
345
+
346
+ [Apache License v2.0](LICENSE)
347
+
348
+ # Code of Conduct
349
+
350
+ [ONNX Open Source Code of Conduct](https://onnx.ai/codeofconduct.html)
lib/python3.10/site-packages/onnx-1.17.0.dist-info/RECORD ADDED
The diff for this file is too large to render. See raw diff
 
lib/python3.10/site-packages/onnx-1.17.0.dist-info/WHEEL ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ Wheel-Version: 1.0
2
+ Generator: setuptools (75.1.0)
3
+ Root-Is-Purelib: false
4
+ Tag: cp310-cp310-manylinux_2_17_x86_64
5
+ Tag: cp310-cp310-manylinux2014_x86_64
6
+
lib/python3.10/site-packages/onnx-1.17.0.dist-info/top_level.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ onnx
lib/python3.10/site-packages/parameterized/__init__.py ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ from .parameterized import parameterized, param, parameterized_class
2
+
3
+ __version__ = "0.9.0"
lib/python3.10/site-packages/parameterized/parameterized.py ADDED
@@ -0,0 +1,732 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+ import sys
3
+ import inspect
4
+ import warnings
5
+ from typing import Iterable
6
+ from functools import wraps
7
+ from types import MethodType as MethodType
8
+ from collections import namedtuple
9
+
10
+ try:
11
+ from unittest import mock
12
+ except ImportError:
13
+ try:
14
+ import mock
15
+ except ImportError:
16
+ mock = None
17
+
18
+ try:
19
+ from collections import OrderedDict as MaybeOrderedDict
20
+ except ImportError:
21
+ MaybeOrderedDict = dict
22
+
23
+ from unittest import TestCase
24
+
25
+ try:
26
+ from unittest import SkipTest
27
+ except ImportError:
28
+ class SkipTest(Exception):
29
+ pass
30
+
31
+ # NOTE: even though Python 2 support has been dropped, these checks have been
32
+ # left in place to avoid merge conflicts. They can be removed in the future, and
33
+ # future code can be written to assume Python 3.
34
+ PY3 = sys.version_info[0] == 3
35
+ PY2 = sys.version_info[0] == 2
36
+
37
+
38
+ if PY3:
39
+ # Python 3 doesn't have an InstanceType, so just use a dummy type.
40
+ class InstanceType():
41
+ pass
42
+ lzip = lambda *a: list(zip(*a))
43
+ text_type = str
44
+ string_types = str,
45
+ bytes_type = bytes
46
+ def make_method(func, instance, type):
47
+ if instance is None:
48
+ return func
49
+ return MethodType(func, instance)
50
+ else:
51
+ from types import InstanceType
52
+ lzip = zip
53
+ text_type = unicode
54
+ bytes_type = str
55
+ string_types = basestring,
56
+ def make_method(func, instance, type):
57
+ return MethodType(func, instance, type)
58
+
59
+ def to_text(x):
60
+ if isinstance(x, text_type):
61
+ return x
62
+ try:
63
+ return text_type(x, "utf-8")
64
+ except UnicodeDecodeError:
65
+ return text_type(x, "latin1")
66
+
67
+ CompatArgSpec = namedtuple("CompatArgSpec", "args varargs keywords defaults")
68
+
69
+
70
+ def getargspec(func):
71
+ if PY2:
72
+ return CompatArgSpec(*inspect.getargspec(func))
73
+ args = inspect.getfullargspec(func)
74
+ if args.kwonlyargs:
75
+ raise TypeError((
76
+ "parameterized does not (yet) support functions with keyword "
77
+ "only arguments, but %r has keyword only arguments. "
78
+ "Please open an issue with your usecase if this affects you: "
79
+ "https://github.com/wolever/parameterized/issues/new"
80
+ ) %(func, ))
81
+ return CompatArgSpec(*args[:4])
82
+
83
+
84
+ def skip_on_empty_helper(*a, **kw):
85
+ raise SkipTest("parameterized input is empty")
86
+
87
+
88
+ def reapply_patches_if_need(func):
89
+
90
+ def dummy_wrapper(orgfunc):
91
+ @wraps(orgfunc)
92
+ def dummy_func(*args, **kwargs):
93
+ return orgfunc(*args, **kwargs)
94
+ return dummy_func
95
+
96
+ if hasattr(func, 'patchings'):
97
+ is_original_async = inspect.iscoroutinefunction(func)
98
+ func = dummy_wrapper(func)
99
+ tmp_patchings = func.patchings
100
+ delattr(func, 'patchings')
101
+ for patch_obj in tmp_patchings:
102
+ if is_original_async:
103
+ func = patch_obj.decorate_async_callable(func)
104
+ else:
105
+ func = patch_obj.decorate_callable(func)
106
+ return func
107
+
108
+
109
+ # `parameterized.expand` strips out `mock` patches from the source method in favor of re-applying them over the
110
+ # generated methods instead. Sadly, this can cause problems with old versions of the `mock` package, as shown in
111
+ # https://bugs.python.org/issue40126 (bpo-40126).
112
+ #
113
+ # Long story short, bpo-40126 arises whenever the `patchings` list of a `mock`-decorated method is left fully empty.
114
+ #
115
+ # The bug has been fixed in the `mock` code itself since:
116
+ # - Python 3.7.8-rc1, 3.8.3-rc1 and later (for the `unittest.mock` package) [0][1].
117
+ # - Version 4 of the `mock` backport package (https://pypi.org/project/mock/) [2].
118
+ #
119
+ # To work around the problem when running old `mock` versions, we avoid fully stripping out patches from the source
120
+ # method in favor of replacing them with a "dummy" no-op patch instead.
121
+ #
122
+ # [0] https://docs.python.org/release/3.7.10/whatsnew/changelog.html#python-3-7-8-release-candidate-1
123
+ # [1] https://docs.python.org/release/3.8.10/whatsnew/changelog.html#python-3-8-3-release-candidate-1
124
+ # [2] https://mock.readthedocs.io/en/stable/changelog.html#b1
125
+
126
+ PYTHON_DOESNT_HAVE_FIX_FOR_BPO_40126 = (
127
+ sys.version_info[:3] < (3, 7, 8) or (sys.version_info[:2] >= (3, 8) and sys.version_info[:3] < (3, 8, 3))
128
+ )
129
+
130
+ try:
131
+ import mock as _mock_backport
132
+ except ImportError:
133
+ _mock_backport = None
134
+
135
+ MOCK_BACKPORT_DOESNT_HAVE_FIX_FOR_BPO_40126 = _mock_backport is not None and _mock_backport.version_info[0] < 4
136
+
137
+ AVOID_CLEARING_MOCK_PATCHES = PYTHON_DOESNT_HAVE_FIX_FOR_BPO_40126 or MOCK_BACKPORT_DOESNT_HAVE_FIX_FOR_BPO_40126
138
+
139
+
140
+ class DummyPatchTarget(object):
141
+ dummy_attribute = None
142
+
143
+ @staticmethod
144
+ def create_dummy_patch():
145
+ if mock is not None:
146
+ return mock.patch.object(DummyPatchTarget(), "dummy_attribute", new=None)
147
+ else:
148
+ raise ImportError("Missing mock package")
149
+
150
+
151
+ def delete_patches_if_need(func):
152
+ if hasattr(func, 'patchings'):
153
+ if AVOID_CLEARING_MOCK_PATCHES:
154
+ func.patchings[:] = [DummyPatchTarget.create_dummy_patch()]
155
+ else:
156
+ func.patchings[:] = []
157
+
158
+
159
+ _param = namedtuple("param", "args kwargs")
160
+
161
+ class param(_param):
162
+ """ Represents a single parameter to a test case.
163
+
164
+ For example::
165
+
166
+ >>> p = param("foo", bar=16)
167
+ >>> p
168
+ param("foo", bar=16)
169
+ >>> p.args
170
+ ('foo', )
171
+ >>> p.kwargs
172
+ {'bar': 16}
173
+
174
+ Intended to be used as an argument to ``@parameterized``::
175
+
176
+ @parameterized([
177
+ param("foo", bar=16),
178
+ ])
179
+ def test_stuff(foo, bar=16):
180
+ pass
181
+ """
182
+
183
+ def __new__(cls, *args , **kwargs):
184
+ return _param.__new__(cls, args, kwargs)
185
+
186
+ @classmethod
187
+ def explicit(cls, args=None, kwargs=None):
188
+ """ Creates a ``param`` by explicitly specifying ``args`` and
189
+ ``kwargs``::
190
+
191
+ >>> param.explicit([1,2,3])
192
+ param(*(1, 2, 3))
193
+ >>> param.explicit(kwargs={"foo": 42})
194
+ param(*(), **{"foo": "42"})
195
+ """
196
+ args = args or ()
197
+ kwargs = kwargs or {}
198
+ return cls(*args, **kwargs)
199
+
200
+ @classmethod
201
+ def from_decorator(cls, args):
202
+ """ Returns an instance of ``param()`` for ``@parameterized`` argument
203
+ ``args``::
204
+
205
+ >>> param.from_decorator((42, ))
206
+ param(args=(42, ), kwargs={})
207
+ >>> param.from_decorator("foo")
208
+ param(args=("foo", ), kwargs={})
209
+ """
210
+ if isinstance(args, param):
211
+ return args
212
+ elif isinstance(args, (str, bytes)) or not isinstance(args, Iterable):
213
+ args = (args, )
214
+ try:
215
+ return cls(*args)
216
+ except TypeError as e:
217
+ if "after * must be" not in str(e):
218
+ raise
219
+ raise TypeError(
220
+ "Parameters must be tuples, but %r is not (hint: use '(%r, )')"
221
+ %(args, args),
222
+ )
223
+
224
+ def __repr__(self):
225
+ return "param(*%r, **%r)" %self
226
+
227
+
228
+ class QuietOrderedDict(MaybeOrderedDict):
229
+ """ When OrderedDict is available, use it to make sure that the kwargs in
230
+ doc strings are consistently ordered. """
231
+ __str__ = dict.__str__
232
+ __repr__ = dict.__repr__
233
+
234
+
235
+ def parameterized_argument_value_pairs(func, p):
236
+ """Return tuples of parameterized arguments and their values.
237
+
238
+ This is useful if you are writing your own doc_func
239
+ function and need to know the values for each parameter name::
240
+
241
+ >>> def func(a, foo=None, bar=42, **kwargs): pass
242
+ >>> p = param(1, foo=7, extra=99)
243
+ >>> parameterized_argument_value_pairs(func, p)
244
+ [("a", 1), ("foo", 7), ("bar", 42), ("**kwargs", {"extra": 99})]
245
+
246
+ If the function's first argument is named ``self`` then it will be
247
+ ignored::
248
+
249
+ >>> def func(self, a): pass
250
+ >>> p = param(1)
251
+ >>> parameterized_argument_value_pairs(func, p)
252
+ [("a", 1)]
253
+
254
+ Additionally, empty ``*args`` or ``**kwargs`` will be ignored::
255
+
256
+ >>> def func(foo, *args): pass
257
+ >>> p = param(1)
258
+ >>> parameterized_argument_value_pairs(func, p)
259
+ [("foo", 1)]
260
+ >>> p = param(1, 16)
261
+ >>> parameterized_argument_value_pairs(func, p)
262
+ [("foo", 1), ("*args", (16, ))]
263
+ """
264
+ argspec = getargspec(func)
265
+ arg_offset = 1 if argspec.args[:1] == ["self"] else 0
266
+
267
+ named_args = argspec.args[arg_offset:]
268
+
269
+ result = lzip(named_args, p.args)
270
+ named_args = argspec.args[len(result) + arg_offset:]
271
+ varargs = p.args[len(result):]
272
+
273
+ result.extend([
274
+ (name, p.kwargs.get(name, default))
275
+ for (name, default)
276
+ in zip(named_args, argspec.defaults or [])
277
+ ])
278
+
279
+ seen_arg_names = set([ n for (n, _) in result ])
280
+ keywords = QuietOrderedDict(sorted([
281
+ (name, p.kwargs[name])
282
+ for name in p.kwargs
283
+ if name not in seen_arg_names
284
+ ]))
285
+
286
+ if varargs:
287
+ result.append(("*%s" %(argspec.varargs, ), tuple(varargs)))
288
+
289
+ if keywords:
290
+ result.append(("**%s" %(argspec.keywords, ), keywords))
291
+
292
+ return result
293
+
294
+
295
+ def short_repr(x, n=64):
296
+ """ A shortened repr of ``x`` which is guaranteed to be ``unicode``::
297
+
298
+ >>> short_repr("foo")
299
+ u"foo"
300
+ >>> short_repr("123456789", n=4)
301
+ u"12...89"
302
+ """
303
+
304
+ x_repr = to_text(repr(x))
305
+ if len(x_repr) > n:
306
+ x_repr = x_repr[:n//2] + "..." + x_repr[len(x_repr) - n//2:]
307
+ return x_repr
308
+
309
+
310
+ def default_doc_func(func, num, p):
311
+ if func.__doc__ is None:
312
+ return None
313
+
314
+ all_args_with_values = parameterized_argument_value_pairs(func, p)
315
+
316
+ # Assumes that the function passed is a bound method.
317
+ descs = ["%s=%s" %(n, short_repr(v)) for n, v in all_args_with_values]
318
+
319
+ # The documentation might be a multiline string, so split it
320
+ # and just work with the first string, ignoring the period
321
+ # at the end if there is one.
322
+ first, nl, rest = func.__doc__.lstrip().partition("\n")
323
+ suffix = ""
324
+ if first.endswith("."):
325
+ suffix = "."
326
+ first = first[:-1]
327
+ args = "%s[with %s]" %(len(first) and " " or "", ", ".join(descs))
328
+ return "".join(
329
+ to_text(x)
330
+ for x in [first.rstrip(), args, suffix, nl, rest]
331
+ )
332
+
333
+
334
+ def default_name_func(func, num, p):
335
+ base_name = func.__name__
336
+ name_suffix = "_%s" %(num, )
337
+
338
+ if len(p.args) > 0 and isinstance(p.args[0], string_types):
339
+ name_suffix += "_" + parameterized.to_safe_name(p.args[0])
340
+ return base_name + name_suffix
341
+
342
+
343
+ _test_runner_override = None
344
+ _test_runner_guess = False
345
+ _test_runners = set(["unittest", "unittest2", "nose", "nose2", "pytest"])
346
+ _test_runner_aliases = {
347
+ "_pytest": "pytest",
348
+ }
349
+
350
+
351
+ def set_test_runner(name):
352
+ global _test_runner_override
353
+ if name not in _test_runners:
354
+ raise TypeError(
355
+ "Invalid test runner: %r (must be one of: %s)"
356
+ %(name, ", ".join(_test_runners)),
357
+ )
358
+ _test_runner_override = name
359
+
360
+
361
+ def detect_runner():
362
+ """ Guess which test runner we're using by traversing the stack and looking
363
+ for the first matching module. This *should* be reasonably safe, as
364
+ it's done during test discovery where the test runner should be the
365
+ stack frame immediately outside. """
366
+ if _test_runner_override is not None:
367
+ return _test_runner_override
368
+ global _test_runner_guess
369
+ if _test_runner_guess is False:
370
+ stack = inspect.stack()
371
+ for record in reversed(stack):
372
+ frame = record[0]
373
+ module = frame.f_globals.get("__name__").partition(".")[0]
374
+ if module in _test_runner_aliases:
375
+ module = _test_runner_aliases[module]
376
+ if module in _test_runners:
377
+ _test_runner_guess = module
378
+ break
379
+ if record[1].endswith("python2.6/unittest.py"):
380
+ _test_runner_guess = "unittest"
381
+ break
382
+ else:
383
+ _test_runner_guess = None
384
+ return _test_runner_guess
385
+
386
+
387
+
388
+ class parameterized(object):
389
+ """ Parameterize a test case::
390
+
391
+ class TestInt(object):
392
+ @parameterized([
393
+ ("A", 10),
394
+ ("F", 15),
395
+ param("10", 42, base=42)
396
+ ])
397
+ def test_int(self, input, expected, base=16):
398
+ actual = int(input, base=base)
399
+ assert_equal(actual, expected)
400
+
401
+ @parameterized([
402
+ (2, 3, 5)
403
+ (3, 5, 8),
404
+ ])
405
+ def test_add(a, b, expected):
406
+ assert_equal(a + b, expected)
407
+ """
408
+
409
+ def __init__(self, input, doc_func=None, skip_on_empty=False):
410
+ self.get_input = self.input_as_callable(input)
411
+ self.doc_func = doc_func or default_doc_func
412
+ self.skip_on_empty = skip_on_empty
413
+
414
+ def __call__(self, test_func):
415
+ self.assert_not_in_testcase_subclass()
416
+
417
+ @wraps(test_func)
418
+ def wrapper(test_self=None):
419
+ test_cls = test_self and type(test_self)
420
+ if test_self is not None:
421
+ if issubclass(test_cls, InstanceType):
422
+ raise TypeError((
423
+ "@parameterized can't be used with old-style classes, but "
424
+ "%r has an old-style class. Consider using a new-style "
425
+ "class, or '@parameterized.expand' "
426
+ "(see http://stackoverflow.com/q/54867/71522 for more "
427
+ "information on old-style classes)."
428
+ ) %(test_self, ))
429
+
430
+ original_doc = wrapper.__doc__
431
+ for num, args in enumerate(wrapper.parameterized_input):
432
+ p = param.from_decorator(args)
433
+ unbound_func, nose_tuple = self.param_as_nose_tuple(test_self, test_func, num, p)
434
+ try:
435
+ wrapper.__doc__ = nose_tuple[0].__doc__
436
+ # Nose uses `getattr(instance, test_func.__name__)` to get
437
+ # a method bound to the test instance (as opposed to a
438
+ # method bound to the instance of the class created when
439
+ # tests were being enumerated). Set a value here to make
440
+ # sure nose can get the correct test method.
441
+ if test_self is not None:
442
+ setattr(test_cls, test_func.__name__, unbound_func)
443
+ yield nose_tuple
444
+ finally:
445
+ if test_self is not None:
446
+ delattr(test_cls, test_func.__name__)
447
+ wrapper.__doc__ = original_doc
448
+
449
+ input = self.get_input()
450
+ if not input:
451
+ if not self.skip_on_empty:
452
+ raise ValueError(
453
+ "Parameters iterable is empty (hint: use "
454
+ "`parameterized([], skip_on_empty=True)` to skip "
455
+ "this test when the input is empty)"
456
+ )
457
+ wrapper = wraps(test_func)(skip_on_empty_helper)
458
+
459
+ wrapper.parameterized_input = input
460
+ wrapper.parameterized_func = test_func
461
+ test_func.__name__ = "_parameterized_original_%s" %(test_func.__name__, )
462
+
463
+ return wrapper
464
+
465
+ def param_as_nose_tuple(self, test_self, func, num, p):
466
+ nose_func = wraps(func)(lambda *args: func(*args[:-1], **args[-1]))
467
+ nose_func.__doc__ = self.doc_func(func, num, p)
468
+ # Track the unbound function because we need to setattr the unbound
469
+ # function onto the class for nose to work (see comments above), and
470
+ # Python 3 doesn't let us pull the function out of a bound method.
471
+ unbound_func = nose_func
472
+ if test_self is not None:
473
+ # Under nose on Py2 we need to return an unbound method to make
474
+ # sure that the `self` in the method is properly shared with the
475
+ # `self` used in `setUp` and `tearDown`. But only there. Everyone
476
+ # else needs a bound method.
477
+ func_self = (
478
+ None if PY2 and detect_runner() == "nose" else
479
+ test_self
480
+ )
481
+ nose_func = make_method(nose_func, func_self, type(test_self))
482
+ return unbound_func, (nose_func, ) + p.args + (p.kwargs or {}, )
483
+
484
+ def assert_not_in_testcase_subclass(self):
485
+ parent_classes = self._terrible_magic_get_defining_classes()
486
+ if any(issubclass(cls, TestCase) for cls in parent_classes):
487
+ raise Exception("Warning: '@parameterized' tests won't work "
488
+ "inside subclasses of 'TestCase' - use "
489
+ "'@parameterized.expand' instead.")
490
+
491
+ def _terrible_magic_get_defining_classes(self):
492
+ """ Returns the set of parent classes of the class currently being defined.
493
+ Will likely only work if called from the ``parameterized`` decorator.
494
+ This function is entirely @brandon_rhodes's fault, as he suggested
495
+ the implementation: http://stackoverflow.com/a/8793684/71522
496
+ """
497
+ stack = inspect.stack()
498
+ if len(stack) <= 4:
499
+ return []
500
+ frame = stack[4]
501
+ code_context = frame[4] and frame[4][0].strip()
502
+ if not (code_context and code_context.startswith("class ")):
503
+ return []
504
+ _, _, parents = code_context.partition("(")
505
+ parents, _, _ = parents.partition(")")
506
+ return eval("[" + parents + "]", frame[0].f_globals, frame[0].f_locals)
507
+
508
+ @classmethod
509
+ def input_as_callable(cls, input):
510
+ if callable(input):
511
+ return lambda: cls.check_input_values(input())
512
+ input_values = cls.check_input_values(input)
513
+ return lambda: input_values
514
+
515
+ @classmethod
516
+ def check_input_values(cls, input_values):
517
+ # Explicitly convery non-list inputs to a list so that:
518
+ # 1. A helpful exception will be raised if they aren't iterable, and
519
+ # 2. Generators are unwrapped exactly once (otherwise `nosetests
520
+ # --processes=n` has issues; see:
521
+ # https://github.com/wolever/nose-parameterized/pull/31)
522
+ if not isinstance(input_values, list):
523
+ input_values = list(input_values)
524
+ return [ param.from_decorator(p) for p in input_values ]
525
+
526
+ @classmethod
527
+ def expand(cls, input, name_func=None, doc_func=None, skip_on_empty=False,
528
+ namespace=None, **legacy):
529
+ """ A "brute force" method of parameterizing test cases. Creates new
530
+ test cases and injects them into the namespace that the wrapped
531
+ function is being defined in. Useful for parameterizing tests in
532
+ subclasses of 'UnitTest', where Nose test generators don't work.
533
+
534
+ :param input: An iterable of values to pass to the test function.
535
+ :param name_func: A function that takes a single argument (the
536
+ value from the input iterable) and returns a string to use as
537
+ the name of the test case. If not provided, the name of the
538
+ test case will be the name of the test function with the
539
+ parameter value appended.
540
+ :param doc_func: A function that takes a single argument (the
541
+ value from the input iterable) and returns a string to use as
542
+ the docstring of the test case. If not provided, the docstring
543
+ of the test case will be the docstring of the test function.
544
+ :param skip_on_empty: If True, the test will be skipped if the
545
+ input iterable is empty. If False, a ValueError will be raised
546
+ if the input iterable is empty.
547
+ :param namespace: The namespace (dict-like) to inject the test cases
548
+ into. If not provided, the namespace of the test function will
549
+ be used.
550
+
551
+ >>> @parameterized.expand([("foo", 1, 2)])
552
+ ... def test_add1(name, input, expected):
553
+ ... actual = add1(input)
554
+ ... assert_equal(actual, expected)
555
+ ...
556
+ >>> locals()
557
+ ... 'test_add1_foo_0': <function ...> ...
558
+ >>>
559
+ """
560
+
561
+ if "testcase_func_name" in legacy:
562
+ warnings.warn("testcase_func_name= is deprecated; use name_func=",
563
+ DeprecationWarning, stacklevel=2)
564
+ if not name_func:
565
+ name_func = legacy["testcase_func_name"]
566
+
567
+ if "testcase_func_doc" in legacy:
568
+ warnings.warn("testcase_func_doc= is deprecated; use doc_func=",
569
+ DeprecationWarning, stacklevel=2)
570
+ if not doc_func:
571
+ doc_func = legacy["testcase_func_doc"]
572
+
573
+ doc_func = doc_func or default_doc_func
574
+ name_func = name_func or default_name_func
575
+
576
+ def parameterized_expand_wrapper(f, instance=None):
577
+ frame_locals = namespace
578
+ if frame_locals is None:
579
+ frame_locals = inspect.currentframe().f_back.f_locals
580
+
581
+ parameters = cls.input_as_callable(input)()
582
+
583
+ if not parameters:
584
+ if not skip_on_empty:
585
+ raise ValueError(
586
+ "Parameters iterable is empty (hint: use "
587
+ "`parameterized.expand([], skip_on_empty=True)` to skip "
588
+ "this test when the input is empty)"
589
+ )
590
+ return wraps(f)(skip_on_empty_helper)
591
+
592
+ digits = len(str(len(parameters) - 1))
593
+ for num, p in enumerate(parameters):
594
+ name = name_func(f, "{num:0>{digits}}".format(digits=digits, num=num), p)
595
+ # If the original function has patches applied by 'mock.patch',
596
+ # re-construct all patches on the just former decoration layer
597
+ # of param_as_standalone_func so as not to share
598
+ # patch objects between new functions
599
+ nf = reapply_patches_if_need(f)
600
+ frame_locals[name] = cls.param_as_standalone_func(p, nf, name)
601
+ frame_locals[name].__doc__ = doc_func(f, num, p)
602
+
603
+ # Delete original patches to prevent new function from evaluating
604
+ # original patching object as well as re-constructed patches.
605
+ delete_patches_if_need(f)
606
+
607
+ f.__test__ = False
608
+
609
+ return parameterized_expand_wrapper
610
+
611
+ @classmethod
612
+ def param_as_standalone_func(cls, p, func, name):
613
+ if inspect.iscoroutinefunction(func):
614
+ @wraps(func)
615
+ async def standalone_func(*a, **kw):
616
+ return await func(*(a + p.args), **p.kwargs, **kw)
617
+ else:
618
+ @wraps(func)
619
+ def standalone_func(*a, **kw):
620
+ return func(*(a + p.args), **p.kwargs, **kw)
621
+
622
+ standalone_func.__name__ = name
623
+
624
+ # place_as is used by py.test to determine what source file should be
625
+ # used for this test.
626
+ standalone_func.place_as = func
627
+
628
+ # Remove __wrapped__ because py.test will try to look at __wrapped__
629
+ # to determine which parameters should be used with this test case,
630
+ # and obviously we don't need it to do any parameterization.
631
+ try:
632
+ del standalone_func.__wrapped__
633
+ except AttributeError:
634
+ pass
635
+ return standalone_func
636
+
637
+ @classmethod
638
+ def to_safe_name(cls, s):
639
+ if not isinstance(s, str):
640
+ s = str(s)
641
+ return str(re.sub("[^a-zA-Z0-9_]+", "_", s))
642
+
643
+
644
+ def parameterized_class(attrs, input_values=None, class_name_func=None, classname_func=None):
645
+ """ Parameterizes a test class by setting attributes on the class.
646
+
647
+ Can be used in two ways:
648
+
649
+ 1) With a list of dictionaries containing attributes to override::
650
+
651
+ @parameterized_class([
652
+ { "username": "foo" },
653
+ { "username": "bar", "access_level": 2 },
654
+ ])
655
+ class TestUserAccessLevel(TestCase):
656
+ ...
657
+
658
+ 2) With a tuple of attributes, then a list of tuples of values:
659
+
660
+ @parameterized_class(("username", "access_level"), [
661
+ ("foo", 1),
662
+ ("bar", 2)
663
+ ])
664
+ class TestUserAccessLevel(TestCase):
665
+ ...
666
+
667
+ """
668
+
669
+ if isinstance(attrs, string_types):
670
+ attrs = [attrs]
671
+
672
+ input_dicts = (
673
+ attrs if input_values is None else
674
+ [dict(zip(attrs, vals)) for vals in input_values]
675
+ )
676
+
677
+ class_name_func = class_name_func or default_class_name_func
678
+
679
+ if classname_func:
680
+ warnings.warn(
681
+ "classname_func= is deprecated; use class_name_func= instead. "
682
+ "See: https://github.com/wolever/parameterized/pull/74#issuecomment-613577057",
683
+ DeprecationWarning,
684
+ stacklevel=2,
685
+ )
686
+ class_name_func = lambda cls, idx, input: classname_func(cls, idx, input_dicts)
687
+
688
+ def decorator(base_class):
689
+ test_class_module = sys.modules[base_class.__module__].__dict__
690
+ for idx, input_dict in enumerate(input_dicts):
691
+ test_class_dict = dict(base_class.__dict__)
692
+ test_class_dict.update(input_dict)
693
+
694
+ name = class_name_func(base_class, idx, input_dict)
695
+
696
+ test_class_module[name] = type(name, (base_class, ), test_class_dict)
697
+
698
+ # We need to leave the base class in place (see issue #73), but if we
699
+ # leave the test_ methods in place, the test runner will try to pick
700
+ # them up and run them... which doesn't make sense, since no parameters
701
+ # will have been applied.
702
+ # Address this by iterating over the base class and remove all test
703
+ # methods.
704
+ for method_name in list(base_class.__dict__):
705
+ if method_name.startswith("test"):
706
+ delattr(base_class, method_name)
707
+ return base_class
708
+
709
+ return decorator
710
+
711
+
712
+ def get_class_name_suffix(params_dict):
713
+ if "name" in params_dict:
714
+ return parameterized.to_safe_name(params_dict["name"])
715
+
716
+ params_vals = (
717
+ params_dict.values() if PY3 else
718
+ (v for (_, v) in sorted(params_dict.items()))
719
+ )
720
+ return parameterized.to_safe_name(next((
721
+ v for v in params_vals
722
+ if isinstance(v, string_types)
723
+ ), ""))
724
+
725
+
726
+ def default_class_name_func(cls, num, params_dict):
727
+ suffix = get_class_name_suffix(params_dict)
728
+ return "%s_%s%s" %(
729
+ cls.__name__,
730
+ num,
731
+ suffix and "_" + suffix,
732
+ )
lib/python3.10/site-packages/parameterized/test.py ADDED
@@ -0,0 +1,695 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+
3
+ import inspect
4
+ import sys
5
+ import mock
6
+ from functools import wraps
7
+ from unittest import TestCase
8
+ try:
9
+ from nose.tools import assert_equal, assert_raises
10
+ except ImportError:
11
+ def assert_equal(*args, **kwds):
12
+ return TestCase().assertEqual(*args, **kwds)
13
+ def assert_raises(*args, **kwds):
14
+ return TestCase().assertRaises(*args, **kwds)
15
+
16
+ from .parameterized import (
17
+ PY3, PY2, parameterized, param, parameterized_argument_value_pairs,
18
+ short_repr, detect_runner, parameterized_class, SkipTest,
19
+ )
20
+
21
+
22
+ def assert_contains(haystack, needle):
23
+ if needle not in haystack:
24
+ raise AssertionError("%r not in %r" %(needle, haystack))
25
+
26
+
27
+ def assert_raises_regexp_decorator(expected_exception, expected_regexp):
28
+ """
29
+ Assert that a wrapped `unittest.TestCase` method raises an error matching the given type and message regex.
30
+
31
+ :param expected_exception: Exception class expected to be raised.
32
+ :param expected_regexp: Regexp (re pattern object or string) expected to be found in error message.
33
+ """
34
+
35
+ def func_decorator(func):
36
+ @wraps(func)
37
+ def wrapper(self, *args, **kwargs):
38
+ with self.assertRaisesRegexp(expected_exception, expected_regexp):
39
+ func(self, *args, **kwargs)
40
+
41
+ return wrapper
42
+
43
+ return func_decorator
44
+
45
+
46
+ runner = detect_runner()
47
+ UNITTEST = runner.startswith("unittest")
48
+ NOSE2 = (runner == "nose2")
49
+ PYTEST = (runner == "pytest")
50
+
51
+ SKIP_FLAGS = {
52
+ "generator": UNITTEST,
53
+ "standalone": UNITTEST,
54
+ # nose2 doesn't run tests on old-style classes under Py2, so don't expect
55
+ # these tests to run under nose2.
56
+ "py2nose2": (PY2 and NOSE2),
57
+ "pytest": PYTEST,
58
+ }
59
+
60
+ missing_tests = set()
61
+
62
+
63
+ def expect(skip, tests=None):
64
+ if tests is None:
65
+ tests = skip
66
+ skip = None
67
+ if any(SKIP_FLAGS.get(f) for f in (skip or "").split()):
68
+ return
69
+ missing_tests.update(tests)
70
+
71
+
72
+ def expect_exception_matching_regex(tests, expected_exception, expected_regexp):
73
+ """
74
+ Assert that the given `unittest.TestCase` tests raise an error matching the given type and message regex.
75
+
76
+ :param tests: A single test name or list of test names.
77
+ :param expected_exception: Exception class expected to be raised.
78
+ :param expected_regexp: Regexp (re pattern object or string) expected to be found in error message.
79
+ """
80
+ if not isinstance(tests, list):
81
+ tests = [tests]
82
+
83
+ decorator = assert_raises_regexp_decorator(expected_exception, expected_regexp)
84
+ frame_locals = inspect.currentframe().f_back.f_locals
85
+
86
+ for test in tests:
87
+ if test in frame_locals:
88
+ test_method = frame_locals[test]
89
+ decorated_test_method = decorator(test_method)
90
+ frame_locals[test] = decorated_test_method
91
+
92
+
93
+ test_params = [
94
+ (42, ),
95
+ "foo0",
96
+ b"bar",
97
+ 123,
98
+ param("foo1"),
99
+ param("foo2", bar=42),
100
+ ]
101
+
102
+ expect("standalone", [
103
+ "test_naked_function(42, bar=None)",
104
+ "test_naked_function('foo0', bar=None)",
105
+ "test_naked_function(b'bar', bar=None)",
106
+ "test_naked_function(123, bar=None)",
107
+ "test_naked_function('foo1', bar=None)",
108
+ "test_naked_function('foo2', bar=42)",
109
+ ])
110
+
111
+ @parameterized(test_params)
112
+ def test_naked_function(foo, bar=None):
113
+ missing_tests.remove("test_naked_function(%r, bar=%r)" %(foo, bar))
114
+
115
+
116
+ class TestParameterized(object):
117
+ expect("generator", [
118
+ "test_instance_method(42, bar=None)",
119
+ "test_instance_method(b'bar', bar=None)",
120
+ "test_instance_method(123, bar=None)",
121
+ "test_instance_method('foo0', bar=None)",
122
+ "test_instance_method('foo1', bar=None)",
123
+ "test_instance_method('foo2', bar=42)",
124
+ ])
125
+
126
+ @parameterized(test_params)
127
+ def test_instance_method(self, foo, bar=None):
128
+ missing_tests.remove("test_instance_method(%r, bar=%r)" %(foo, bar))
129
+
130
+
131
+ if not PYTEST:
132
+ # py.test doesn't use xunit-style setup/teardown, so these tests don't apply
133
+ class TestSetupTeardown(object):
134
+ expect("generator", [
135
+ "test_setup(setup 1)",
136
+ "teardown_called(teardown 1)",
137
+ "test_setup(setup 2)",
138
+ "teardown_called(teardown 2)",
139
+ ])
140
+
141
+ stack = ["setup 1", "teardown 1", "setup 2", "teardown 2"]
142
+ actual_order = "error: setup not called"
143
+
144
+ def setUp(self):
145
+ self.actual_order = self.stack.pop(0)
146
+
147
+ def tearDown(self):
148
+ missing_tests.remove("teardown_called(%s)" %(self.stack.pop(0), ))
149
+
150
+ @parameterized([(1, ), (2, )])
151
+ def test_setup(self, count, *a):
152
+ assert_equal(self.actual_order, "setup %s" %(count, ))
153
+ missing_tests.remove("test_setup(%s)" %(self.actual_order, ))
154
+
155
+
156
+ def custom_naming_func(custom_tag):
157
+ def custom_naming_func(testcase_func, param_num, param):
158
+ arg = param.args[0]
159
+ return testcase_func.__name__ + ('_%s_name_' % custom_tag) + parameterized.to_safe_name(arg)
160
+
161
+ return custom_naming_func
162
+
163
+
164
+ @mock.patch("os.getpid")
165
+ class TestParameterizedExpandWithMockPatchForClass(TestCase):
166
+ expect([
167
+ "test_one_function_patch_decorator('foo1', 'umask', 'getpid')",
168
+ "test_one_function_patch_decorator('foo0', 'umask', 'getpid')",
169
+ "test_one_function_patch_decorator(42, 'umask', 'getpid')",
170
+ ])
171
+
172
+ @parameterized.expand([(42, ), "foo0", param("foo1")])
173
+ @mock.patch("os.umask")
174
+ def test_one_function_patch_decorator(self, foo, mock_umask, mock_getpid):
175
+ missing_tests.remove("test_one_function_patch_decorator(%r, %r, %r)" %
176
+ (foo, mock_umask._mock_name,
177
+ mock_getpid._mock_name))
178
+
179
+ expect([
180
+ "test_multiple_function_patch_decorator"
181
+ "(42, 51, 'umask', 'fdopen', 'getpid')",
182
+ "test_multiple_function_patch_decorator"
183
+ "('foo0', 'bar0', 'umask', 'fdopen', 'getpid')",
184
+ "test_multiple_function_patch_decorator"
185
+ "('foo1', 'bar1', 'umask', 'fdopen', 'getpid')",
186
+ ])
187
+
188
+ @parameterized.expand([(42, 51), ("foo0", "bar0"), param("foo1", "bar1")])
189
+ @mock.patch("os.fdopen")
190
+ @mock.patch("os.umask")
191
+ def test_multiple_function_patch_decorator(self, foo, bar, mock_umask,
192
+ mock_fdopen, mock_getpid):
193
+ missing_tests.remove("test_multiple_function_patch_decorator"
194
+ "(%r, %r, %r, %r, %r)" %
195
+ (foo, bar, mock_umask._mock_name,
196
+ mock_fdopen._mock_name, mock_getpid._mock_name))
197
+
198
+
199
+ @mock.patch("os.getpid")
200
+ class TestParameterizedExpandWithNoExpand(object):
201
+ expect("generator", [
202
+ "test_patch_class_no_expand(42, 51, 'umask', 'getpid')",
203
+ ])
204
+
205
+ @parameterized([(42, 51)])
206
+ @mock.patch("os.umask")
207
+ def test_patch_class_no_expand(self, foo, bar, mock_umask, mock_getpid):
208
+ missing_tests.remove("test_patch_class_no_expand"
209
+ "(%r, %r, %r, %r)" %
210
+ (foo, bar, mock_umask._mock_name,
211
+ mock_getpid._mock_name))
212
+
213
+
214
+ class TestParameterizedExpandWithNoMockPatchForClass(TestCase):
215
+ expect([
216
+ "test_one_function_patch_decorator('foo1', 'umask')",
217
+ "test_one_function_patch_decorator('foo0', 'umask')",
218
+ "test_one_function_patch_decorator(42, 'umask')",
219
+ ])
220
+
221
+ @parameterized.expand([(42, ), "foo0", param("foo1")])
222
+ @mock.patch("os.umask")
223
+ def test_one_function_patch_decorator(self, foo, mock_umask):
224
+ missing_tests.remove("test_one_function_patch_decorator(%r, %r)" %
225
+ (foo, mock_umask._mock_name))
226
+
227
+ expect([
228
+ "test_multiple_function_patch_decorator(42, 51, 'umask', 'fdopen')",
229
+ "test_multiple_function_patch_decorator('foo0', 'bar0', 'umask', 'fdopen')",
230
+ "test_multiple_function_patch_decorator('foo1', 'bar1', 'umask', 'fdopen')",
231
+ ])
232
+
233
+ @parameterized.expand([(42, 51), ("foo0", "bar0"), param("foo1", "bar1")])
234
+ @mock.patch("os.fdopen")
235
+ @mock.patch("os.umask")
236
+ def test_multiple_function_patch_decorator(self, foo, bar, mock_umask,
237
+ mock_fdopen):
238
+ missing_tests.remove("test_multiple_function_patch_decorator"
239
+ "(%r, %r, %r, %r)" %
240
+ (foo, bar, mock_umask._mock_name,
241
+ mock_fdopen._mock_name))
242
+
243
+ expect([
244
+ "test_patch_decorator_over_test_with_error('foo_this', 'umask')",
245
+ "test_patch_decorator_over_test_with_error('foo_that', 'umask')",
246
+ ])
247
+
248
+ @parameterized.expand([
249
+ ("foo_this",),
250
+ ("foo_that",),
251
+ ])
252
+ @mock.patch("os.umask")
253
+ def test_patch_decorator_over_test_with_error(self, foo, mock_umask):
254
+ missing_tests.remove(
255
+ "test_patch_decorator_over_test_with_error({!r}, {!r})".format(foo, mock_umask._mock_name)
256
+ )
257
+ raise ValueError("This error should have been caught")
258
+
259
+ expect_exception_matching_regex(
260
+ tests=[
261
+ "test_patch_decorator_over_test_with_error_0_foo_this",
262
+ "test_patch_decorator_over_test_with_error_1_foo_that",
263
+ ],
264
+ expected_exception=ValueError,
265
+ expected_regexp="^This error should have been caught$",
266
+ )
267
+
268
+
269
+ class TestParameterizedExpandWithNoMockPatchForClassNoExpand(object):
270
+ expect("generator", [
271
+ "test_patch_no_expand(42, 51, 'umask')",
272
+ ])
273
+
274
+ @parameterized([(42, 51)])
275
+ @mock.patch("os.umask")
276
+ def test_patch_no_expand(self, foo, bar, mock_umask):
277
+ missing_tests.remove("test_patch_no_expand(%r, %r, %r)" %
278
+ (foo, bar, mock_umask._mock_name))
279
+
280
+
281
+ expect("standalone", [
282
+ "test_mock_patch_standalone_function(42, 'umask')",
283
+ ])
284
+
285
+ @parameterized([(42, )])
286
+ @mock.patch("os.umask")
287
+ def test_mock_patch_standalone_function(foo, mock_umask):
288
+ missing_tests.remove(
289
+ "test_mock_patch_standalone_function(%r, %r)" %(
290
+ foo, mock_umask._mock_name
291
+ )
292
+ )
293
+
294
+ @mock.patch.multiple("os", umask=mock.DEFAULT)
295
+ class TestParameterizedExpandWithMockPatchMultiple(TestCase):
296
+ expect([
297
+ "test_mock_patch_multiple_expand_on_method(42, 'umask', 'getpid')",
298
+ "test_mock_patch_multiple_expand_on_class(16, 'umask')",
299
+ ])
300
+
301
+ @parameterized.expand([(42, )])
302
+ @mock.patch.multiple("os", getpid=mock.DEFAULT)
303
+ def test_mock_patch_multiple_expand_on_method(self, param, umask, getpid):
304
+ missing_tests.remove(
305
+ "test_mock_patch_multiple_expand_on_method(%r, %r, %r)" %(
306
+ param, umask._mock_name, getpid._mock_name
307
+ )
308
+ )
309
+
310
+ @parameterized.expand([(16, )])
311
+ def test_mock_patch_multiple_expand_on_class(self, param, umask):
312
+ missing_tests.remove(
313
+ "test_mock_patch_multiple_expand_on_class(%r, %r)" %(
314
+ param, umask._mock_name,
315
+ )
316
+ )
317
+
318
+ expect("standalone", [
319
+ "test_mock_patch_multiple_standalone(42, 'umask', 'getpid')",
320
+ ])
321
+
322
+ @parameterized([(42, )])
323
+ @mock.patch.multiple("os", umask=mock.DEFAULT, getpid=mock.DEFAULT)
324
+ def test_mock_patch_multiple_standalone(param, umask, getpid):
325
+ missing_tests.remove(
326
+ "test_mock_patch_multiple_standalone(%r, %r, %r)" %(
327
+ param, umask._mock_name, getpid._mock_name
328
+ )
329
+ )
330
+
331
+
332
+
333
+ class TestParamerizedOnTestCase(TestCase):
334
+ expect([
335
+ "test_on_TestCase(42, bar=None)",
336
+ "test_on_TestCase(b'bar', bar=None)",
337
+ "test_on_TestCase(123, bar=None)",
338
+ "test_on_TestCase('foo0', bar=None)",
339
+ "test_on_TestCase('foo1', bar=None)",
340
+ "test_on_TestCase('foo2', bar=42)",
341
+ ])
342
+
343
+ @parameterized.expand(test_params)
344
+ def test_on_TestCase(self, foo, bar=None):
345
+ missing_tests.remove("test_on_TestCase(%r, bar=%r)" %(foo, bar))
346
+
347
+ expect([
348
+ "test_on_TestCase2_custom_name_42(42, bar=None)",
349
+ "test_on_TestCase2_custom_name_b_bar_(b'bar', bar=None)",
350
+ "test_on_TestCase2_custom_name_123(123, bar=None)",
351
+ "test_on_TestCase2_custom_name_foo0('foo0', bar=None)",
352
+ "test_on_TestCase2_custom_name_foo1('foo1', bar=None)",
353
+ "test_on_TestCase2_custom_name_foo2('foo2', bar=42)",
354
+ ])
355
+
356
+ @parameterized.expand(test_params,
357
+ name_func=custom_naming_func("custom"))
358
+ def test_on_TestCase2(self, foo, bar=None):
359
+ stack = inspect.stack()
360
+ frame = stack[1]
361
+ frame_locals = frame[0].f_locals
362
+ nose_test_method_name = frame_locals['a'][0]._testMethodName
363
+ expected_name = "test_on_TestCase2_custom_name_" + parameterized.to_safe_name(foo)
364
+ assert_equal(nose_test_method_name, expected_name,
365
+ "Test Method name '%s' did not get customized to expected: '%s'" %
366
+ (nose_test_method_name, expected_name))
367
+ missing_tests.remove("%s(%r, bar=%r)" %(expected_name, foo, bar))
368
+
369
+
370
+ class TestParameterizedExpandDocstring(TestCase):
371
+ def _assert_docstring(self, expected_docstring, rstrip=False):
372
+ """ Checks the current test method's docstring. Must be called directly
373
+ from the test method. """
374
+ stack = inspect.stack()
375
+ f_locals = stack[3][0].f_locals
376
+ test_method = (
377
+ f_locals.get("testMethod") or # Py27
378
+ f_locals.get("function") or # Py33
379
+ f_locals.get("method") or # Py38
380
+ f_locals.get("testfunction") or # Py382
381
+ None
382
+ )
383
+ if test_method is None:
384
+ raise AssertionError("uh oh, unittest changed a local variable name")
385
+ actual_docstring = test_method.__doc__
386
+ if rstrip:
387
+ actual_docstring = actual_docstring.rstrip()
388
+ assert_equal(actual_docstring, expected_docstring)
389
+
390
+ @parameterized.expand([param("foo")],
391
+ doc_func=lambda f, n, p: "stuff")
392
+ def test_custom_doc_func(self, foo, bar=None):
393
+ """Documentation"""
394
+ self._assert_docstring("stuff")
395
+
396
+ @parameterized.expand([param("foo")])
397
+ def test_single_line_docstring(self, foo):
398
+ """Documentation."""
399
+ self._assert_docstring("Documentation [with foo=%r]." %(foo, ))
400
+
401
+ @parameterized.expand([param("foo")])
402
+ def test_empty_docstring(self, foo):
403
+ ""
404
+ self._assert_docstring("[with foo=%r]" %(foo, ))
405
+
406
+ @parameterized.expand([param("foo")])
407
+ def test_multiline_documentation(self, foo):
408
+ """Documentation.
409
+
410
+ More"""
411
+ self._assert_docstring(
412
+ "Documentation [with foo=%r].\n\n"
413
+ " More" %(foo, )
414
+ )
415
+
416
+ @parameterized.expand([param("foo")])
417
+ def test_unicode_docstring(self, foo):
418
+ u"""Döcumentation."""
419
+ self._assert_docstring(u"Döcumentation [with foo=%r]." %(foo, ))
420
+
421
+ @parameterized.expand([param("foo", )])
422
+ def test_default_values_get_correct_value(self, foo, bar=12):
423
+ """Documentation"""
424
+ self._assert_docstring("Documentation [with foo=%r, bar=%r]" %(foo, bar))
425
+
426
+ @parameterized.expand([param("foo", )])
427
+ def test_with_leading_newline(self, foo, bar=12):
428
+ """
429
+ Documentation
430
+ """
431
+ self._assert_docstring("Documentation [with foo=%r, bar=%r]" %(foo, bar), rstrip=True)
432
+
433
+
434
+ def test_warns_when_using_parameterized_with_TestCase():
435
+ try:
436
+ class TestTestCaseWarnsOnBadUseOfParameterized(TestCase):
437
+ @parameterized([(42, )])
438
+ def test_in_subclass_of_TestCase(self, foo):
439
+ pass
440
+ except Exception as e:
441
+ assert_contains(str(e), "parameterized.expand")
442
+ else:
443
+ raise AssertionError("Expected exception not raised")
444
+
445
+
446
+ def test_helpful_error_on_empty_iterable_input():
447
+ try:
448
+ parameterized([])(lambda: None)
449
+ except ValueError as e:
450
+ assert_contains(str(e), "iterable is empty")
451
+ else:
452
+ raise AssertionError("Expected exception not raised")
453
+
454
+ def test_skip_test_on_empty_iterable():
455
+ func = parameterized([], skip_on_empty=True)(lambda: None)
456
+ assert_raises(SkipTest, func)
457
+
458
+
459
+ def test_helpful_error_on_empty_iterable_input_expand():
460
+ try:
461
+ class ExpectErrorOnEmptyInput(TestCase):
462
+ @parameterized.expand([])
463
+ def test_expect_error(self):
464
+ pass
465
+ except ValueError as e:
466
+ assert_contains(str(e), "iterable is empty")
467
+ else:
468
+ raise AssertionError("Expected exception not raised")
469
+
470
+
471
+ expect("stadalone generator", [
472
+ "test_wrapped_iterable_input('foo')",
473
+ ])
474
+ @parameterized(lambda: iter(["foo"]))
475
+ def test_wrapped_iterable_input(foo):
476
+ missing_tests.remove("test_wrapped_iterable_input(%r)" %(foo, ))
477
+
478
+ def test_helpful_error_on_non_iterable_input():
479
+ try:
480
+ parameterized(lambda: 42)(lambda: None)
481
+ except Exception as e:
482
+ assert_contains(str(e), "is not iterable")
483
+ else:
484
+ raise AssertionError("Expected exception not raised")
485
+
486
+
487
+ def tearDownModule():
488
+ missing = sorted(list(missing_tests))
489
+ assert_equal(missing, [])
490
+
491
+ def test_old_style_classes():
492
+ if PY3:
493
+ raise SkipTest("Py3 doesn't have old-style classes")
494
+ class OldStyleClass:
495
+ @parameterized(["foo"])
496
+ def parameterized_method(self, param):
497
+ pass
498
+ try:
499
+ list(OldStyleClass().parameterized_method())
500
+ except TypeError as e:
501
+ assert_contains(str(e), "new-style")
502
+ assert_contains(str(e), "parameterized.expand")
503
+ assert_contains(str(e), "OldStyleClass")
504
+ else:
505
+ raise AssertionError("expected TypeError not raised by old-style class")
506
+
507
+
508
+ class TestOldStyleClass:
509
+ expect("py2nose2 generator", [
510
+ "test_on_old_style_class('foo')",
511
+ "test_on_old_style_class('bar')",
512
+ ])
513
+
514
+ @parameterized.expand(["foo", "bar"])
515
+ def test_old_style_classes(self, param):
516
+ missing_tests.remove("test_on_old_style_class(%r)" %(param, ))
517
+
518
+
519
+ @parameterized([
520
+ ("", param(), []),
521
+ ("*a, **kw", param(), []),
522
+ ("*a, **kw", param(1, foo=42), [("*a", (1, )), ("**kw", {"foo": 42})]),
523
+ ("foo", param(1), [("foo", 1)]),
524
+ ("foo, *a", param(1), [("foo", 1)]),
525
+ ("foo, *a", param(1, 9), [("foo", 1), ("*a", (9, ))]),
526
+ ("foo, *a, **kw", param(1, bar=9), [("foo", 1), ("**kw", {"bar": 9})]),
527
+ ("x=9", param(), [("x", 9)]),
528
+ ("x=9", param(1), [("x", 1)]),
529
+ ("x, y=9, *a, **kw", param(1), [("x", 1), ("y", 9)]),
530
+ ("x, y=9, *a, **kw", param(1, 2), [("x", 1), ("y", 2)]),
531
+ ("x, y=9, *a, **kw", param(1, 2, 3), [("x", 1), ("y", 2), ("*a", (3, ))]),
532
+ ("x, y=9, *a, **kw", param(1, y=2), [("x", 1), ("y", 2)]),
533
+ ("x, y=9, *a, **kw", param(1, z=2), [("x", 1), ("y", 9), ("**kw", {"z": 2})]),
534
+ ("x, y=9, *a, **kw", param(1, 2, 3, z=3), [("x", 1), ("y", 2), ("*a", (3, )), ("**kw", {"z": 3})]),
535
+ ])
536
+ def test_parameterized_argument_value_pairs(func_params, p, expected):
537
+ helper = eval("lambda %s: None" %(func_params, ))
538
+ actual = parameterized_argument_value_pairs(helper, p)
539
+ assert_equal(actual, expected)
540
+
541
+
542
+ @parameterized([
543
+ ("abcd", "'abcd'"),
544
+ ("123456789", "'12...89'"),
545
+ (123456789, "123...789"),
546
+ (123456789, "12...89", 4),
547
+ ])
548
+ def test_short_repr(input, expected, n=6):
549
+ assert_equal(short_repr(input, n=n), expected)
550
+
551
+ @parameterized([
552
+ ("foo", ),
553
+ ])
554
+ def test_with_docstring(input):
555
+ """ Docstring! """
556
+ pass
557
+
558
+
559
+ cases_over_10 = [(i, i+1) for i in range(11)]
560
+
561
+ @parameterized(cases_over_10)
562
+ def test_cases_over_10(input, expected):
563
+ assert_equal(input, expected-1)
564
+
565
+
566
+ @parameterized_class(("a", "b", "c"), [
567
+ ("foo", 1, 2),
568
+ (0, 1, 2),
569
+ ])
570
+ class TestParameterizedClass(TestCase):
571
+ expect([
572
+ "TestParameterizedClass_0_foo:test_method_a('foo', 1, 2)",
573
+ "TestParameterizedClass_0_foo:test_method_b('foo', 1, 2)",
574
+ "TestParameterizedClass_0_foo:testCamelCaseMethodC('foo', 1, 2)",
575
+ "TestParameterizedClass_1:test_method_a(0, 1, 2)",
576
+ "TestParameterizedClass_1:test_method_b(0, 1, 2)",
577
+ "TestParameterizedClass_1:testCamelCaseMethodC(0, 1, 2)",
578
+ ])
579
+
580
+ def _assertions(self, test_name):
581
+ assert hasattr(self, "a")
582
+ assert_equal(self.b + self.c, 3)
583
+ missing_tests.remove("%s:%s(%r, %r, %r)" %(
584
+ self.__class__.__name__,
585
+ test_name,
586
+ self.a,
587
+ self.b,
588
+ self.c,
589
+ ))
590
+
591
+ def test_method_a(self):
592
+ self._assertions("test_method_a")
593
+
594
+ def test_method_b(self):
595
+ self._assertions("test_method_b")
596
+
597
+ def testCamelCaseMethodC(self):
598
+ self._assertions("testCamelCaseMethodC")
599
+
600
+
601
+ @parameterized_class(("a", ), [
602
+ (1, ),
603
+ (2, ),
604
+ ], class_name_func=lambda cls, idx, attrs: "%s_custom_func_%s" %(cls.__name__, attrs["a"]))
605
+ class TestNamedParameterizedClass(TestCase):
606
+ expect([
607
+ "TestNamedParameterizedClass_custom_func_1:test_method(1)",
608
+ "TestNamedParameterizedClass_custom_func_2:test_method(2)",
609
+ ])
610
+
611
+ def test_method(self):
612
+ missing_tests.remove("%s:test_method(%r)" %(
613
+ self.__class__.__name__,
614
+ self.a,
615
+ ))
616
+
617
+
618
+ @parameterized_class([
619
+ {"foo": 42},
620
+ {"bar": "some stuff"},
621
+ {"bar": "other stuff", "name": "some name", "foo": 12},
622
+ ])
623
+ class TestParameterizedClassDict(TestCase):
624
+ expect([
625
+ "TestParameterizedClassDict_0:setUp(42, 'empty')",
626
+ "TestParameterizedClassDict_0:test_method(42, 'empty')",
627
+ "TestParameterizedClassDict_0:tearDown(42, 'empty')",
628
+ "TestParameterizedClassDict_1_some_stuff:setUp(0, 'some stuff')",
629
+ "TestParameterizedClassDict_1_some_stuff:test_method(0, 'some stuff')",
630
+ "TestParameterizedClassDict_1_some_stuff:tearDown(0, 'some stuff')",
631
+ "TestParameterizedClassDict_2_some_name:setUp(12, 'other stuff')",
632
+ "TestParameterizedClassDict_2_some_name:test_method(12, 'other stuff')",
633
+ "TestParameterizedClassDict_2_some_name:tearDown(12, 'other stuff')",
634
+ ])
635
+
636
+ foo = 0
637
+ bar = 'empty'
638
+
639
+ def setUp(self):
640
+ # Ensure that super() works (issue #73)
641
+ super(TestParameterizedClassDict, self).setUp()
642
+ missing_tests.remove("%s:setUp(%r, %r)" %(
643
+ self.__class__.__name__,
644
+ self.foo,
645
+ self.bar,
646
+ ))
647
+
648
+ def tearDown(self):
649
+ # Ensure that super() works (issue #73)
650
+ super(TestParameterizedClassDict, self).tearDown()
651
+ missing_tests.remove("%s:tearDown(%r, %r)" %(
652
+ self.__class__.__name__,
653
+ self.foo,
654
+ self.bar,
655
+ ))
656
+
657
+ def test_method(self):
658
+ missing_tests.remove("%s:test_method(%r, %r)" %(
659
+ self.__class__.__name__,
660
+ self.foo,
661
+ self.bar,
662
+ ))
663
+
664
+
665
+ class TestUnicodeDocstring(object):
666
+ @parameterized.expand([
667
+ 'value1',
668
+ 'vålüé¡'
669
+ ])
670
+ def test_with_docstring(self, param):
671
+ """ Это док-стринг, содержащий не-ascii символы """
672
+ pass
673
+
674
+ if sys.version_info.major == 3 and sys.version_info.minor >= 8:
675
+ from unittest import IsolatedAsyncioTestCase
676
+
677
+ class TestAsyncParameterizedExpandWithNoMockPatchForClass(IsolatedAsyncioTestCase):
678
+ expect([
679
+ "test_one_async_function('foo1')",
680
+ "test_one_async_function('foo0')",
681
+ "test_one_async_function(42)",
682
+ "test_one_async_function_patch_decorator('foo1', 'umask')",
683
+ "test_one_async_function_patch_decorator('foo0', 'umask')",
684
+ "test_one_async_function_patch_decorator(42, 'umask')",
685
+ ])
686
+
687
+ @parameterized.expand([(42,), "foo0", param("foo1")])
688
+ async def test_one_async_function(self, foo):
689
+ missing_tests.remove("test_one_async_function(%r)" % (foo, ))
690
+
691
+ @parameterized.expand([(42,), "foo0", param("foo1")])
692
+ @mock.patch("os.umask")
693
+ async def test_one_async_function_patch_decorator(self, foo, mock_umask):
694
+ missing_tests.remove("test_one_async_function_patch_decorator(%r, %r)" %
695
+ (foo, mock_umask._mock_name))
lib/python3.10/site-packages/torch/_C.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (37.9 kB). View file
 
lib/python3.10/site-packages/torch/_VF.py ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ This makes the functions in torch._C._VariableFunctions available as
3
+ torch._VF.<funcname>
4
+ without mypy being able to find them.
5
+
6
+ A subset of those functions are mapped to ATen functions in
7
+ torch/jit/_builtins.py
8
+
9
+ See https://github.com/pytorch/pytorch/issues/21478 for the reason for
10
+ introducing torch._VF
11
+
12
+ """
13
+
14
+ import sys
15
+ import types
16
+
17
+ import torch
18
+
19
+
20
+ class VFModule(types.ModuleType):
21
+ vf: types.ModuleType
22
+
23
+ def __init__(self, name: str):
24
+ super().__init__(name)
25
+ self.vf = torch._C._VariableFunctions
26
+
27
+ def __getattr__(self, name: str) -> object:
28
+ return getattr(self.vf, name)
29
+
30
+
31
+ sys.modules[__name__] = VFModule(__name__)
lib/python3.10/site-packages/torch/_VF.pyi ADDED
The diff for this file is too large to render. See raw diff
 
lib/python3.10/site-packages/torch/__config__.py ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # mypy: allow-untyped-defs
2
+ import torch
3
+
4
+
5
+ def show():
6
+ """
7
+ Return a human-readable string with descriptions of the
8
+ configuration of PyTorch.
9
+ """
10
+ return torch._C._show_config()
11
+
12
+
13
+ # TODO: In principle, we could provide more structured version/config
14
+ # information here. For now only CXX_FLAGS is exposed, as Timer
15
+ # uses them.
16
+ def _cxx_flags():
17
+ """Returns the CXX_FLAGS used when building PyTorch."""
18
+ return torch._C._cxx_flags()
19
+
20
+
21
+ def parallel_info():
22
+ r"""Returns detailed string with parallelization settings"""
23
+ return torch._C._parallel_info()
lib/python3.10/site-packages/torch/__future__.py ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _overwrite_module_params_on_conversion: bool = False
2
+ _swap_module_params_on_conversion: bool = False
3
+
4
+
5
+ def set_overwrite_module_params_on_conversion(value: bool) -> None:
6
+ """
7
+ Sets whether to assign new tensors to the parameters instead of changing the
8
+ existing parameters in-place when converting an ``nn.Module``.
9
+
10
+ When enabled, the following methods will assign new parameters to the module:
11
+
12
+ #. ``module.{device}()`` (e.g. :meth:`nn.Module.cuda()`) for moving a module between devices
13
+ #. ``module.{dtype}()`` (e.g. :meth:`nn.Module.float()`) for converting a module to a different dtype
14
+ #. :meth:`nn.Module.to`
15
+ #. :meth:`nn.Module.to_empty`
16
+
17
+ Args:
18
+ value (bool): Whether to assign new tensors or not.
19
+
20
+ """
21
+ global _overwrite_module_params_on_conversion
22
+ _overwrite_module_params_on_conversion = value
23
+
24
+
25
+ def get_overwrite_module_params_on_conversion() -> bool:
26
+ """
27
+ Returns whether to assign new tensors to the parameters instead of changing the
28
+ existing parameters in-place when converting an :class:`torch.nn.Module`. Defaults to ``False``.
29
+
30
+ See :func:`~torch.__future__.set_overwrite_module_params_on_conversion` for more information.
31
+ """
32
+ return _overwrite_module_params_on_conversion
33
+
34
+
35
+ def set_swap_module_params_on_conversion(value: bool) -> None:
36
+ """
37
+ Sets whether to use :func:`~torch.utils.swap_tensors` instead of setting ``.data`` to
38
+ change the existing parameters in-place when converting an ``nn.Module`` and instead
39
+ of ``param.copy_(state_dict[key])`` when loading a state dict into an ``nn.Module``.
40
+
41
+ .. note::
42
+ This function takes precedence over :func:`~torch.__future__.get_overwrite_module_params_on_conversion`
43
+
44
+ When enabled, the following methods will swap the existing parameters in-place:
45
+
46
+ #. ``module.{device}()`` (e.g. :meth:`nn.Module.cuda()`) for moving a module between devices
47
+ #. ``module.{dtype}()`` (e.g. :meth:`nn.Module.float()`) for converting a module to a different dtype
48
+ #. :meth:`nn.Module.to`
49
+ #. :meth:`nn.Module.to_empty`
50
+ #. :meth:`nn.Module.load_state_dict`
51
+
52
+ The semantics for :meth:`~nn.Module.load_state_dict` when this is set are as follows:
53
+
54
+ #. For each parameter/buffer, its corresponding ``state_dict['key']`` is transformed via
55
+ :meth:`~torch.Tensor.module_load` (i.e. ``res = param.module_load(state_dict['key'])``)
56
+ #. If necessary, ``res`` will be wrapped in an :class:`~nn.Parameter`
57
+ #. The parameter/buffer in the module will be swapped via :func:`~torch.utils.swap_tensors`
58
+ with ``res``
59
+
60
+ Args:
61
+ value (bool): Whether to use :func:`~torch.utils.swap_tensors` or not.
62
+
63
+ """
64
+ global _swap_module_params_on_conversion
65
+ _swap_module_params_on_conversion = value
66
+
67
+
68
+ def get_swap_module_params_on_conversion() -> bool:
69
+ """
70
+ Returns whether to use :func:`~torch.utils.swap_tensors` instead of setting .data to
71
+ change the existing parameters in-place when converting an ``nn.Module``. Defaults to ``False``.
72
+
73
+ See :func:`~torch.__future__.set_swap_module_params_on_conversion` for more information.
74
+ """
75
+ return _swap_module_params_on_conversion
lib/python3.10/site-packages/torch/__init__.py ADDED
The diff for this file is too large to render. See raw diff
 
lib/python3.10/site-packages/torch/_appdirs.py ADDED
@@ -0,0 +1,667 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ # -*- coding: utf-8 -*-
3
+ # Copyright (c) 2005-2010 ActiveState Software Inc.
4
+ # Copyright (c) 2013 Eddy Petrișor
5
+
6
+ # flake8: noqa
7
+
8
+ """
9
+ This file is directly from
10
+ https://github.com/ActiveState/appdirs/blob/3fe6a83776843a46f20c2e5587afcffe05e03b39/appdirs.py
11
+
12
+ The license of https://github.com/ActiveState/appdirs copied below:
13
+
14
+
15
+ # This is the MIT license
16
+
17
+ Copyright (c) 2010 ActiveState Software Inc.
18
+
19
+ Permission is hereby granted, free of charge, to any person obtaining a
20
+ copy of this software and associated documentation files (the
21
+ "Software"), to deal in the Software without restriction, including
22
+ without limitation the rights to use, copy, modify, merge, publish,
23
+ distribute, sublicense, and/or sell copies of the Software, and to
24
+ permit persons to whom the Software is furnished to do so, subject to
25
+ the following conditions:
26
+
27
+ The above copyright notice and this permission notice shall be included
28
+ in all copies or substantial portions of the Software.
29
+
30
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
31
+ OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
32
+ MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
33
+ IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
34
+ CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
35
+ TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
36
+ SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
37
+ """
38
+
39
+ """Utilities for determining application-specific dirs.
40
+
41
+ See <https://github.com/ActiveState/appdirs> for details and usage.
42
+ """
43
+ # Dev Notes:
44
+ # - MSDN on where to store app data files:
45
+ # http://support.microsoft.com/default.aspx?scid=kb;en-us;310294#XSLTH3194121123120121120120
46
+ # - Mac OS X: http://developer.apple.com/documentation/MacOSX/Conceptual/BPFileSystem/index.html
47
+ # - XDG spec for Un*x: https://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html
48
+
49
+ __version__ = "1.4.4"
50
+ __version_info__ = tuple(int(segment) for segment in __version__.split("."))
51
+
52
+
53
+ import os
54
+ import sys
55
+
56
+
57
+ unicode = str
58
+
59
+ if sys.platform.startswith("java"):
60
+ import platform
61
+
62
+ os_name = platform.java_ver()[3][0]
63
+ if os_name.startswith("Windows"): # "Windows XP", "Windows 7", etc.
64
+ system = "win32"
65
+ elif os_name.startswith("Mac"): # "Mac OS X", etc.
66
+ system = "darwin"
67
+ else: # "Linux", "SunOS", "FreeBSD", etc.
68
+ # Setting this to "linux2" is not ideal, but only Windows or Mac
69
+ # are actually checked for and the rest of the module expects
70
+ # *sys.platform* style strings.
71
+ system = "linux2"
72
+ else:
73
+ system = sys.platform
74
+
75
+
76
+ def user_data_dir(appname=None, appauthor=None, version=None, roaming=False):
77
+ r"""Return full path to the user-specific data dir for this application.
78
+
79
+ "appname" is the name of application.
80
+ If None, just the system directory is returned.
81
+ "appauthor" (only used on Windows) is the name of the
82
+ appauthor or distributing body for this application. Typically
83
+ it is the owning company name. This falls back to appname. You may
84
+ pass False to disable it.
85
+ "version" is an optional version path element to append to the
86
+ path. You might want to use this if you want multiple versions
87
+ of your app to be able to run independently. If used, this
88
+ would typically be "<major>.<minor>".
89
+ Only applied when appname is present.
90
+ "roaming" (boolean, default False) can be set True to use the Windows
91
+ roaming appdata directory. That means that for users on a Windows
92
+ network setup for roaming profiles, this user data will be
93
+ sync'd on login. See
94
+ <http://technet.microsoft.com/en-us/library/cc766489(WS.10).aspx>
95
+ for a discussion of issues.
96
+
97
+ Typical user data directories are:
98
+ Mac OS X: ~/Library/Application Support/<AppName>
99
+ Unix: ~/.local/share/<AppName> # or in $XDG_DATA_HOME, if defined
100
+ Win XP (not roaming): C:\Documents and Settings\<username>\Application Data\<AppAuthor>\<AppName>
101
+ Win XP (roaming): C:\Documents and Settings\<username>\Local Settings\Application Data\<AppAuthor>\<AppName>
102
+ Win 7 (not roaming): C:\Users\<username>\AppData\Local\<AppAuthor>\<AppName>
103
+ Win 7 (roaming): C:\Users\<username>\AppData\Roaming\<AppAuthor>\<AppName>
104
+
105
+ For Unix, we follow the XDG spec and support $XDG_DATA_HOME.
106
+ That means, by default "~/.local/share/<AppName>".
107
+ """
108
+ if system == "win32":
109
+ if appauthor is None:
110
+ appauthor = appname
111
+ const = roaming and "CSIDL_APPDATA" or "CSIDL_LOCAL_APPDATA"
112
+ path = os.path.normpath(_get_win_folder(const))
113
+ if appname:
114
+ if appauthor is not False:
115
+ path = os.path.join(path, appauthor, appname)
116
+ else:
117
+ path = os.path.join(path, appname)
118
+ elif system == "darwin":
119
+ path = os.path.expanduser("~/Library/Application Support/")
120
+ if appname:
121
+ path = os.path.join(path, appname)
122
+ else:
123
+ path = os.getenv("XDG_DATA_HOME", os.path.expanduser("~/.local/share"))
124
+ if appname:
125
+ path = os.path.join(path, appname)
126
+ if appname and version:
127
+ path = os.path.join(path, version)
128
+ return path
129
+
130
+
131
+ def site_data_dir(appname=None, appauthor=None, version=None, multipath=False):
132
+ r"""Return full path to the user-shared data dir for this application.
133
+
134
+ "appname" is the name of application.
135
+ If None, just the system directory is returned.
136
+ "appauthor" (only used on Windows) is the name of the
137
+ appauthor or distributing body for this application. Typically
138
+ it is the owning company name. This falls back to appname. You may
139
+ pass False to disable it.
140
+ "version" is an optional version path element to append to the
141
+ path. You might want to use this if you want multiple versions
142
+ of your app to be able to run independently. If used, this
143
+ would typically be "<major>.<minor>".
144
+ Only applied when appname is present.
145
+ "multipath" is an optional parameter only applicable to *nix
146
+ which indicates that the entire list of data dirs should be
147
+ returned. By default, the first item from XDG_DATA_DIRS is
148
+ returned, or '/usr/local/share/<AppName>',
149
+ if XDG_DATA_DIRS is not set
150
+
151
+ Typical site data directories are:
152
+ Mac OS X: /Library/Application Support/<AppName>
153
+ Unix: /usr/local/share/<AppName> or /usr/share/<AppName>
154
+ Win XP: C:\Documents and Settings\All Users\Application Data\<AppAuthor>\<AppName>
155
+ Vista: (Fail! "C:\ProgramData" is a hidden *system* directory on Vista.)
156
+ Win 7: C:\ProgramData\<AppAuthor>\<AppName> # Hidden, but writeable on Win 7.
157
+
158
+ For Unix, this is using the $XDG_DATA_DIRS[0] default.
159
+
160
+ WARNING: Do not use this on Windows. See the Vista-Fail note above for why.
161
+ """
162
+ if system == "win32":
163
+ if appauthor is None:
164
+ appauthor = appname
165
+ path = os.path.normpath(_get_win_folder("CSIDL_COMMON_APPDATA"))
166
+ if appname:
167
+ if appauthor is not False:
168
+ path = os.path.join(path, appauthor, appname)
169
+ else:
170
+ path = os.path.join(path, appname)
171
+ elif system == "darwin":
172
+ path = os.path.expanduser("/Library/Application Support")
173
+ if appname:
174
+ path = os.path.join(path, appname)
175
+ else:
176
+ # XDG default for $XDG_DATA_DIRS
177
+ # only first, if multipath is False
178
+ path = os.getenv(
179
+ "XDG_DATA_DIRS", os.pathsep.join(["/usr/local/share", "/usr/share"])
180
+ )
181
+ pathlist = [
182
+ os.path.expanduser(x.rstrip(os.sep)) for x in path.split(os.pathsep)
183
+ ]
184
+ if appname:
185
+ if version:
186
+ appname = os.path.join(appname, version)
187
+ pathlist = [os.sep.join([x, appname]) for x in pathlist]
188
+
189
+ if multipath:
190
+ path = os.pathsep.join(pathlist)
191
+ else:
192
+ path = pathlist[0]
193
+ return path
194
+
195
+ if appname and version:
196
+ path = os.path.join(path, version)
197
+ return path
198
+
199
+
200
+ def user_config_dir(appname=None, appauthor=None, version=None, roaming=False):
201
+ r"""Return full path to the user-specific config dir for this application.
202
+
203
+ "appname" is the name of application.
204
+ If None, just the system directory is returned.
205
+ "appauthor" (only used on Windows) is the name of the
206
+ appauthor or distributing body for this application. Typically
207
+ it is the owning company name. This falls back to appname. You may
208
+ pass False to disable it.
209
+ "version" is an optional version path element to append to the
210
+ path. You might want to use this if you want multiple versions
211
+ of your app to be able to run independently. If used, this
212
+ would typically be "<major>.<minor>".
213
+ Only applied when appname is present.
214
+ "roaming" (boolean, default False) can be set True to use the Windows
215
+ roaming appdata directory. That means that for users on a Windows
216
+ network setup for roaming profiles, this user data will be
217
+ sync'd on login. See
218
+ <http://technet.microsoft.com/en-us/library/cc766489(WS.10).aspx>
219
+ for a discussion of issues.
220
+
221
+ Typical user config directories are:
222
+ Mac OS X: ~/Library/Preferences/<AppName>
223
+ Unix: ~/.config/<AppName> # or in $XDG_CONFIG_HOME, if defined
224
+ Win *: same as user_data_dir
225
+
226
+ For Unix, we follow the XDG spec and support $XDG_CONFIG_HOME.
227
+ That means, by default "~/.config/<AppName>".
228
+ """
229
+ if system == "win32":
230
+ path = user_data_dir(appname, appauthor, None, roaming)
231
+ elif system == "darwin":
232
+ path = os.path.expanduser("~/Library/Preferences/")
233
+ if appname:
234
+ path = os.path.join(path, appname)
235
+ else:
236
+ path = os.getenv("XDG_CONFIG_HOME", os.path.expanduser("~/.config"))
237
+ if appname:
238
+ path = os.path.join(path, appname)
239
+ if appname and version:
240
+ path = os.path.join(path, version)
241
+ return path
242
+
243
+
244
+ def site_config_dir(appname=None, appauthor=None, version=None, multipath=False):
245
+ r"""Return full path to the user-shared data dir for this application.
246
+
247
+ "appname" is the name of application.
248
+ If None, just the system directory is returned.
249
+ "appauthor" (only used on Windows) is the name of the
250
+ appauthor or distributing body for this application. Typically
251
+ it is the owning company name. This falls back to appname. You may
252
+ pass False to disable it.
253
+ "version" is an optional version path element to append to the
254
+ path. You might want to use this if you want multiple versions
255
+ of your app to be able to run independently. If used, this
256
+ would typically be "<major>.<minor>".
257
+ Only applied when appname is present.
258
+ "multipath" is an optional parameter only applicable to *nix
259
+ which indicates that the entire list of config dirs should be
260
+ returned. By default, the first item from XDG_CONFIG_DIRS is
261
+ returned, or '/etc/xdg/<AppName>', if XDG_CONFIG_DIRS is not set
262
+
263
+ Typical site config directories are:
264
+ Mac OS X: same as site_data_dir
265
+ Unix: /etc/xdg/<AppName> or $XDG_CONFIG_DIRS[i]/<AppName> for each value in
266
+ $XDG_CONFIG_DIRS
267
+ Win *: same as site_data_dir
268
+ Vista: (Fail! "C:\ProgramData" is a hidden *system* directory on Vista.)
269
+
270
+ For Unix, this is using the $XDG_CONFIG_DIRS[0] default, if multipath=False
271
+
272
+ WARNING: Do not use this on Windows. See the Vista-Fail note above for why.
273
+ """
274
+ if system == "win32":
275
+ path = site_data_dir(appname, appauthor)
276
+ if appname and version:
277
+ path = os.path.join(path, version)
278
+ elif system == "darwin":
279
+ path = os.path.expanduser("/Library/Preferences")
280
+ if appname:
281
+ path = os.path.join(path, appname)
282
+ else:
283
+ # XDG default for $XDG_CONFIG_DIRS
284
+ # only first, if multipath is False
285
+ path = os.getenv("XDG_CONFIG_DIRS", "/etc/xdg")
286
+ pathlist = [
287
+ os.path.expanduser(x.rstrip(os.sep)) for x in path.split(os.pathsep)
288
+ ]
289
+ if appname:
290
+ if version:
291
+ appname = os.path.join(appname, version)
292
+ pathlist = [os.sep.join([x, appname]) for x in pathlist]
293
+
294
+ if multipath:
295
+ path = os.pathsep.join(pathlist)
296
+ else:
297
+ path = pathlist[0]
298
+ return path
299
+
300
+
301
+ def user_cache_dir(appname=None, appauthor=None, version=None, opinion=True):
302
+ r"""Return full path to the user-specific cache dir for this application.
303
+
304
+ "appname" is the name of application.
305
+ If None, just the system directory is returned.
306
+ "appauthor" (only used on Windows) is the name of the
307
+ appauthor or distributing body for this application. Typically
308
+ it is the owning company name. This falls back to appname. You may
309
+ pass False to disable it.
310
+ "version" is an optional version path element to append to the
311
+ path. You might want to use this if you want multiple versions
312
+ of your app to be able to run independently. If used, this
313
+ would typically be "<major>.<minor>".
314
+ Only applied when appname is present.
315
+ "opinion" (boolean) can be False to disable the appending of
316
+ "Cache" to the base app data dir for Windows. See
317
+ discussion below.
318
+
319
+ Typical user cache directories are:
320
+ Mac OS X: ~/Library/Caches/<AppName>
321
+ Unix: ~/.cache/<AppName> (XDG default)
322
+ Win XP: C:\Documents and Settings\<username>\Local Settings\Application Data\<AppAuthor>\<AppName>\Cache
323
+ Vista: C:\Users\<username>\AppData\Local\<AppAuthor>\<AppName>\Cache
324
+
325
+ On Windows the only suggestion in the MSDN docs is that local settings go in
326
+ the `CSIDL_LOCAL_APPDATA` directory. This is identical to the non-roaming
327
+ app data dir (the default returned by `user_data_dir` above). Apps typically
328
+ put cache data somewhere *under* the given dir here. Some examples:
329
+ ...\Mozilla\Firefox\Profiles\<ProfileName>\Cache
330
+ ...\Acme\SuperApp\Cache\1.0
331
+ OPINION: This function appends "Cache" to the `CSIDL_LOCAL_APPDATA` value.
332
+ This can be disabled with the `opinion=False` option.
333
+ """
334
+ if system == "win32":
335
+ if appauthor is None:
336
+ appauthor = appname
337
+ path = os.path.normpath(_get_win_folder("CSIDL_LOCAL_APPDATA"))
338
+ if appname:
339
+ if appauthor is not False:
340
+ path = os.path.join(path, appauthor, appname)
341
+ else:
342
+ path = os.path.join(path, appname)
343
+ if opinion:
344
+ path = os.path.join(path, "Cache")
345
+ elif system == "darwin":
346
+ path = os.path.expanduser("~/Library/Caches")
347
+ if appname:
348
+ path = os.path.join(path, appname)
349
+ else:
350
+ path = os.getenv("XDG_CACHE_HOME", os.path.expanduser("~/.cache"))
351
+ if appname:
352
+ path = os.path.join(path, appname)
353
+ if appname and version:
354
+ path = os.path.join(path, version)
355
+ return path
356
+
357
+
358
+ def user_state_dir(appname=None, appauthor=None, version=None, roaming=False):
359
+ r"""Return full path to the user-specific state dir for this application.
360
+
361
+ "appname" is the name of application.
362
+ If None, just the system directory is returned.
363
+ "appauthor" (only used on Windows) is the name of the
364
+ appauthor or distributing body for this application. Typically
365
+ it is the owning company name. This falls back to appname. You may
366
+ pass False to disable it.
367
+ "version" is an optional version path element to append to the
368
+ path. You might want to use this if you want multiple versions
369
+ of your app to be able to run independently. If used, this
370
+ would typically be "<major>.<minor>".
371
+ Only applied when appname is present.
372
+ "roaming" (boolean, default False) can be set True to use the Windows
373
+ roaming appdata directory. That means that for users on a Windows
374
+ network setup for roaming profiles, this user data will be
375
+ sync'd on login. See
376
+ <http://technet.microsoft.com/en-us/library/cc766489(WS.10).aspx>
377
+ for a discussion of issues.
378
+
379
+ Typical user state directories are:
380
+ Mac OS X: same as user_data_dir
381
+ Unix: ~/.local/state/<AppName> # or in $XDG_STATE_HOME, if defined
382
+ Win *: same as user_data_dir
383
+
384
+ For Unix, we follow this Debian proposal <https://wiki.debian.org/XDGBaseDirectorySpecification#state>
385
+ to extend the XDG spec and support $XDG_STATE_HOME.
386
+
387
+ That means, by default "~/.local/state/<AppName>".
388
+ """
389
+ if system in ["win32", "darwin"]:
390
+ path = user_data_dir(appname, appauthor, None, roaming)
391
+ else:
392
+ path = os.getenv("XDG_STATE_HOME", os.path.expanduser("~/.local/state"))
393
+ if appname:
394
+ path = os.path.join(path, appname)
395
+ if appname and version:
396
+ path = os.path.join(path, version)
397
+ return path
398
+
399
+
400
+ def user_log_dir(appname=None, appauthor=None, version=None, opinion=True):
401
+ r"""Return full path to the user-specific log dir for this application.
402
+
403
+ "appname" is the name of application.
404
+ If None, just the system directory is returned.
405
+ "appauthor" (only used on Windows) is the name of the
406
+ appauthor or distributing body for this application. Typically
407
+ it is the owning company name. This falls back to appname. You may
408
+ pass False to disable it.
409
+ "version" is an optional version path element to append to the
410
+ path. You might want to use this if you want multiple versions
411
+ of your app to be able to run independently. If used, this
412
+ would typically be "<major>.<minor>".
413
+ Only applied when appname is present.
414
+ "opinion" (boolean) can be False to disable the appending of
415
+ "Logs" to the base app data dir for Windows, and "log" to the
416
+ base cache dir for Unix. See discussion below.
417
+
418
+ Typical user log directories are:
419
+ Mac OS X: ~/Library/Logs/<AppName>
420
+ Unix: ~/.cache/<AppName>/log # or under $XDG_CACHE_HOME if defined
421
+ Win XP: C:\Documents and Settings\<username>\Local Settings\Application Data\<AppAuthor>\<AppName>\Logs
422
+ Vista: C:\Users\<username>\AppData\Local\<AppAuthor>\<AppName>\Logs
423
+
424
+ On Windows the only suggestion in the MSDN docs is that local settings
425
+ go in the `CSIDL_LOCAL_APPDATA` directory. (Note: I'm interested in
426
+ examples of what some windows apps use for a logs dir.)
427
+
428
+ OPINION: This function appends "Logs" to the `CSIDL_LOCAL_APPDATA`
429
+ value for Windows and appends "log" to the user cache dir for Unix.
430
+ This can be disabled with the `opinion=False` option.
431
+ """
432
+ if system == "darwin":
433
+ path = os.path.join(os.path.expanduser("~/Library/Logs"), appname)
434
+ elif system == "win32":
435
+ path = user_data_dir(appname, appauthor, version)
436
+ version = False
437
+ if opinion:
438
+ path = os.path.join(path, "Logs")
439
+ else:
440
+ path = user_cache_dir(appname, appauthor, version)
441
+ version = False
442
+ if opinion:
443
+ path = os.path.join(path, "log")
444
+ if appname and version:
445
+ path = os.path.join(path, version)
446
+ return path
447
+
448
+
449
+ class AppDirs(object):
450
+ """Convenience wrapper for getting application dirs."""
451
+
452
+ def __init__(
453
+ self, appname=None, appauthor=None, version=None, roaming=False, multipath=False
454
+ ):
455
+ self.appname = appname
456
+ self.appauthor = appauthor
457
+ self.version = version
458
+ self.roaming = roaming
459
+ self.multipath = multipath
460
+
461
+ @property
462
+ def user_data_dir(self):
463
+ return user_data_dir(
464
+ self.appname, self.appauthor, version=self.version, roaming=self.roaming
465
+ )
466
+
467
+ @property
468
+ def site_data_dir(self):
469
+ return site_data_dir(
470
+ self.appname, self.appauthor, version=self.version, multipath=self.multipath
471
+ )
472
+
473
+ @property
474
+ def user_config_dir(self):
475
+ return user_config_dir(
476
+ self.appname, self.appauthor, version=self.version, roaming=self.roaming
477
+ )
478
+
479
+ @property
480
+ def site_config_dir(self):
481
+ return site_config_dir(
482
+ self.appname, self.appauthor, version=self.version, multipath=self.multipath
483
+ )
484
+
485
+ @property
486
+ def user_cache_dir(self):
487
+ return user_cache_dir(self.appname, self.appauthor, version=self.version)
488
+
489
+ @property
490
+ def user_state_dir(self):
491
+ return user_state_dir(self.appname, self.appauthor, version=self.version)
492
+
493
+ @property
494
+ def user_log_dir(self):
495
+ return user_log_dir(self.appname, self.appauthor, version=self.version)
496
+
497
+
498
+ # ---- internal support stuff
499
+
500
+
501
+ def _get_win_folder_from_registry(csidl_name):
502
+ """This is a fallback technique at best. I'm not sure if using the
503
+ registry for this guarantees us the correct answer for all CSIDL_*
504
+ names.
505
+ """
506
+ import winreg as _winreg
507
+
508
+ shell_folder_name = {
509
+ "CSIDL_APPDATA": "AppData",
510
+ "CSIDL_COMMON_APPDATA": "Common AppData",
511
+ "CSIDL_LOCAL_APPDATA": "Local AppData",
512
+ }[csidl_name]
513
+
514
+ key = _winreg.OpenKey(
515
+ _winreg.HKEY_CURRENT_USER,
516
+ r"Software\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders",
517
+ )
518
+ dir, type = _winreg.QueryValueEx(key, shell_folder_name)
519
+ return dir
520
+
521
+
522
+ def _get_win_folder_with_pywin32(csidl_name):
523
+ from win32com.shell import shell, shellcon
524
+
525
+ dir = shell.SHGetFolderPath(0, getattr(shellcon, csidl_name), 0, 0)
526
+ # Try to make this a unicode path because SHGetFolderPath does
527
+ # not return unicode strings when there is unicode data in the
528
+ # path.
529
+ try:
530
+ dir = unicode(dir)
531
+
532
+ # Downgrade to short path name if have highbit chars. See
533
+ # <http://bugs.activestate.com/show_bug.cgi?id=85099>.
534
+ has_high_char = False
535
+ for c in dir:
536
+ if ord(c) > 255:
537
+ has_high_char = True
538
+ break
539
+ if has_high_char:
540
+ try:
541
+ import win32api
542
+
543
+ dir = win32api.GetShortPathName(dir)
544
+ except ImportError:
545
+ pass
546
+ except UnicodeError:
547
+ pass
548
+ return dir
549
+
550
+
551
+ def _get_win_folder_with_ctypes(csidl_name):
552
+ import ctypes
553
+
554
+ csidl_const = {
555
+ "CSIDL_APPDATA": 26,
556
+ "CSIDL_COMMON_APPDATA": 35,
557
+ "CSIDL_LOCAL_APPDATA": 28,
558
+ }[csidl_name]
559
+
560
+ buf = ctypes.create_unicode_buffer(1024)
561
+ ctypes.windll.shell32.SHGetFolderPathW(None, csidl_const, None, 0, buf)
562
+
563
+ # Downgrade to short path name if have highbit chars. See
564
+ # <http://bugs.activestate.com/show_bug.cgi?id=85099>.
565
+ has_high_char = False
566
+ for c in buf:
567
+ if ord(c) > 255:
568
+ has_high_char = True
569
+ break
570
+ if has_high_char:
571
+ buf2 = ctypes.create_unicode_buffer(1024)
572
+ if ctypes.windll.kernel32.GetShortPathNameW(buf.value, buf2, 1024):
573
+ buf = buf2
574
+
575
+ return buf.value
576
+
577
+
578
+ def _get_win_folder_with_jna(csidl_name):
579
+ import array
580
+
581
+ from com.sun import jna
582
+ from com.sun.jna.platform import win32
583
+
584
+ buf_size = win32.WinDef.MAX_PATH * 2
585
+ buf = array.zeros("c", buf_size)
586
+ shell = win32.Shell32.INSTANCE
587
+ shell.SHGetFolderPath(
588
+ None,
589
+ getattr(win32.ShlObj, csidl_name),
590
+ None,
591
+ win32.ShlObj.SHGFP_TYPE_CURRENT,
592
+ buf,
593
+ )
594
+ dir = jna.Native.toString(buf.tostring()).rstrip("\0")
595
+
596
+ # Downgrade to short path name if have highbit chars. See
597
+ # <http://bugs.activestate.com/show_bug.cgi?id=85099>.
598
+ has_high_char = False
599
+ for c in dir:
600
+ if ord(c) > 255:
601
+ has_high_char = True
602
+ break
603
+ if has_high_char:
604
+ buf = array.zeros("c", buf_size)
605
+ kernel = win32.Kernel32.INSTANCE
606
+ if kernel.GetShortPathName(dir, buf, buf_size):
607
+ dir = jna.Native.toString(buf.tostring()).rstrip("\0")
608
+
609
+ return dir
610
+
611
+
612
+ if system == "win32":
613
+ try:
614
+ import win32com.shell
615
+
616
+ _get_win_folder = _get_win_folder_with_pywin32
617
+ except ImportError:
618
+ try:
619
+ from ctypes import windll
620
+
621
+ _get_win_folder = _get_win_folder_with_ctypes
622
+ except ImportError:
623
+ try:
624
+ import com.sun.jna
625
+
626
+ _get_win_folder = _get_win_folder_with_jna
627
+ except ImportError:
628
+ _get_win_folder = _get_win_folder_from_registry
629
+
630
+
631
+ # ---- self test code
632
+
633
+ if __name__ == "__main__":
634
+ appname = "MyApp"
635
+ appauthor = "MyCompany"
636
+
637
+ props = (
638
+ "user_data_dir",
639
+ "user_config_dir",
640
+ "user_cache_dir",
641
+ "user_state_dir",
642
+ "user_log_dir",
643
+ "site_data_dir",
644
+ "site_config_dir",
645
+ )
646
+
647
+ print(f"-- app dirs {__version__} --")
648
+
649
+ print("-- app dirs (with optional 'version')")
650
+ dirs = AppDirs(appname, appauthor, version="1.0")
651
+ for prop in props:
652
+ print(f"{prop}: {getattr(dirs, prop)}")
653
+
654
+ print("\n-- app dirs (without optional 'version')")
655
+ dirs = AppDirs(appname, appauthor)
656
+ for prop in props:
657
+ print(f"{prop}: {getattr(dirs, prop)}")
658
+
659
+ print("\n-- app dirs (without optional 'appauthor')")
660
+ dirs = AppDirs(appname)
661
+ for prop in props:
662
+ print(f"{prop}: {getattr(dirs, prop)}")
663
+
664
+ print("\n-- app dirs (with disabled 'appauthor')")
665
+ dirs = AppDirs(appname, appauthor=False)
666
+ for prop in props:
667
+ print(f"{prop}: {getattr(dirs, prop)}")
lib/python3.10/site-packages/torch/_classes.py ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # mypy: allow-untyped-defs
2
+ import types
3
+
4
+ import torch._C
5
+
6
+
7
+ class _ClassNamespace(types.ModuleType):
8
+ def __init__(self, name):
9
+ super().__init__("torch.classes" + name)
10
+ self.name = name
11
+
12
+ def __getattr__(self, attr):
13
+ proxy = torch._C._get_custom_class_python_wrapper(self.name, attr)
14
+ if proxy is None:
15
+ raise RuntimeError(f"Class {self.name}.{attr} not registered!")
16
+ return proxy
17
+
18
+
19
+ class _Classes(types.ModuleType):
20
+ __file__ = "_classes.py"
21
+
22
+ def __init__(self) -> None:
23
+ super().__init__("torch.classes")
24
+
25
+ def __getattr__(self, name):
26
+ namespace = _ClassNamespace(name)
27
+ setattr(self, name, namespace)
28
+ return namespace
29
+
30
+ @property
31
+ def loaded_libraries(self):
32
+ return torch.ops.loaded_libraries
33
+
34
+ def load_library(self, path):
35
+ """
36
+ Loads a shared library from the given path into the current process.
37
+
38
+ The library being loaded may run global initialization code to register
39
+ custom classes with the PyTorch JIT runtime. This allows dynamically
40
+ loading custom classes. For this, you should compile your class
41
+ and the static registration code into a shared library object, and then
42
+ call ``torch.classes.load_library('path/to/libcustom.so')`` to load the
43
+ shared object.
44
+
45
+ After the library is loaded, it is added to the
46
+ ``torch.classes.loaded_libraries`` attribute, a set that may be inspected
47
+ for the paths of all libraries loaded using this function.
48
+
49
+ Args:
50
+ path (str): A path to a shared library to load.
51
+ """
52
+ torch.ops.load_library(path)
53
+
54
+
55
+ # The classes "namespace"
56
+ classes = _Classes()
lib/python3.10/site-packages/torch/_compile.py ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # mypy: allow-untyped-defs
2
+ """
3
+ APIs related to torch.compile which lazily import torch._dynamo to avoid
4
+ circular dependencies.
5
+ """
6
+
7
+ import functools
8
+
9
+
10
+ def _disable_dynamo(fn=None, recursive=True):
11
+ """
12
+ This API should be only used inside torch, external users should still use
13
+ torch._dynamo.disable. The main goal of this API is to avoid circular
14
+ imports issues that is common while using _dynamo.disable inside torch
15
+ itself.
16
+
17
+ This API avoids it by lazily importing torch._dynamo from the import time to
18
+ the invocation of the decorated function.
19
+ """
20
+ if fn is not None:
21
+
22
+ @functools.wraps(fn)
23
+ def inner(*args, **kwargs):
24
+ # cache this on the first invocation to avoid adding too much overhead.
25
+ disable_fn = getattr(fn, "__dynamo_disable", None)
26
+ if disable_fn is None:
27
+ import torch._dynamo
28
+
29
+ disable_fn = torch._dynamo.disable(fn, recursive)
30
+ fn.__dynamo_disable = disable_fn
31
+
32
+ return disable_fn(*args, **kwargs)
33
+
34
+ return inner
35
+ else:
36
+ # decorator usage like @_disable_dynamo(recursive=False). The resulting
37
+ # object expects the original decorated function as the arg.
38
+ return functools.partial(_disable_dynamo, recursive=recursive)
lib/python3.10/site-packages/torch/_custom_ops.py ADDED
@@ -0,0 +1,324 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # mypy: allow-untyped-defs
2
+ import inspect
3
+
4
+ from torch._custom_op.impl import (
5
+ _custom_op_with_schema,
6
+ _find_custom_op,
7
+ infer_schema,
8
+ parse_qualname,
9
+ validate_namespace,
10
+ )
11
+ from torch.library import get_ctx
12
+
13
+
14
+ __all__ = [
15
+ "custom_op",
16
+ "impl",
17
+ "impl_abstract",
18
+ "get_ctx",
19
+ "impl_save_for_backward",
20
+ "impl_backward",
21
+ ]
22
+
23
+
24
+ def custom_op(qualname, func_or_schema=None):
25
+ r"""Register a new custom operator
26
+
27
+ In PyTorch, defining an op (short for "operator") is a two step-process:
28
+ - we need to define the op (by providing an operator name and schema)
29
+ - we need to implement behavior for how the operator interacts with
30
+ various PyTorch subsystems, like CPU/CUDA Tensors, Autograd, etc.
31
+
32
+ This entrypoint defines the custom operator (the first step)
33
+ you must then perform the second step by calling various
34
+ ``impl_*`` APIs.
35
+
36
+ This API may be used as a decorator (see examples).
37
+
38
+ For a detailed guide on custom ops, please see
39
+ https://docs.google.com/document/d/1aGWtgxV3HppuxQAdddyPrs74_aEntpkYt9MalnCKnhk
40
+
41
+ Arguments:
42
+ qualname (str): Should be a string that looks like
43
+ "namespace::operator_name". Operators in PyTorch need a namespace to
44
+ avoid name collisions; a given operator may only be created once.
45
+ If you are writing a Python library, we recommend the namespace to
46
+ be the name of your top-level module.
47
+ func_or_schema (Union[Callable, str]): Each PyTorch operator needs a
48
+ schema that tells PyTorch the types of the inputs/outputs.
49
+ If this is a Callable, we will automatically infer the schema from
50
+ the type annotations on the function (see examples). Otherwise,
51
+ if you don't want to use type annotations, you may provide us the
52
+ schema string.
53
+
54
+ Example::
55
+ >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA)
56
+ >>> import torch
57
+ >>> import numpy as np
58
+ >>> from torch import Tensor
59
+ >>>
60
+ >>> # Step 1: define the custom op.
61
+ >>> # We need to provide the API a "prototype function"
62
+ >>> # (a function that returns NotImplementedError), from which
63
+ >>> # we will infer the types of the inputs and outputs.
64
+ >>> @torch._custom_ops.custom_op("mylibrary::numpy_sin")
65
+ >>> def numpy_sin(x: Tensor) -> Tensor:
66
+ >>> raise NotImplementedError
67
+ >>>
68
+ >>> # The custom op is now accessible via the torch.ops module:
69
+ >>> torch.ops.mylibrary.numpy_sin
70
+ >>>
71
+ >>> # Step 2: Register an implementation for various PyTorch subsystems
72
+ >>>
73
+ >>> # Register an implementation for CPU tensors
74
+ >>> @torch._custom_ops.impl("mylibrary::numpy_sin", device_types="cpu")
75
+ >>> def numpy_sin_impl_cpu(x):
76
+ >>> return torch.from_numpy(np.sin(x.numpy()))
77
+ >>>
78
+ >>> # Register an implementation for CUDA tensors
79
+ >>> @torch._custom_ops.impl("mylibrary::numpy_sin", device_types="cuda")
80
+ >>> def numpy_sin_impl_cuda(x):
81
+ >>> return torch.from_numpy(np.sin(x.cpu().numpy())).to(x.device)
82
+ >>>
83
+ >>> x = torch.randn(3)
84
+ >>> torch.ops.mylibrary.numpy_sin(x) # calls numpy_sin_impl_cpu
85
+ >>>
86
+ >>> x_cuda = x.cuda()
87
+ >>> torch.ops.mylibrary.numpy_sin(x) # calls numpy_sin_impl_cuda
88
+
89
+ """
90
+ ns, name = parse_qualname(qualname)
91
+ validate_namespace(ns)
92
+
93
+ def inner(func):
94
+ if not inspect.isfunction(func):
95
+ raise ValueError(
96
+ f"custom_op(...)(func): Expected `func` to be a Python "
97
+ f"function, got: {type(func)}"
98
+ )
99
+
100
+ if func.__name__ != name:
101
+ raise ValueError(
102
+ f"custom_op(qualname='{qualname}', ...)(func): expected `func` "
103
+ f"to have name '{name}' but got '{func.__name__}'. "
104
+ f"Please either change the name of `func` or the qualname that "
105
+ f"is passed to `custom_op`"
106
+ )
107
+
108
+ schema = infer_schema(func, mutates_args=())
109
+ _custom_op_with_schema(qualname, schema)
110
+ return func
111
+
112
+ if func_or_schema is None:
113
+ return inner
114
+ if isinstance(func_or_schema, str):
115
+ _custom_op_with_schema(qualname, func_or_schema)
116
+ else:
117
+ return inner(func_or_schema)
118
+
119
+
120
+ def impl(qualname, *, device_types=("cpu", "cuda"), func=None):
121
+ r"""Register an implementation for a device type for this custom op.
122
+
123
+ If the op is passed multiple Tensor inputs with different device
124
+ types, it will dispatch to the registered implementation for the highest
125
+ priority device type among those present.
126
+ The supported device types, in order of priority, are {'cuda', 'cpu'}.
127
+
128
+ This API may be used as a decorator (see examples).
129
+
130
+ For a detailed guide on custom ops, please see
131
+ https://docs.google.com/document/d/1aGWtgxV3HppuxQAdddyPrs74_aEntpkYt9MalnCKnhk
132
+
133
+ Arguments:
134
+ device_types (str or Iterable[str]): the device type(s) to register the function for.
135
+
136
+ Example::
137
+ >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA)
138
+ >>> import torch
139
+ >>> import numpy as np
140
+ >>> from torch import Tensor
141
+ >>>
142
+ >>> # Step 1: define the custom op.
143
+ >>> # We need to provide the API a "prototype function"
144
+ >>> # (a function that returns NotImplementedError), from which
145
+ >>> # we will infer the types of the inputs and outputs.
146
+ >>> @torch._custom_ops.custom_op("mylibrary::numpy_cos")
147
+ >>> def numpy_cos(x: Tensor) -> Tensor:
148
+ >>> raise NotImplementedError
149
+ >>>
150
+ >>> # The custom op is now accessible via the torch.ops module:
151
+ >>> torch.ops.mylibrary.numpy_cos
152
+ >>>
153
+ >>> # Step 2: Register an implementation for various PyTorch subsystems
154
+ >>>
155
+ >>> # Register an implementation for CPU tensors
156
+ >>> @torch._custom_ops.impl("mylibrary::numpy_cos", device_types="cpu")
157
+ >>> def numpy_cos_impl_cpu(x):
158
+ >>> return torch.from_numpy(np.cos(x.numpy()))
159
+ >>>
160
+ >>> # Register an implementation for CUDA tensors
161
+ >>> @torch._custom_ops.impl("mylibrary::numpy_cos", device_types="cuda")
162
+ >>> def numpy_cos_impl_cuda(x):
163
+ >>> return torch.from_numpy(np.cos(x.cpu().numpy())).to(x.device)
164
+ >>>
165
+ >>> x = torch.randn(3)
166
+ >>> torch.ops.mylibrary.numpy_cos(x) # calls numpy_cos_impl_cpu
167
+ >>>
168
+ >>> x_cuda = x.cuda()
169
+ >>> torch.ops.mylibrary.numpy_cos(x) # calls numpy_cos_impl_cuda
170
+
171
+ """
172
+
173
+ def inner(func):
174
+ custom_op = _find_custom_op(qualname, also_check_torch_library=True)
175
+ custom_op.impl(device_types, _stacklevel=3)(func)
176
+ return func
177
+
178
+ if func is None:
179
+ return inner
180
+ return inner(func)
181
+
182
+
183
+ def impl_abstract(qualname, *, func=None):
184
+ r"""Register an abstract implementation for this operator.
185
+
186
+ An "abstract implementation" specifies the behavior of this operator on
187
+ Tensors that carry no data. Given some input Tensors with certain properties
188
+ (sizes/strides/storage_offset/device), it specifies what the properties of
189
+ the output Tensors are.
190
+
191
+ The abstract implementation has the same signature as the operator.
192
+ It is run for both FakeTensors and meta tensors. To write an abstract
193
+ implementation, assume that all Tensor inputs to the operator are
194
+ regular CPU/CUDA/Meta tensors, but they do not have storage, and
195
+ you are trying to return regular CPU/CUDA/Meta tensor(s) as output.
196
+ The abstract implementation must consist of only PyTorch operations
197
+ (and may not directly access the storage or data of any input or
198
+ intermediate Tensors).
199
+
200
+ This API may be used as a decorator (see examples).
201
+
202
+ For a detailed guide on custom ops, please see
203
+ https://docs.google.com/document/d/1aGWtgxV3HppuxQAdddyPrs74_aEntpkYt9MalnCKnhk
204
+
205
+ Examples::
206
+ >>> import numpy as np
207
+ >>> from torch import Tensor
208
+ >>>
209
+ >>> # Example 1: an operator without data-dependent output shape
210
+ >>> @torch._custom_ops.custom_op("mylibrary::custom_linear")
211
+ >>> def custom_linear(x: Tensor, weight: Tensor, bias: Tensor) -> Tensor:
212
+ >>> raise NotImplementedError
213
+ >>>
214
+ >>> @torch._custom_ops.impl_abstract("mylibrary::custom_linear")
215
+ >>> def custom_linear_abstract(x, weight):
216
+ >>> assert x.dim() == 2
217
+ >>> assert weight.dim() == 2
218
+ >>> assert bias.dim() == 1
219
+ >>> assert x.shape[1] == weight.shape[1]
220
+ >>> assert weight.shape[0] == bias.shape[0]
221
+ >>> assert x.device == weight.device
222
+ >>>
223
+ >>> return (x @ weight.t()) + bias
224
+ >>>
225
+ >>> # Example 2: an operator with data-dependent output shape
226
+ >>> @torch._custom_ops.custom_op('mylibrary::custom_nonzero')
227
+ >>> def custom_nonzero(x: Tensor) -> Tensor:
228
+ >>> ...
229
+ >>>
230
+ >>> @torch._custom_ops.impl_abstract("mylibrary::custom_nonzero")
231
+ >>> def custom_nonzero_abstract(x):
232
+ >>> # Number of nonzero-elements is data-dependent.
233
+ >>> # Since we cannot peek at the data in an abstract impl,
234
+ >>> # we use the ctx object to construct a new symint that
235
+ >>> # represents the data-dependent size.
236
+ >>> ctx = torch._custom_ops.get_ctx()
237
+ >>> nnz = ctx.create_unbacked_symint()
238
+ >>> shape = [x.dim(), nnz]
239
+ >>> result = x.new_empty(shape, dtype=torch.long)
240
+ >>> return result
241
+ >>>
242
+ >>> @torch._custom_ops.impl("mylibrary::custom_nonzero")
243
+ >>> def custom_nonzero_impl(x):
244
+ >>> x_np = to_numpy(x)
245
+ >>> res = np.stack(np.nonzero(x_np), axis=1)
246
+ >>> # unbacked symbolic ints in PyTorch must be >= 2, so we
247
+ >>> # constrain the range to at least 2
248
+ >>> if res.shape[0] <= 1:
249
+ >>> raise RuntimeError("not supported")
250
+ >>> return torch.tensor(res, device=x.device)
251
+
252
+ """
253
+ import torch.library
254
+
255
+ return torch.library.register_fake(qualname, func, _stacklevel=2)
256
+
257
+
258
+ def impl_save_for_backward(qualname, *, func=None):
259
+ r"""Register a function that tells us what to save for backward.
260
+
261
+ Please see :func:`impl_backward` for more details.
262
+ """
263
+
264
+ def inner(func):
265
+ custom_op = _find_custom_op(qualname, also_check_torch_library=True)
266
+ custom_op.impl_save_for_backward(_stacklevel=3)(func)
267
+ return func
268
+
269
+ if func is None:
270
+ return inner
271
+ return inner(func)
272
+
273
+
274
+ def impl_backward(qualname, output_differentiability=None, *, func=None):
275
+ r"""Registers a backward formula for an operator.
276
+
277
+ In order for an operator to work with autograd, you need to register
278
+ a backward formula. There are two pieces to this:
279
+ 1. You must give us a function to specify what to save for backward.
280
+ Call this the "save for backward" function.
281
+ 2. You must give us a function that computes gradients. Call this the
282
+ "backward" function.
283
+
284
+ Use `impl_save_for_backward` to define a "save for backward" function
285
+ that specifies what gets saved for backward. The function should accept
286
+ two arguments ``(inputs, output)`` and return the quantities to be saved
287
+ for backward.
288
+
289
+ During runtime, when you call the operator in a forwards pass, PyTorch
290
+ will invoke the "save for backward" function with the inputs and output
291
+ of the operator.
292
+
293
+ Use `impl_backward` to define the "backward" function. The backward
294
+ function must accept ``(ctx, saved, *grads)``:
295
+ - ``ctx`` is a context object where we may provide information
296
+ - ``saved`` is exactly what gets returned from the "save for backward"
297
+ function
298
+ - ``grads`` is one or more gradients. The number of gradients matches
299
+ the number of outputs of the operator.
300
+
301
+ The backward function must return a dict that maps the name of
302
+ an input to the operator to its corresponding gradient. All inputs that
303
+ were declared to be Tensors in the operator definition must be accounted
304
+ for in the dict. The gradient may be a Tensor or None.
305
+
306
+ For a detailed guide on custom ops, please see
307
+ https://docs.google.com/document/d/1aGWtgxV3HppuxQAdddyPrs74_aEntpkYt9MalnCKnhk
308
+
309
+ """
310
+
311
+ def inner(func):
312
+ custom_op = _find_custom_op(qualname, also_check_torch_library=True)
313
+ custom_op.impl_backward(output_differentiability, _stacklevel=3)(func)
314
+ return func
315
+
316
+ if func is None:
317
+ return inner
318
+ return inner(func)
319
+
320
+
321
+ def _destroy(qualname):
322
+ """De-registers a custom op. For testing purposes only"""
323
+ custom_op = _find_custom_op(qualname)
324
+ custom_op._destroy()
lib/python3.10/site-packages/torch/_deploy.py ADDED
@@ -0,0 +1,104 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # mypy: allow-untyped-defs
2
+ import io
3
+
4
+ import torch
5
+ from torch.package import Importer, OrderedImporter, PackageImporter, sys_importer
6
+ from torch.package._package_pickler import create_pickler
7
+ from torch.package._package_unpickler import PackageUnpickler
8
+ from torch.serialization import _maybe_decode_ascii
9
+
10
+
11
+ def _save_storages(importer, obj):
12
+ serialized_storages = []
13
+ serialized_dtypes = []
14
+
15
+ importer = importer if isinstance(importer, torch.package.PackageImporter) else None
16
+ importers: Importer
17
+ if importer is not None:
18
+ importers = OrderedImporter(importer, sys_importer)
19
+ else:
20
+ importers = sys_importer
21
+
22
+ def persistent_id(obj):
23
+ if torch.is_storage(obj) or isinstance(obj, torch.storage.TypedStorage):
24
+ if isinstance(obj, torch.storage.TypedStorage):
25
+ # TODO: Once we decide to break serialization FC, we can
26
+ # remove this case
27
+ dtype = obj.dtype
28
+ else:
29
+ dtype = torch.uint8
30
+
31
+ serialized_storages.append(obj)
32
+ serialized_dtypes.append(dtype)
33
+ return ("storage", len(serialized_storages) - 1)
34
+
35
+ if hasattr(obj, "__reduce_deploy__"):
36
+ if _serialized_reduces.get(id(obj)) is None:
37
+ _serialized_reduces[id(obj)] = (
38
+ "reduce_deploy",
39
+ id(obj),
40
+ *obj.__reduce_deploy__(importers),
41
+ )
42
+ return _serialized_reduces[id(obj)]
43
+
44
+ return None
45
+
46
+ # Write the pickle data for `obj`
47
+ data_buf = io.BytesIO()
48
+ pickler = create_pickler(data_buf, importers)
49
+ pickler.persistent_id = persistent_id
50
+ pickler.dump(obj)
51
+ data_value = data_buf.getvalue()
52
+ return (
53
+ data_value,
54
+ serialized_storages,
55
+ serialized_dtypes,
56
+ importer.zip_reader if importer else None,
57
+ )
58
+
59
+
60
+ def _load_storages(id, zip_reader, obj_bytes, serialized_storages, serialized_dtypes):
61
+ def persistent_load(saved_id):
62
+ assert isinstance(saved_id, tuple)
63
+ typename = _maybe_decode_ascii(saved_id[0])
64
+ data = saved_id[1:]
65
+
66
+ if typename == "storage":
67
+ # TODO: Once we decide to break serialization FC, we can
68
+ # stop wrapping with TypedStorage
69
+ storage = serialized_storages[data[0]]
70
+ dtype = serialized_dtypes[data[0]]
71
+ return torch.storage.TypedStorage(
72
+ wrap_storage=storage.untyped(), dtype=dtype
73
+ )
74
+
75
+ if typename == "reduce_deploy":
76
+ reduce_id, func, args = data
77
+ if reduce_id not in _loaded_reduces:
78
+ _loaded_reduces[reduce_id] = func(_raw_packages[zip_reader], *args)
79
+ return _loaded_reduces[reduce_id]
80
+
81
+ return None
82
+
83
+ importer: Importer
84
+ if zip_reader is not None:
85
+ importer = OrderedImporter(_get_package(zip_reader), sys_importer)
86
+ else:
87
+ importer = sys_importer
88
+
89
+ unpickler = PackageUnpickler(importer, io.BytesIO(obj_bytes))
90
+ unpickler.persistent_load = persistent_load # type: ignore[method-assign]
91
+ result = _deploy_objects[id] = unpickler.load()
92
+ return result
93
+
94
+
95
+ def _get_package(zip_reader):
96
+ if zip_reader not in _raw_packages:
97
+ _raw_packages[zip_reader] = PackageImporter(zip_reader)
98
+ return _raw_packages[zip_reader]
99
+
100
+
101
+ _raw_packages: dict = {}
102
+ _deploy_objects: dict = {}
103
+ _serialized_reduces: dict = {}
104
+ _loaded_reduces: dict = {}
lib/python3.10/site-packages/torch/_environment.py ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ def is_fbcode() -> bool:
2
+ return False
lib/python3.10/site-packages/torch/_linalg_utils.py ADDED
@@ -0,0 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # mypy: allow-untyped-defs
2
+ """Various linear algebra utility methods for internal use."""
3
+
4
+ from typing import Optional, Tuple
5
+
6
+ import torch
7
+ from torch import Tensor
8
+
9
+
10
+ def is_sparse(A):
11
+ """Check if tensor A is a sparse tensor"""
12
+ if isinstance(A, torch.Tensor):
13
+ return A.layout == torch.sparse_coo
14
+
15
+ error_str = "expected Tensor"
16
+ if not torch.jit.is_scripting():
17
+ error_str += f" but got {type(A)}"
18
+ raise TypeError(error_str)
19
+
20
+
21
+ def get_floating_dtype(A):
22
+ """Return the floating point dtype of tensor A.
23
+
24
+ Integer types map to float32.
25
+ """
26
+ dtype = A.dtype
27
+ if dtype in (torch.float16, torch.float32, torch.float64):
28
+ return dtype
29
+ return torch.float32
30
+
31
+
32
+ def matmul(A: Optional[Tensor], B: Tensor) -> Tensor:
33
+ """Multiply two matrices.
34
+
35
+ If A is None, return B. A can be sparse or dense. B is always
36
+ dense.
37
+ """
38
+ if A is None:
39
+ return B
40
+ if is_sparse(A):
41
+ return torch.sparse.mm(A, B)
42
+ return torch.matmul(A, B)
43
+
44
+
45
+ def bform(X: Tensor, A: Optional[Tensor], Y: Tensor) -> Tensor:
46
+ """Return bilinear form of matrices: :math:`X^T A Y`."""
47
+ return matmul(X.mT, matmul(A, Y))
48
+
49
+
50
+ def qform(A: Optional[Tensor], S: Tensor):
51
+ """Return quadratic form :math:`S^T A S`."""
52
+ return bform(S, A, S)
53
+
54
+
55
+ def basis(A):
56
+ """Return orthogonal basis of A columns."""
57
+ return torch.linalg.qr(A).Q
58
+
59
+
60
+ def symeig(A: Tensor, largest: Optional[bool] = False) -> Tuple[Tensor, Tensor]:
61
+ """Return eigenpairs of A with specified ordering."""
62
+ if largest is None:
63
+ largest = False
64
+ E, Z = torch.linalg.eigh(A, UPLO="U")
65
+ # assuming that E is ordered
66
+ if largest:
67
+ E = torch.flip(E, dims=(-1,))
68
+ Z = torch.flip(Z, dims=(-1,))
69
+ return E, Z
70
+
71
+
72
+ # These functions were deprecated and removed
73
+ # This nice error message can be removed in version 1.13+
74
+ def matrix_rank(input, tol=None, symmetric=False, *, out=None) -> Tensor:
75
+ raise RuntimeError(
76
+ "This function was deprecated since version 1.9 and is now removed.\n"
77
+ "Please use the `torch.linalg.matrix_rank` function instead. "
78
+ "The parameter 'symmetric' was renamed in `torch.linalg.matrix_rank()` to 'hermitian'."
79
+ )
80
+
81
+
82
+ def solve(input: Tensor, A: Tensor, *, out=None) -> Tuple[Tensor, Tensor]:
83
+ raise RuntimeError(
84
+ "This function was deprecated since version 1.9 and is now removed. "
85
+ "`torch.solve` is deprecated in favor of `torch.linalg.solve`. "
86
+ "`torch.linalg.solve` has its arguments reversed and does not return the LU factorization.\n\n"
87
+ "To get the LU factorization see `torch.lu`, which can be used with `torch.lu_solve` or `torch.lu_unpack`.\n"
88
+ "X = torch.solve(B, A).solution "
89
+ "should be replaced with:\n"
90
+ "X = torch.linalg.solve(A, B)"
91
+ )
92
+
93
+
94
+ def lstsq(input: Tensor, A: Tensor, *, out=None) -> Tuple[Tensor, Tensor]:
95
+ raise RuntimeError(
96
+ "This function was deprecated since version 1.9 and is now removed. "
97
+ "`torch.lstsq` is deprecated in favor of `torch.linalg.lstsq`.\n"
98
+ "`torch.linalg.lstsq` has reversed arguments and does not return the QR decomposition in "
99
+ "the returned tuple (although it returns other information about the problem).\n\n"
100
+ "To get the QR decomposition consider using `torch.linalg.qr`.\n\n"
101
+ "The returned solution in `torch.lstsq` stored the residuals of the solution in the "
102
+ "last m - n columns of the returned value whenever m > n. In torch.linalg.lstsq, "
103
+ "the residuals are in the field 'residuals' of the returned named tuple.\n\n"
104
+ "The unpacking of the solution, as in\n"
105
+ "X, _ = torch.lstsq(B, A).solution[:A.size(1)]\n"
106
+ "should be replaced with:\n"
107
+ "X = torch.linalg.lstsq(A, B).solution"
108
+ )
109
+
110
+
111
+ def _symeig(
112
+ input,
113
+ eigenvectors=False,
114
+ upper=True,
115
+ *,
116
+ out=None,
117
+ ) -> Tuple[Tensor, Tensor]:
118
+ raise RuntimeError(
119
+ "This function was deprecated since version 1.9 and is now removed. "
120
+ "The default behavior has changed from using the upper triangular portion of the matrix by default "
121
+ "to using the lower triangular portion.\n\n"
122
+ "L, _ = torch.symeig(A, upper=upper) "
123
+ "should be replaced with:\n"
124
+ "L = torch.linalg.eigvalsh(A, UPLO='U' if upper else 'L')\n\n"
125
+ "and\n\n"
126
+ "L, V = torch.symeig(A, eigenvectors=True) "
127
+ "should be replaced with:\n"
128
+ "L, V = torch.linalg.eigh(A, UPLO='U' if upper else 'L')"
129
+ )
130
+
131
+
132
+ def eig(
133
+ self: Tensor,
134
+ eigenvectors: bool = False,
135
+ *,
136
+ e=None,
137
+ v=None,
138
+ ) -> Tuple[Tensor, Tensor]:
139
+ raise RuntimeError(
140
+ "This function was deprecated since version 1.9 and is now removed. "
141
+ "`torch.linalg.eig` returns complex tensors of dtype `cfloat` or `cdouble` rather than real tensors "
142
+ "mimicking complex tensors.\n\n"
143
+ "L, _ = torch.eig(A) "
144
+ "should be replaced with:\n"
145
+ "L_complex = torch.linalg.eigvals(A)\n\n"
146
+ "and\n\n"
147
+ "L, V = torch.eig(A, eigenvectors=True) "
148
+ "should be replaced with:\n"
149
+ "L_complex, V_complex = torch.linalg.eig(A)"
150
+ )
lib/python3.10/site-packages/torch/_namedtensor_internals.py ADDED
@@ -0,0 +1,159 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # mypy: allow-untyped-defs
2
+ from collections import OrderedDict
3
+
4
+
5
+ """
6
+ This file contains helper functions that implement experimental functionality
7
+ for named tensors in python. All of these are experimental, unstable, and
8
+ subject to change or deletion.
9
+ """
10
+
11
+
12
+ def check_serializing_named_tensor(tensor):
13
+ if tensor.has_names():
14
+ raise RuntimeError(
15
+ "NYI: Named tensors don't support serialization. Please drop "
16
+ "names via `tensor = tensor.rename(None)` before serialization."
17
+ )
18
+
19
+
20
+ def build_dim_map(tensor):
21
+ """Returns a map of { dim: dim_name } where dim is a name if the dim is named
22
+ and the dim index otherwise."""
23
+ return OrderedDict(
24
+ [(idx if name is None else name, name) for idx, name in enumerate(tensor.names)]
25
+ )
26
+
27
+
28
+ def unzip_namedshape(namedshape):
29
+ if isinstance(namedshape, OrderedDict):
30
+ namedshape = namedshape.items()
31
+ if not hasattr(namedshape, "__iter__") and not isinstance(namedshape, tuple):
32
+ raise RuntimeError(
33
+ f"Expected namedshape to be OrderedDict or iterable of tuples, got: {type(namedshape)}"
34
+ )
35
+ if len(namedshape) == 0:
36
+ raise RuntimeError("Expected namedshape to non-empty.")
37
+ return zip(*namedshape)
38
+
39
+
40
+ def namer_api_name(inplace):
41
+ if inplace:
42
+ return "rename_"
43
+ else:
44
+ return "rename"
45
+
46
+
47
+ def is_ellipsis(item):
48
+ return item == Ellipsis or item == "..."
49
+
50
+
51
+ def single_ellipsis_index(names, fn_name):
52
+ ellipsis_indices = [i for i, name in enumerate(names) if is_ellipsis(name)]
53
+ if len(ellipsis_indices) >= 2:
54
+ raise RuntimeError(
55
+ f"{fn_name}: More than one Ellipsis ('...') found in names ("
56
+ f"{names}). This function supports up to one Ellipsis."
57
+ )
58
+ if len(ellipsis_indices) == 1:
59
+ return ellipsis_indices[0]
60
+ return None
61
+
62
+
63
+ def expand_single_ellipsis(numel_pre_glob, numel_post_glob, names):
64
+ return names[numel_pre_glob : len(names) - numel_post_glob]
65
+
66
+
67
+ def replace_ellipsis_by_position(ellipsis_idx, names, tensor_names):
68
+ globbed_names = expand_single_ellipsis(
69
+ ellipsis_idx, len(names) - ellipsis_idx - 1, tensor_names
70
+ )
71
+ return names[:ellipsis_idx] + globbed_names + names[ellipsis_idx + 1 :]
72
+
73
+
74
+ def resolve_ellipsis(names, tensor_names, fn_name):
75
+ """
76
+ Expands ... inside `names` to be equal to a list of names from `tensor_names`.
77
+ """
78
+ ellipsis_idx = single_ellipsis_index(names, fn_name)
79
+ if ellipsis_idx is None:
80
+ return names
81
+ return replace_ellipsis_by_position(ellipsis_idx, names, tensor_names)
82
+
83
+
84
+ def update_names_with_list(tensor, names, inplace):
85
+ # Special case for tensor.rename(None)
86
+ if len(names) == 1 and names[0] is None:
87
+ return tensor._update_names(None, inplace)
88
+
89
+ return tensor._update_names(
90
+ resolve_ellipsis(names, tensor.names, namer_api_name(inplace)), inplace
91
+ )
92
+
93
+
94
+ def update_names_with_mapping(tensor, rename_map, inplace):
95
+ dim_map = build_dim_map(tensor)
96
+ for old_dim in rename_map.keys():
97
+ new_dim = rename_map[old_dim]
98
+ if old_dim in dim_map.keys():
99
+ dim_map[old_dim] = new_dim
100
+ else:
101
+ raise RuntimeError(
102
+ f"{namer_api_name(inplace)}: Tried to rename dim '{old_dim}' to dim "
103
+ f"{new_dim} in Tensor[{tensor.names}] but dim '{old_dim}' does not exist"
104
+ )
105
+ return tensor._update_names(tuple(dim_map.values()), inplace)
106
+
107
+
108
+ def update_names(tensor, names, rename_map, inplace):
109
+ """There are two usages:
110
+
111
+ tensor.rename(*names) returns a view on tensor with named dims `names`.
112
+ `names` must be of length `tensor.dim()`; otherwise, if '...' is in `names`,
113
+ then it is expanded greedily to be equal to the corresponding names from
114
+ `tensor.names`.
115
+
116
+ For example,
117
+ ```
118
+ >>> # xdoctest: +SKIP
119
+ >>> x = torch.empty(2, 3, 5, 7, names=('N', 'C', 'H', 'W'))
120
+ >>> x.rename('...', 'height', 'width').names
121
+ ('N', 'C', 'height', 'width')
122
+
123
+ >>> # xdoctest: +SKIP
124
+ >>> x.rename('batch', '...', 'width').names
125
+ ('batch', 'C', 'H', 'width')
126
+
127
+ ```
128
+
129
+ tensor.rename(**rename_map) returns a view on tensor that has rename dims
130
+ as specified in the mapping `rename_map`.
131
+
132
+ For example,
133
+ ```
134
+ >>> # xdoctest: +SKIP
135
+ >>> x = torch.empty(2, 3, 5, 7, names=('N', 'C', 'H', 'W'))
136
+ >>> x.rename(W='width', H='height').names
137
+ ('N', 'C', 'height', 'width')
138
+
139
+ ```
140
+
141
+ Finally, tensor.rename has an in-place version called tensor.rename_.
142
+ """
143
+ has_names = len(names) > 0
144
+ has_rename_pairs = bool(rename_map)
145
+ if has_names and has_rename_pairs:
146
+ raise RuntimeError(
147
+ f"{namer_api_name(inplace)}: This function takes either positional "
148
+ f"args or keyword args, but not both. Use tensor.{namer_api_name(inplace)}(*names) "
149
+ f"to name dims and tensor.{namer_api_name(inplace)}(**rename_map) to rename "
150
+ "dims."
151
+ )
152
+
153
+ # Special case for tensor.rename(*[]), which is valid for a 0 dim tensor.
154
+ if not has_names and not has_rename_pairs:
155
+ return update_names_with_list(tensor, names, inplace)
156
+
157
+ if has_names:
158
+ return update_names_with_list(tensor, names, inplace)
159
+ return update_names_with_mapping(tensor, rename_map, inplace)
lib/python3.10/site-packages/torch/_ops.py ADDED
@@ -0,0 +1,1362 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # mypy: allow-untyped-defs
2
+ import abc
3
+ import contextlib
4
+ import ctypes
5
+ import importlib
6
+ import inspect
7
+ import sys
8
+ import types
9
+ from typing import Any, Callable, Dict, List, Set, Type, TypeVar, Union
10
+
11
+ import torch
12
+ import torch.utils._pytree as pytree
13
+ from torch import _utils_internal
14
+ from torch._C import _dispatch_is_included_in_alias as is_included_in_alias, DispatchKey
15
+ from torch._functorch.pyfunctorch import dispatch_functorch
16
+ from torch.utils._python_dispatch import TorchDispatchMode
17
+
18
+
19
+ _F = TypeVar("_F", bound=Callable[..., Any])
20
+
21
+
22
+ # Query `hasattr` only once.
23
+ _SET_GLOBAL_FLAGS = hasattr(sys, "getdlopenflags") and hasattr(sys, "setdlopenflags")
24
+
25
+
26
+ @contextlib.contextmanager
27
+ def dl_open_guard():
28
+ """
29
+ Context manager to set the RTLD_GLOBAL dynamic linker flag while we open a
30
+ shared library to load custom operators.
31
+ """
32
+ if not _SET_GLOBAL_FLAGS:
33
+ yield
34
+ return
35
+ old_flags = sys.getdlopenflags()
36
+ sys.setdlopenflags(old_flags | ctypes.RTLD_GLOBAL)
37
+ try:
38
+ yield
39
+ finally:
40
+ sys.setdlopenflags(old_flags)
41
+
42
+
43
+ class OperatorBase:
44
+ """
45
+ Base class for OpOverload (which represents C++ ATen operators) and HigherOrderOperator
46
+ (which represents Python-only operators that are unrepresentable in TorchScript).
47
+ """
48
+
49
+ def __init__(self):
50
+ # The dispatch cache precomputes a mapping of dispatch key that the
51
+ # dispatcher wants to dispatch to, to an actual implementation of the
52
+ # dispatch key. Confusingly, the actual implementation could *also* be a
53
+ # dispatch key, but in this case, this refers to the C++ kernel that
54
+ # was registered to some dispatch key. Aliases are permitted in the
55
+ # latter but not the former; for example, you might lookup the
56
+ # entry for AutogradCPU, and this maps you to the Autograd key for
57
+ # the generic autograd kernel that works for all devices. Since this
58
+ # is the Python dispatcher, you can also put an arbitrary Python
59
+ # callable to call instead. This handler gets precisely the
60
+ # args/kwargs that the operator was __call__'ed with.
61
+ # NB: This name is hard-coded in torch/csrc/autograd/python_variable.cpp
62
+ # for use with OpOverload; cache lookup is done entirely from C++
63
+ # for speed.
64
+ # TODO: The cache is NOT currently used by HigherOrderOperator, but it should!
65
+ self._dispatch_cache: Dict[
66
+ DispatchKey, Union[DispatchKey, Callable[..., Any]]
67
+ ] = {}
68
+
69
+ # This table allows you to override the behavior of a particular
70
+ # dispatch key to call a custom Python function, rather than the
71
+ # ordinary C++ configured behavior. This is the raison d'etre of
72
+ # Python dispatcher: to let you program the dispatcher from Python
73
+ # in case you need something unusual, and don't want to clobber
74
+ # the existing registrations using the Python operator registration
75
+ # API.
76
+ self.py_kernels: Dict[DispatchKey, Callable[..., Any]] = {}
77
+
78
+ # This table allows you to override the behavior of a particular
79
+ # operator for a particular TorchDispatchMode. In practice,
80
+ # we are using this mostly for ProxyTensorMode. Modes can be
81
+ # thought of as an open world extension of dispatch keys, so it
82
+ # makes sense that you should be able to register them, the same
83
+ # way you can register dispatch keys.
84
+ self.python_key_table: Dict[
85
+ Union[Type[TorchDispatchMode], Type[torch.Tensor]], Callable[..., Any]
86
+ ] = {}
87
+
88
+ # This table allows you to override the behavior of functorch
89
+ # transformations. NB: this currently only does something for
90
+ # HigherOrderOperator
91
+ self.functorch_table = {}
92
+
93
+ def __call__(self, *args, **kwargs):
94
+ raise NotImplementedError
95
+
96
+ def has_kernel_for_dispatch_key(self, k):
97
+ return k in self.py_kernels
98
+
99
+ def has_kernel_for_any_dispatch_key(self, ks):
100
+ for k in self.py_kernels:
101
+ if not torch._C._dispatch_is_alias_key(k) and ks.has(k):
102
+ return True
103
+ return False
104
+
105
+ def py_impl(self, k: Any) -> Callable[[_F], _F]:
106
+ def inner(fn: _F) -> _F:
107
+ if inspect.isclass(k) and (
108
+ issubclass(k, TorchDispatchMode) or issubclass(k, torch.Tensor)
109
+ ):
110
+ assert k not in self.python_key_table
111
+ # TODO(voz): Should we replace setting DispatchKey.Python entirely with setting mode keys?
112
+ self.python_key_table[k] = fn
113
+ self._dispatch_cache.clear()
114
+ return fn
115
+
116
+ if isinstance(k, torch._C._functorch.TransformType):
117
+ assert k not in self.functorch_table
118
+ self.functorch_table[k] = fn
119
+ return fn
120
+
121
+ assert isinstance(k, DispatchKey)
122
+ assert (
123
+ k != DispatchKey.Python
124
+ ), "Please register a mode for the torch._C.DispatchKey.Python key instead."
125
+
126
+ if k in self.py_kernels:
127
+ raise RuntimeError(
128
+ f"Trying to override a python impl for {k} on operator {self.name()}"
129
+ )
130
+ self.py_kernels[k] = fn
131
+ self._dispatch_cache.clear()
132
+ return fn
133
+
134
+ return inner
135
+
136
+ # Registers an implementation to all **3** variants of functionalization that we have:
137
+ # - DispatchKey.Functionalize
138
+ # - functorch.TransformType.Functionalize
139
+ # - FunctionalTensorMode
140
+ # Example:
141
+ # @py_functionalize_impl
142
+ # def functionalize_rule(ctx, inner_f, *args):
143
+ # args_unwrapped = ctx.unwrap_tensors(args)
144
+ # with ctx.redispatch_to_next():
145
+ # out = ctx.functionalize(inner_f)(*args_unwrapped)
146
+ # return ctx.wrap_tensors(out)
147
+ def py_functionalize_impl(self, fn: _F) -> _F:
148
+ from torch._subclasses.functional_tensor import (
149
+ CppFunctionalizeAPI as _CppFunctionalizeAPI,
150
+ FunctorchFunctionalizeAPI as _FunctorchFunctionalizeAPI,
151
+ PythonFunctionalizeAPI as _PythonFunctionalizeAPI,
152
+ )
153
+
154
+ # Construct our three flavors of functionalization,
155
+ # each of which have slightly different wrap/unwrap/redispatch policies
156
+ def functionalize_dk_fn(*args, **kwargs):
157
+ return fn(_CppFunctionalizeAPI(), *args, **kwargs)
158
+
159
+ def functionalize_dispatch_mode_fn(mode, *args, **kwargs):
160
+ return fn(_PythonFunctionalizeAPI(mode), *args, **kwargs)
161
+
162
+ def functionalize_functorch_fn(interpreter, *args, **kwargs):
163
+ return fn(_FunctorchFunctionalizeAPI(interpreter), *args, **kwargs)
164
+
165
+ self.py_impl(DispatchKey.Functionalize)(functionalize_dk_fn)
166
+ self.py_impl(torch._subclasses.functional_tensor.FunctionalTensorMode)(
167
+ functionalize_dispatch_mode_fn
168
+ )
169
+ self.py_impl(torch._C._functorch.TransformType.Functionalize)(
170
+ functionalize_functorch_fn
171
+ )
172
+
173
+ return fn
174
+
175
+ def name(self):
176
+ raise NotImplementedError
177
+
178
+
179
+ # Equivalent to computeDispatchTableEntryWithDebug
180
+ def resolve_key(op: OperatorBase, k: DispatchKey): # type: ignore[valid-type]
181
+ # 1. (Direct) operator registration
182
+ if op.has_kernel_for_dispatch_key(k):
183
+ return k
184
+ # 2.1 Use CompositeExplicitAutogradNonFunctional kernel if available
185
+ cand = DispatchKey.CompositeExplicitAutogradNonFunctional
186
+ if (
187
+ k == DispatchKey.Undefined or is_included_in_alias(k, cand)
188
+ ) and op.has_kernel_for_dispatch_key(cand):
189
+ return cand
190
+ # 2.2 Use CompositeExplicitAutograd kernel if available
191
+ cand = DispatchKey.CompositeExplicitAutograd
192
+ if (
193
+ k == DispatchKey.Undefined or is_included_in_alias(k, cand)
194
+ ) and op.has_kernel_for_dispatch_key(cand):
195
+ return cand
196
+ has_backend_kernel = op.has_kernel_for_any_dispatch_key(
197
+ torch._C._dispatch_get_backend_keyset_from_autograd(k)
198
+ ) or op.has_kernel_for_dispatch_key(DispatchKey.CompositeExplicitAutograd)
199
+ # 2.3. Use CompositeImplicitAutograd kernel if available
200
+ cand = DispatchKey.CompositeImplicitAutogradNestedTensor
201
+ if (
202
+ (k != DispatchKey.Undefined and is_included_in_alias(k, cand))
203
+ and op.has_kernel_for_dispatch_key(cand)
204
+ and not has_backend_kernel
205
+ ):
206
+ return cand
207
+ cand = DispatchKey.CompositeImplicitAutograd
208
+ if (
209
+ k == DispatchKey.Undefined or is_included_in_alias(k, cand)
210
+ ) and op.has_kernel_for_dispatch_key(cand):
211
+ if k == DispatchKey.AutogradOther and op.has_kernel_for_any_dispatch_key(
212
+ torch._C._dispatch_autogradother_backends
213
+ ):
214
+ raise RuntimeError("ambiguous autogradother kernel")
215
+ elif not has_backend_kernel:
216
+ return cand
217
+ # 2.4. For autograd backend keys, use kernel from DispatchKey::Autograd if available
218
+ cand = DispatchKey.Autograd
219
+ if is_included_in_alias(k, cand) and op.has_kernel_for_dispatch_key(cand):
220
+ return cand
221
+ # 2.5 Use kernel from DispatchKey::FuncTorchBatchedDecomposition if available
222
+ cand = DispatchKey.FuncTorchBatchedDecomposition
223
+ if is_included_in_alias(k, cand) and op.has_kernel_for_dispatch_key(cand):
224
+ return cand
225
+ # Backend fallback
226
+ if torch._C._dispatch_has_backend_fallback(k):
227
+ # The dispatch key itself will implicitly route to backend fallback.
228
+ # This is probably not great for the pure Python implementation.
229
+ return k
230
+ raise NotImplementedError(f"could not find kernel for {op} at dispatch key {k}")
231
+
232
+
233
+ _higher_order_ops: Dict[str, "HigherOrderOperator"] = {}
234
+
235
+ _HIGHER_ORDER_OP_DEFAULT_FALLTHROUGH_DISPATCH_KEYS = [
236
+ DispatchKey.PythonDispatcher, # type: ignore[attr-defined]
237
+ DispatchKey.PythonTLSSnapshot, # type: ignore[attr-defined]
238
+ DispatchKey.ADInplaceOrView,
239
+ DispatchKey.BackendSelect,
240
+ DispatchKey.AutocastCPU, # type: ignore[attr-defined]
241
+ DispatchKey.AutocastCUDA, # type: ignore[attr-defined]
242
+ ]
243
+
244
+
245
+ class HigherOrderOperator(OperatorBase, abc.ABC):
246
+ # The HigherOrderOperator will appear as torch.ops.higher_order.{name}
247
+ #
248
+ # If you're creating a new HigherOrderOperator, please do not change the
249
+ # default. Adding operators to the global torch.ops namespace is a bad
250
+ # practice due to name collisions.
251
+ def __init__(self, name, *, cacheable=False):
252
+ super().__init__()
253
+ if type(self) is HigherOrderOperator:
254
+ raise RuntimeError(
255
+ "Direct instantiation of HigherOrderOperator is not allowed. Please subclass it."
256
+ )
257
+ self._name = name
258
+
259
+ # Make _OPNamespace not scream, this whole name based association needs a good hard look
260
+ self.__name__ = name
261
+ _higher_order_ops[name] = self
262
+ self._ns = "higher_order"
263
+ self.__module__ = "torch.ops.higher_order"
264
+ self._cacheable = cacheable
265
+
266
+ self.non_fallthrough_keys = torch._C._dispatch_keyset_full()
267
+
268
+ for dispatch_key in _HIGHER_ORDER_OP_DEFAULT_FALLTHROUGH_DISPATCH_KEYS:
269
+ self.fallthrough(dispatch_key)
270
+
271
+ # [NOTE] We have to register pre-dispatch key implementation
272
+ # because sometimes HOP use aot-dispatch tracing to detect certaion
273
+ # mutations. This is problematic when we are functionalizing HOP
274
+ # during pre-dispatch because when the inner tracer starts, it will see
275
+ # that PreDispatch key is still active. In that case, we just redispatch
276
+ # it to next key. This is only safe to do when PreDispatch key stack has no
277
+ # active modes.
278
+
279
+ def py_impl(self, k: Any) -> Callable[[_F], _F]:
280
+ if isinstance(k, DispatchKey) and not self.non_fallthrough_keys.has(k):
281
+ self.non_fallthrough_keys = self.non_fallthrough_keys.add(k)
282
+ return super().py_impl(k)
283
+
284
+ @property
285
+ def namespace(self):
286
+ return self._ns
287
+
288
+ def cacheable(self):
289
+ return self._cacheable
290
+
291
+ def fallthrough(self, dispatch_key):
292
+ self.non_fallthrough_keys = self.non_fallthrough_keys.remove(dispatch_key)
293
+
294
+ # Use positional-only argument to avoid naming collide with custom ops arguments
295
+ # that are named "self".
296
+ def dispatch(self, /, dispatch_key, *args, **kwargs):
297
+ from torch.utils._python_dispatch import _get_current_dispatch_mode
298
+
299
+ if dispatch_key in self._dispatch_cache:
300
+ kernel = self._dispatch_cache[dispatch_key]
301
+ assert not isinstance(kernel, DispatchKey)
302
+ return kernel(*args, **kwargs)
303
+
304
+ if dispatch_key == DispatchKey.FuncTorchDynamicLayerFrontMode:
305
+ return dispatch_functorch(self, args, kwargs)
306
+
307
+ if dispatch_key == DispatchKey.Python:
308
+ # Keep the following 1:1 with handle_torch_function_no_python_arg_parser
309
+ # in torch/csrc/utils/python_arg_parser.cpp
310
+
311
+ overloaded_args_list = []
312
+
313
+ def has_python_key(tensor):
314
+ return torch._C._dispatch_keys(tensor).has("Python")
315
+
316
+ def check_overloaded(arg):
317
+ if isinstance(arg, torch.Tensor) and has_python_key(arg):
318
+ overloaded_args_list.append(arg)
319
+
320
+ for arg in (*args, *kwargs.values()):
321
+ check_overloaded(arg)
322
+ if isinstance(arg, (list, tuple)):
323
+ for a in arg:
324
+ check_overloaded(a)
325
+
326
+ overloaded_args = tuple(overloaded_args_list)
327
+ overloaded_types = tuple(type(arg) for arg in overloaded_args)
328
+
329
+ # Step 1: dispatch on any user TorchDispatchModes
330
+ from torch.utils._python_dispatch import _pop_mode_temporarily
331
+
332
+ curr_mode = _get_current_dispatch_mode()
333
+ if curr_mode is not None:
334
+ if type(curr_mode) in self.python_key_table:
335
+ handler = self.python_key_table[type(curr_mode)]
336
+ with _pop_mode_temporarily() as mode:
337
+ # "natural" calling convention: (mode, *args, **kwargs)
338
+ # TODO(rzou): we should support torch_dispatch calling convention too.
339
+ result = handler(mode, *args, **kwargs)
340
+ else:
341
+ raise NotImplementedError(
342
+ f"There was no rule registered for HOP {self._name} and mode {curr_mode}. "
343
+ f"We recommend filing an issue."
344
+ )
345
+ if result is not NotImplemented:
346
+ return result
347
+
348
+ # Step 2: dispatch on any subclasses
349
+ for arg in overloaded_args:
350
+ subclass_type = type(arg)
351
+ if (
352
+ subclass_type.__torch_dispatch__
353
+ == torch._C._disabled_torch_dispatch_impl
354
+ ):
355
+ continue
356
+ if subclass_type in self.python_key_table:
357
+ handler = self.python_key_table[subclass_type]
358
+ # "natural" calling convention: (*args, **kwargs)
359
+ # TODO(rzou): we should support torch_dispatch calling convention too.
360
+ result = handler(*args, **kwargs)
361
+ else:
362
+ raise NotImplementedError(
363
+ f"There was no rule registered for HOP {self._name} and subclass {subclass_type}. "
364
+ f"We recommend filing an issue."
365
+ )
366
+ if result is not NotImplemented:
367
+ return result
368
+
369
+ # All handlers returned NotImplemented
370
+ raise TypeError(
371
+ f"Multiple dispatch failed for {self._name}. There was no registered that "
372
+ f"did not return NotImplemented. Use HOP.py_impl to register some. "
373
+ f"Tried mode: {curr_mode}) and subclasses: "
374
+ f"{[type(a) for a in overloaded_args]}"
375
+ )
376
+
377
+ functionality_key = torch._C._to_functionality_key(dispatch_key) # type: ignore[attr-defined]
378
+ if functionality_key == DispatchKey.PreDispatch:
379
+ from torch.utils._python_dispatch import _pop_mode_temporarily
380
+
381
+ # The check for Python in the exclude set is so we properly respect `with no_dispatch()`
382
+ # calls inside of a mode.
383
+ if (
384
+ _len_torch_dispatch_stack_pre_dispatch() > 0
385
+ ) and not torch._C._dispatch_tls_is_dispatch_key_excluded(
386
+ DispatchKey.Python
387
+ ):
388
+ curr_mode = _get_current_dispatch_mode_pre_dispatch()
389
+ assert (
390
+ curr_mode is not None
391
+ ), "Illegal invocation of dispatch on torch._C.DispatchKey.PreDispatch without a mode."
392
+ assert (
393
+ type(curr_mode) in self.python_key_table
394
+ ), f"Current active mode {curr_mode} not registered"
395
+ handler = self.python_key_table[type(curr_mode)]
396
+ with _pop_mode_temporarily(functionality_key) as mode:
397
+ return handler(mode, *args, **kwargs)
398
+
399
+ final_key = resolve_key(self, dispatch_key)
400
+
401
+ # This can current fail due to backend fallbacks. You just have to
402
+ # register them by hand for HigherOrderOperator.
403
+ if final_key not in self.py_kernels:
404
+ raise NotImplementedError(
405
+ f"could not find kernel for HigherOrderOperator {self._name} "
406
+ f"at dispatch key {final_key} (resolved from {dispatch_key})"
407
+ )
408
+
409
+ # [NOTE] We shouldn't cache PreDispatch kernel here because depending
410
+ # on what modes are active, predispatch behaviour is different.
411
+ # Also we do same thing for normal ops:
412
+ # See Note [Not Caching Per-Dispatch-Key Mode Handlers]
413
+ if dispatch_key != DispatchKey.PreDispatch:
414
+ self._dispatch_cache[dispatch_key] = self.py_kernels[final_key]
415
+ kernel = self.py_kernels[final_key]
416
+ # It's illegal to register DispatchKey to py_kernels, since there's no
417
+ # C++ kernel to call into
418
+ assert not isinstance(kernel, DispatchKey)
419
+ return kernel(*args, **kwargs)
420
+
421
+ @abc.abstractmethod
422
+ def __call__(self, /, *args, **kwargs):
423
+ # Dynamo already traces the body of HigherOrderOp beforehand when it
424
+ # so no need to trace into it.
425
+ from torch._dynamo import disable
426
+
427
+ @disable
428
+ def wrapper():
429
+ flat_args = _to_flat_tuple(args, kwargs)
430
+ if torch.overrides.has_torch_function(flat_args):
431
+ return torch.overrides.handle_torch_function(
432
+ self, flat_args, *args, **kwargs
433
+ )
434
+
435
+ dispatch_key_set = _compute_keyset(args, kwargs, self.non_fallthrough_keys)
436
+ return self.dispatch(
437
+ dispatch_key_set.highestPriorityTypeId(), *args, **kwargs
438
+ )
439
+
440
+ return wrapper()
441
+
442
+ def __str__(self):
443
+ return f"{self.name()}"
444
+
445
+ def name(self):
446
+ return self._name
447
+
448
+
449
+ def _to_flat_tuple(args, kwargs):
450
+ return pytree.arg_tree_leaves(*args, **kwargs)
451
+
452
+
453
+ def _compute_keyset(args, kwargs, non_fallthrough_keys):
454
+ tensors = _get_tensors(args, kwargs)
455
+ return key_extractor(tensors, non_fallthrough_keys)
456
+
457
+
458
+ def _get_tensors(args, kwargs):
459
+ flat_all = _to_flat_tuple(args, kwargs)
460
+ tensor_args = [t for t in flat_all if isinstance(t, torch.Tensor)]
461
+ return tuple(tensor_args)
462
+
463
+
464
+ # Note - this should maintain identical impl to the C++ dispatcher key extraction logic
465
+ # at ATen/core/dispatch/DispatchKeyExtractor.h
466
+ def key_extractor(tensors, key_mask):
467
+ key_set = torch._C._dispatch_tls_local_include_set()
468
+ for tensor in tensors:
469
+ key_set = key_set | torch._C._dispatch_keys(tensor)
470
+ key_set = key_set - torch._C._dispatch_tls_local_exclude_set()
471
+ key_set = key_set & key_mask
472
+ return key_set
473
+
474
+
475
+ # Mode stack for PreDispatchKey
476
+ # it should always have three keys with
477
+ # priority given to FunctionalTensorMode and
478
+ # then ProxyTorchDispatchMode. It means that
479
+ # slot 0 belongs to ProxyTorchDispatchMode and
480
+ # slot 1 belongs to FunctionalTensorMode.
481
+ #
482
+ # SchemaCheckMode is separate from the other 2,
483
+ # and is only valid when the stack is empty.
484
+ # SchemaCheckMode is for testing purposes, and
485
+ # is meant to run in eager mode on concrete inputs,
486
+ # checking for incorrect schemas in regards to
487
+ # aliasing or mutating ops.
488
+ class _ModeStackStateForPreDispatch:
489
+ def __init__(self):
490
+ self.__infra_modes = [None, None]
491
+ self._schema_check_mode = None
492
+
493
+ def set(self, index, mode):
494
+ assert index < len(self.__infra_modes)
495
+ self.__infra_modes[index] = mode
496
+
497
+ def get(self, index):
498
+ assert index < len(self.__infra_modes)
499
+ return self.__infra_modes[index]
500
+
501
+ def count(self):
502
+ return len([i for i in self.__infra_modes if i is not None]) + int(
503
+ self._schema_check_mode is not None
504
+ )
505
+
506
+
507
+ _mode_stack_state_for_pre_dispatch = _ModeStackStateForPreDispatch()
508
+
509
+
510
+ def unset_mode_pre_dispatch(mode_key, schema_check=False):
511
+ current_mode_stack_pre_dispatch = mode_stack_state_for_pre_dispatch()
512
+ assert mode_key is None or mode_key in (
513
+ torch._C._TorchDispatchModeKey.PROXY,
514
+ torch._C._TorchDispatchModeKey.FUNCTIONAL,
515
+ )
516
+ if schema_check:
517
+ assert mode_key is None
518
+
519
+ def _unset_mode():
520
+ if mode_key == torch._C._TorchDispatchModeKey.PROXY:
521
+ current_mode = current_mode_stack_pre_dispatch.get(0)
522
+ mode_stack_state_for_pre_dispatch().set(0, None)
523
+ return current_mode
524
+ elif mode_key == torch._C._TorchDispatchModeKey.FUNCTIONAL:
525
+ current_mode = current_mode_stack_pre_dispatch.get(1)
526
+ mode_stack_state_for_pre_dispatch().set(1, None)
527
+ return current_mode
528
+ else:
529
+ current_mode = mode_stack_state_for_pre_dispatch()._schema_check_mode
530
+ mode_stack_state_for_pre_dispatch()._schema_check_mode = None
531
+ return current_mode
532
+
533
+ current_mode = _unset_mode()
534
+
535
+ new_pre_dispatch_len = _len_torch_dispatch_stack_pre_dispatch()
536
+ # When we are unsetting a mode, we need to check if there is
537
+ # active mode left on the PreDispatch key. If there is nothing
538
+ # active, we need to remove PreDispatch key from local dispatch include
539
+ # set.
540
+ if new_pre_dispatch_len == 0:
541
+ torch._C._dispatch_tls_set_dispatch_key_included(DispatchKey.PreDispatch, False)
542
+
543
+ return current_mode
544
+
545
+
546
+ def _set_mode_pre_dispatch(mode):
547
+ from torch._subclasses.functional_tensor import FunctionalTensorMode
548
+ from torch._subclasses.schema_check_mode import SchemaCheckMode
549
+ from torch.fx.experimental.proxy_tensor import ProxyTorchDispatchMode
550
+
551
+ assert isinstance(
552
+ mode,
553
+ (
554
+ FunctionalTensorMode,
555
+ ProxyTorchDispatchMode,
556
+ SchemaCheckMode,
557
+ ),
558
+ )
559
+
560
+ previous_mode_stack_len = _len_torch_dispatch_stack_pre_dispatch()
561
+ if isinstance(mode, SchemaCheckMode):
562
+ current_mode = mode_stack_state_for_pre_dispatch()._schema_check_mode
563
+ if previous_mode_stack_len > 0:
564
+ raise AssertionError(
565
+ "SchemaCheckMode for pre-dispatch must be used exclusively, found other modes on the stack"
566
+ )
567
+ mode_stack_state_for_pre_dispatch()._schema_check_mode = mode
568
+ elif isinstance(mode, FunctionalTensorMode):
569
+ current_mode = mode_stack_state_for_pre_dispatch().get(1)
570
+ assert current_mode is None
571
+ mode_stack_state_for_pre_dispatch().set(1, mode)
572
+ else:
573
+ current_mode = mode_stack_state_for_pre_dispatch().get(0)
574
+ assert current_mode is None
575
+ mode_stack_state_for_pre_dispatch().set(0, mode)
576
+
577
+ # When we are setting a mode, we need to check if there is
578
+ # active mode left on the PreDispatch key. If there was nothing
579
+ # active before setting this mode, it means that PreDispatch key
580
+ # was turned off. So we need to turn it on again.
581
+ if previous_mode_stack_len == 0:
582
+ torch._C._dispatch_tls_set_dispatch_key_included(DispatchKey.PreDispatch, True)
583
+
584
+
585
+ def _pop_mode_from_pre_dispatch():
586
+ mode_stack = mode_stack_state_for_pre_dispatch()
587
+ pre_dispatch_len = _len_torch_dispatch_stack_pre_dispatch()
588
+
589
+ if pre_dispatch_len == 0:
590
+ raise AssertionError("Trying to pop empty mode stack")
591
+
592
+ if mode_stack._schema_check_mode is not None:
593
+ return unset_mode_pre_dispatch(None, schema_check=True)
594
+ if mode_stack.get(1) is not None:
595
+ return unset_mode_pre_dispatch(torch._C._TorchDispatchModeKey.FUNCTIONAL)
596
+ if mode_stack.get(0) is not None:
597
+ return unset_mode_pre_dispatch(torch._C._TorchDispatchModeKey.PROXY)
598
+
599
+
600
+ def _len_torch_dispatch_stack_pre_dispatch():
601
+ return mode_stack_state_for_pre_dispatch().count()
602
+
603
+
604
+ def _get_dispatch_mode_pre_dispatch(mode_key):
605
+ assert mode_key in (
606
+ torch._C._TorchDispatchModeKey.PROXY,
607
+ torch._C._TorchDispatchModeKey.FUNCTIONAL,
608
+ )
609
+ if mode_key == torch._C._TorchDispatchModeKey.PROXY:
610
+ return mode_stack_state_for_pre_dispatch().get(0)
611
+ else:
612
+ return mode_stack_state_for_pre_dispatch().get(1)
613
+
614
+
615
+ def _get_current_dispatch_mode_pre_dispatch():
616
+ if mode_stack_state_for_pre_dispatch()._schema_check_mode is not None:
617
+ return mode_stack_state_for_pre_dispatch()._schema_check_mode
618
+ else:
619
+ stack_len = mode_stack_state_for_pre_dispatch().count()
620
+ if stack_len == 2:
621
+ return mode_stack_state_for_pre_dispatch().get(1)
622
+ if stack_len == 1:
623
+ return (
624
+ mode_stack_state_for_pre_dispatch().get(1)
625
+ if mode_stack_state_for_pre_dispatch().get(1) is not None
626
+ else mode_stack_state_for_pre_dispatch().get(0)
627
+ )
628
+ return None
629
+
630
+
631
+ def mode_stack_state_for_pre_dispatch():
632
+ global _mode_stack_state_for_pre_dispatch
633
+ return _mode_stack_state_for_pre_dispatch
634
+
635
+
636
+ cached_ops: Set["OpOverload"] = set()
637
+
638
+
639
+ def add_cached_op(op_overload):
640
+ global cached_ops
641
+ cached_ops.add(op_overload)
642
+
643
+
644
+ def reset_cached_ops():
645
+ global cached_ops
646
+ cached_ops.clear()
647
+
648
+
649
+ def get_cached_ops():
650
+ global cached_ops
651
+ return cached_ops
652
+
653
+
654
+ # Each OpOverload object contains pointer to a specific operator overload, a pointer to the parent `OpOverloadPacket` object.
655
+ # You can obtain an OpOverload object through attribute query on OpOverloadPacket.
656
+ class OpOverload(OperatorBase):
657
+ def __init__(self, overloadpacket, op, op_dk, schema, tags):
658
+ super().__init__()
659
+ self._op = op
660
+ self._op_dk = op_dk
661
+ self._schema = schema
662
+ self._overloadpacket = overloadpacket
663
+ self._tags = tags
664
+ self._overloadname = (
665
+ "default" if schema.overload_name == "" else schema.overload_name
666
+ )
667
+ self._name = self._schema.name
668
+ if schema.overload_name:
669
+ self._name += "." + schema.overload_name
670
+ self.__name__ = f"{self._schema.name.split('::')[1]}.{self._overloadname}"
671
+ self.__module__ = overloadpacket.__module__
672
+ op.__module__ = overloadpacket.__module__
673
+ self.__qualname__ = self._name
674
+ self.__annotations__ = {}
675
+ # Only compute the OperatorHandle when we need it. Not all OpOverloads have
676
+ # OperatorHandles (the TorchScript ones don't...)
677
+ self._lazy_handle = None
678
+
679
+ # If the OpOverload was constructed from a Library.def in Python.
680
+ self._defined_in_python = self.__qualname__ in torch.library._defs
681
+
682
+ # Logic replicated from aten/src/ATen/native/MathBitsFallback.h
683
+ is_write = None
684
+ for a in self._schema.arguments:
685
+ if a.alias_info is None:
686
+ continue
687
+ if is_write is None:
688
+ is_write = a.alias_info.is_write
689
+ else:
690
+ # We will conservatively call mixed mutable/non-mutable
691
+ # aliased inputs as NOT a view
692
+ is_write = a.alias_info.is_write or is_write
693
+ self.is_view = is_write is not None and not is_write
694
+
695
+ @property
696
+ def _namespace(self):
697
+ return self._schema.name.split("::")[0]
698
+
699
+ @property
700
+ def _opname(self):
701
+ return self._schema.name.split("::")[1]
702
+
703
+ @property
704
+ def _handle(self):
705
+ if self._lazy_handle is None:
706
+ self._lazy_handle = torch._C._dispatch_find_schema_or_throw(
707
+ self._schema.name, self._schema.overload_name
708
+ )
709
+ return self._lazy_handle
710
+
711
+ # it's a no-op since OpOverload object is immutable and must be unique for a given op overload.
712
+ def __deepcopy__(self, memo=None):
713
+ return self
714
+
715
+ def __repr__(self):
716
+ return "<OpOverload(op='{}.{}', overload='{}')>".format(
717
+ *self._schema.name.split("::"), self._overloadname
718
+ )
719
+
720
+ # Use positional-only argument to avoid naming collision with aten ops arguments
721
+ # that are named "self". This way, all the aten ops can be called by kwargs.
722
+ def __call__(self, /, *args, **kwargs):
723
+ return self._op(*args, **kwargs)
724
+
725
+ # Use positional-only argument to avoid naming collision with aten ops arguments
726
+ # that are named "self". This way, all the aten ops can be called by kwargs.
727
+ def redispatch(self, /, keyset, *args, **kwargs):
728
+ return self._handle.redispatch_boxed(keyset, *args, **kwargs)
729
+
730
+ def __hash__(self):
731
+ return hash(self._op)
732
+
733
+ # `my_namespace.my_op_name.overload_name`
734
+ def __str__(self):
735
+ return "{}.{}.{}".format(*self._schema.name.split("::"), self._overloadname)
736
+
737
+ def has_kernel_for_dispatch_key(self, k):
738
+ return super().has_kernel_for_dispatch_key(
739
+ k
740
+ ) or torch._C._dispatch_has_kernel_for_dispatch_key(self.name(), k)
741
+
742
+ def has_kernel_for_any_dispatch_key(self, ks):
743
+ return torch._C._dispatch_has_kernel_for_any_dispatch_key(
744
+ self.name(), ks
745
+ ) or super().has_kernel_for_any_dispatch_key(ks)
746
+
747
+ @property
748
+ def namespace(self):
749
+ return self._schema.name.split("::")[0]
750
+
751
+ def _can_decompose(self):
752
+ dk = DispatchKey.CompositeImplicitAutograd
753
+ return dk in self.py_kernels or torch._C._dispatch_has_kernel_for_dispatch_key(
754
+ self.name(), dk
755
+ )
756
+
757
+ def decompose(self, *args, **kwargs):
758
+ dk = DispatchKey.CompositeImplicitAutograd
759
+ if dk in self.py_kernels:
760
+ # NB: This branch is not too necessary anymore, because we can
761
+ # apply Python CompositeImplicitAutograd *before* tracing
762
+ # using Python dispatcher (also taking advantage of the autograd
763
+ # formula). But it's included for completeness
764
+ return self.py_kernels[dk](*args, **kwargs)
765
+ elif torch._C._dispatch_has_kernel_for_dispatch_key(self.name(), dk):
766
+ return self._op_dk(dk, *args, **kwargs)
767
+ else:
768
+ return NotImplemented
769
+
770
+ # Remove a dispatch key from the dispatch cache. This will force it to get
771
+ # recomputed the next time. Does nothing
772
+ # WARNING: if you register a dispatch key to py_kernels of an OpOverload,
773
+ # calling _del_dispatch on that key is NOT sufficient to apply your change,
774
+ # because a single registration may affect MULTIPLE dispatch keys (e.g.,
775
+ # registering Autograd affects AutogradCPU). del_dispatch is to be used
776
+ # only if you are specifically modifying how get_dispatch handles a
777
+ # particular input 'key'.
778
+ def _uncache_dispatch(self, key):
779
+ self._dispatch_cache.pop(key, None)
780
+
781
+ # This implements the pre-computation logic for the Python dispatcher.
782
+ def _get_dispatch(self, key):
783
+ # This is only called upon a cache miss
784
+ assert key not in self._dispatch_cache, f"{self} {key}"
785
+
786
+ if key == DispatchKey.Python:
787
+ if not isinstance(self, TorchBindOpOverload) and not self.python_key_table:
788
+ self._dispatch_cache[key] = key
789
+ add_cached_op(self)
790
+ return key
791
+
792
+ def handler(*args, **kwargs):
793
+ from torch.utils._python_dispatch import _get_current_dispatch_mode
794
+
795
+ # TODO: We also need to handle tensor subclasses here
796
+ # TODO(voz): We should walk all the nodes here / turn it into a list, topmode is ok for now.
797
+ curr_mode = type(_get_current_dispatch_mode())
798
+ assert (
799
+ curr_mode is not None
800
+ ), "Illegal invocation of dispatch on torch._C.DispatchKey.Python without a mode."
801
+
802
+ if curr_mode not in self.python_key_table:
803
+ if isinstance(self, TorchBindOpOverload):
804
+ with torch.utils._python_dispatch._pop_mode_temporarily() as mode:
805
+ return torch._library.utils.handle_dispatch_mode(
806
+ mode, self, *args, **kwargs
807
+ )
808
+ else:
809
+ return self._op_dk(key, *args, **kwargs)
810
+
811
+ with torch.utils._python_dispatch._pop_mode_temporarily() as mode:
812
+ return self.python_key_table[curr_mode](mode, *args, **kwargs)
813
+
814
+ self._dispatch_cache[key] = handler
815
+ add_cached_op(self)
816
+ return handler
817
+
818
+ functionality_key = torch._C._to_functionality_key(key) # type: ignore[attr-defined]
819
+ if functionality_key == DispatchKey.PreDispatch:
820
+ curr_stack_len = _len_torch_dispatch_stack_pre_dispatch()
821
+ # The check for Python in the exclude set is so we properly respect `with no_dispatch()`
822
+ # calls inside of a mode.
823
+ if (
824
+ curr_stack_len > 0
825
+ and not torch._C._dispatch_tls_is_dispatch_key_excluded(
826
+ DispatchKey.Python
827
+ )
828
+ ):
829
+
830
+ def handler(*args, **kwargs):
831
+ @contextlib.contextmanager
832
+ def _temporarily_pop_modes_from_pre_dispatch():
833
+ top_mode = _pop_mode_from_pre_dispatch()
834
+ try:
835
+ yield top_mode
836
+ finally:
837
+ _set_mode_pre_dispatch(top_mode)
838
+
839
+ with _temporarily_pop_modes_from_pre_dispatch() as curr_mode:
840
+ return torch._library.utils.handle_dispatch_mode(
841
+ curr_mode, self, *args, **kwargs
842
+ )
843
+
844
+ # Note [Not Caching Per-Dispatch-Key Mode Handlers]
845
+ # Note that we're not caching this handler. There isn't really a point, since the slow bit
846
+ # is the handler itself (in python).
847
+ # Also, not caching means that we don't have to reset the cache when any existing
848
+ # modes go out of scope (which in of itself takes time to loop through all operators).
849
+ return handler
850
+
851
+ final_key = resolve_key(self, key)
852
+
853
+ # See Note [Not Caching Per-Dispatch-Key Mode Handlers]
854
+ cache_result = key != DispatchKey.PreDispatch
855
+
856
+ # TODO: We could potentially have lots of debugging wrappers against
857
+ # dispatch keys; design some general registration mechanism instead of
858
+ # having if statement for each of them
859
+ if key == DispatchKey.Functionalize:
860
+ import torch._dispatch.python as pydispatch
861
+
862
+ if pydispatch.CROSSREF_FUNCTIONALIZE:
863
+ handler = pydispatch.make_crossref_functionalize(self, final_key)
864
+ if cache_result:
865
+ self._dispatch_cache[key] = handler
866
+ add_cached_op(self)
867
+ return handler
868
+
869
+ r = self.py_kernels.get(final_key, final_key)
870
+ if cache_result:
871
+ self._dispatch_cache[key] = r
872
+ add_cached_op(self)
873
+ return r
874
+
875
+ def name(self):
876
+ return self._name
877
+
878
+ @property
879
+ def overloadpacket(self):
880
+ return self._overloadpacket
881
+
882
+ @property
883
+ def op(self):
884
+ return self._op
885
+
886
+ @property
887
+ def tags(self):
888
+ return self._tags
889
+
890
+ # TODO: add more methods to expose information about input and output arguments
891
+
892
+
893
+ # TorchBindOpOverload are those custom ops which have at least one overload's
894
+ # schema consists of torch.ScriptObject (i.e. custom class) input.
895
+ # TorchBindOpOverload will skip C++ dispatcher and purely dispatched in python
896
+ # when its inputs contain FakeScriptObject in a similar way as higher order ops.
897
+ class TorchBindOpOverload(OpOverload):
898
+ def _fallthrough_keys(self) -> List[DispatchKey]:
899
+ # TODO: we should be calling the fallback for these, but a fallthrough is almost close
900
+ # enough to the fallback in most cases that we care about.
901
+ _DEFAULT_FALLTHROUGH_KEYS = [
902
+ DispatchKey.Autograd,
903
+ DispatchKey.AutogradCPU,
904
+ DispatchKey.AutogradCUDA,
905
+ DispatchKey.ADInplaceOrView,
906
+ DispatchKey.BackendSelect,
907
+ DispatchKey.PythonTLSSnapshot,
908
+ DispatchKey.PythonDispatcher,
909
+ ]
910
+
911
+ def _may_use_fallthrough_instead_of_fallback(key: DispatchKey):
912
+ if torch._C._dispatch_has_kernel_for_dispatch_key(self.name(), key):
913
+ return torch._C._dispatch_kernel_for_dispatch_key_is_fallthrough(
914
+ self.name(), key
915
+ )
916
+
917
+ return (
918
+ key not in self.py_kernels
919
+ or self.py_kernels[key] is torch.library.fallthrough_kernel
920
+ )
921
+
922
+ return [
923
+ key
924
+ for key in _DEFAULT_FALLTHROUGH_KEYS
925
+ if _may_use_fallthrough_instead_of_fallback(key)
926
+ ]
927
+
928
+ @contextlib.contextmanager
929
+ def _register_as_effectful_op_temporarily(self):
930
+ from torch._higher_order_ops.effects import (
931
+ _EffectType,
932
+ _register_effectful_op,
933
+ SIDE_EFFECTS,
934
+ )
935
+
936
+ try:
937
+ if self not in SIDE_EFFECTS:
938
+ _register_effectful_op(self, _EffectType.ORDERED)
939
+ yield
940
+ finally:
941
+ if self in SIDE_EFFECTS:
942
+ del SIDE_EFFECTS[self]
943
+
944
+ # Use positional-only argument to avoid naming collision with aten ops arguments
945
+ # that are named "self". This way, all the aten ops can be called by kwargs.
946
+ def __call__(self, /, *args, **kwargs):
947
+ if _must_dispatch_in_python(args, kwargs):
948
+ # When any inputs are FakeScriptObject, we need to
949
+ # skip c++ dispatcher and dispatch in python through _get_dispatch of python_dispatcher
950
+ # because C++ dispatcher will check the schema and cannot recognize FakeScriptObject.
951
+ #
952
+ # Note:
953
+ # 1. We only register the torchbind op temporarily as effectful op because we only want
954
+ # the effect token functionalization logic to be applied during tracing. Otherwise, the behavior
955
+ # of the eagerly executing the op might change after tracing.
956
+ # 2. We don't want to register the op as effectful for all torchbind ops in ctor because this might
957
+ # cause unexpected behavior for some autograd.profiler ops e.g. profiler._record_function_exit._RecordFunction.
958
+ with self._register_as_effectful_op_temporarily():
959
+ return self._dispatch_in_python(args, kwargs, self._fallthrough_keys())
960
+ return self._op(*args, **kwargs)
961
+
962
+ def _dispatch_in_python(self, args, kwargs, fallthrough_keys):
963
+ non_fallthrough_keys = torch._C._dispatch_keyset_full()
964
+ for key in fallthrough_keys:
965
+ non_fallthrough_keys = non_fallthrough_keys.remove(key)
966
+
967
+ dispatch_key_set = _compute_keyset(args, kwargs, non_fallthrough_keys)
968
+ dispatch_key = dispatch_key_set.highestPriorityTypeId()
969
+
970
+ handler = (
971
+ self._get_dispatch(dispatch_key)
972
+ if dispatch_key not in self._dispatch_cache
973
+ else self._dispatch_cache[dispatch_key]
974
+ )
975
+
976
+ if isinstance(handler, DispatchKey):
977
+ # fallthrough keys can be registered at runtime via torch.library.impl
978
+ # so need to add it to fallthrough_keys and re-dispatch.
979
+ if torch._C._dispatch_kernel_for_dispatch_key_is_fallthrough(
980
+ self.name(), dispatch_key
981
+ ):
982
+ return self._dispatch_in_python(
983
+ args, kwargs, fallthrough_keys + [dispatch_key]
984
+ )
985
+
986
+ raise RuntimeError(
987
+ f"Torchbind op {self} received a FakeScriptObject input when dispatching {handler}."
988
+ f" but no python implementation is found."
989
+ f" Please file an issue on this when you encounter this error."
990
+ f" This error can happen when you export or compile the model."
991
+ f" It can still happpen even if a C++ implementation for {dispatch_key}. "
992
+ f" has been registered. That's because FakeScriptObject purely lives in python and cannot work "
993
+ f" with a C++ implementation."
994
+ )
995
+
996
+ assert isinstance(handler, Callable) # type: ignore[arg-type]
997
+ return handler(*args, **kwargs)
998
+
999
+
1000
+ def _must_dispatch_in_python(args, kwargs):
1001
+ return pytree.tree_any(
1002
+ lambda obj: isinstance(
1003
+ obj, torch._library.fake_class_registry.FakeScriptObject
1004
+ ),
1005
+ (args, kwargs),
1006
+ )
1007
+
1008
+
1009
+ def _has_script_object_arg(schema: torch.FunctionSchema) -> bool:
1010
+ return any(isinstance(arg.type, torch.ClassType) for arg in schema.arguments)
1011
+
1012
+
1013
+ # OpOverloadPacket class contains pointer to a base unresolved operator that doesn't correspond to a specific operator
1014
+ # You can obtain an OpOverload object through attribute query.
1015
+ class OpOverloadPacket:
1016
+ def __init__(self, qualified_op_name, op_name, op, overload_names):
1017
+ # These attributes are accessible on the object through the properties
1018
+ # defined below but are immutable
1019
+ self._qualified_op_name = qualified_op_name
1020
+ self.__name__ = op_name
1021
+ self._op = op
1022
+ self._overload_names = overload_names
1023
+ self._dir = []
1024
+ self._has_torchbind_op_overload = any(
1025
+ _has_script_object_arg(schema) for schema in self._schemas.values()
1026
+ )
1027
+
1028
+ # it's a no-op since OpOverloadPacket object is immutable and must be unique for a given op.
1029
+ def __deepcopy__(self, memo=None):
1030
+ return self
1031
+
1032
+ def __repr__(self):
1033
+ return "<OpOverloadPacket(op='{}.{}')>".format(
1034
+ *self._qualified_op_name.split("::")
1035
+ )
1036
+
1037
+ def __hash__(self):
1038
+ return hash(self._op)
1039
+
1040
+ def __str__(self):
1041
+ return "{}.{}".format(*self._qualified_op_name.split("::"))
1042
+
1043
+ @property
1044
+ def op(self):
1045
+ return self._op
1046
+
1047
+ @property
1048
+ def _schemas(self):
1049
+ return {
1050
+ overload_name: torch._C._get_schema(self._qualified_op_name, overload_name)
1051
+ for overload_name in self._overload_names
1052
+ }
1053
+
1054
+ def __getattr__(self, key):
1055
+ # It is not a valid op_name when __file__ is passed in
1056
+ if key == "__file__":
1057
+ return "torch.ops"
1058
+
1059
+ # ensure that query for dunder attributes that does not exist on
1060
+ # opoverloadpacket but instead exists on the self._op object does not unnecessarily call
1061
+ # `_get_operation_overload` (which is an expensive operation).
1062
+ # This is done to prevent any potential slowdown. This list can be extended
1063
+ # if there exists other attributes like `__name__` that only exist on self._op and not on the
1064
+ # opoverloadpacket.
1065
+ # This is ok since we are guaranteed that an overload name for an aten op can't start with '__'
1066
+ try:
1067
+ if key.startswith("__"):
1068
+ return getattr(self._op, key)
1069
+ except AttributeError:
1070
+ # for consistency because it seems weird to
1071
+ # throw an attribute error with a message containing
1072
+ # an object name different from the one the attribute
1073
+ # query was performed on.
1074
+ raise AttributeError(
1075
+ f"'{str(self)}' can't have an overload name beginning with '__' and the "
1076
+ f"underlying op {str(self._op)} has no attribute {key} either."
1077
+ ) from None
1078
+
1079
+ try:
1080
+ # This is ok since we are guaranteed that an overload name for an aten op can't be 'default'
1081
+ use_key = "" if key == "default" else key
1082
+ # TODO: disallow access to overloads registered by JIT
1083
+ op_dk_tags = torch._C._get_operation_overload(
1084
+ self._qualified_op_name, use_key
1085
+ )
1086
+ if op_dk_tags is None:
1087
+ raise AttributeError(
1088
+ f"The underlying op of '{str(self)}' has no overload name '{key}'"
1089
+ )
1090
+
1091
+ op_, op_dk_, tags = op_dk_tags
1092
+ schema = torch._C._get_schema(self._qualified_op_name, use_key)
1093
+ overload = (
1094
+ OpOverload(self, op_, op_dk_, schema, tags)
1095
+ if not _has_script_object_arg(schema)
1096
+ else TorchBindOpOverload(self, op_, op_dk_, schema, tags)
1097
+ )
1098
+ # cache the overload object
1099
+ setattr(self, key, overload)
1100
+ self._dir.append(key)
1101
+ return overload
1102
+ except RuntimeError:
1103
+ raise AttributeError(
1104
+ f"The underlying op of '{str(self)}' has no overload name '{key}'"
1105
+ ) from None
1106
+
1107
+ def __iter__(self):
1108
+ return iter(self._dir)
1109
+
1110
+ # Use positional-only argument to avoid naming collision with aten ops arguments
1111
+ # that are named "self". This way, all the aten ops can be called by kwargs.
1112
+ def __call__(self, /, *args, **kwargs):
1113
+ # overloading __call__ to ensure torch.ops.foo.bar()
1114
+ # is still callable from JIT
1115
+ # We save the function ptr as the `op` attribute on
1116
+ # OpOverloadPacket to access it here.
1117
+
1118
+ # Directly calling OverloadPacket goes into C++, which will check
1119
+ # the schema and cause an error for torchbind op when inputs consist of FakeScriptObject so we
1120
+ # intercept it here and call TorchBindOpverload instead.
1121
+ if self._has_torchbind_op_overload and _must_dispatch_in_python(args, kwargs):
1122
+ return _call_overload_packet_from_python(self, args, kwargs)
1123
+ return self._op(*args, **(kwargs or {}))
1124
+
1125
+ # TODO: use this to make a __dir__
1126
+ def overloads(self):
1127
+ return [n if n else "default" for n in self._overload_names]
1128
+
1129
+
1130
+ # Note - this mirrors the logic of the cpp_function defined in jit/python/init.cpp
1131
+ # _jit_get_operations, which calls _get_operation_for_overload_or_packet.
1132
+ def _call_overload_packet_from_python(op: OpOverloadPacket, args, kwargs):
1133
+ # Re-use the torch function handling logic in cpp
1134
+ torch_function_called, ret = torch._C._maybe_call_torch_function_for_op_packet(
1135
+ op, *args, **kwargs
1136
+ )
1137
+
1138
+ if torch_function_called:
1139
+ return ret
1140
+
1141
+ # The following mirrors getOpWithStack.
1142
+ # In cpp, we do a schema matching for the arguments, and call ToIValue to
1143
+ # to check whether the arguments are valid. But need to do similar things here
1144
+ # and check the schema whether the FakeScriptObject is the corresponding fake class
1145
+ # of the actual class used in schema.
1146
+ exceptions = {}
1147
+ found_op = None
1148
+ for overload_name in op.overloads():
1149
+ op_overload = getattr(op, overload_name)
1150
+ try:
1151
+ _ = torch._C._check_schema_allow_fake_script_object(
1152
+ op_overload._schema, *args, **kwargs
1153
+ )
1154
+ found_op = op_overload
1155
+ break
1156
+ except RuntimeError as e:
1157
+ exceptions[overload_name] = e
1158
+
1159
+ if found_op:
1160
+ return found_op(*args, **kwargs)
1161
+
1162
+ err_msg = (
1163
+ f"Fail to match any TorchBindOverload of {op} with following exceptions:\n"
1164
+ )
1165
+ for i, (key, msg) in enumerate(exceptions.items()):
1166
+ err_msg += f"Overload name {key}:\n {msg}\n"
1167
+ raise RuntimeError(err_msg)
1168
+
1169
+
1170
+ # Resolution of torch.fn is different from torch.ops.aten.fn
1171
+ # torch.fn uses the Python argparser, matches with the
1172
+ # appropriate schema, and calls into the unboxed version of the method
1173
+ # torch.ops.aten.fn resolution is done via the mechanism defined in JIT.
1174
+ # JIT creates a stack of all the overloads and then tries to match the
1175
+ # correct one at runtime and always calls into the boxed version of the method
1176
+ # Autograd codegen creates VariableType, TracerType,
1177
+ # inplace or view type and python bindings.
1178
+ # Aten codegen generates tensor methods for the tensor class.
1179
+
1180
+ # _OpNamespace is a subclass of ModuleType because the torch script
1181
+ # allows attribute lookups on modules only. Since we want torch.ops.foo.bar()
1182
+ # to work from script, we need to ensure ops and foo are modules
1183
+
1184
+
1185
+ class _OpNamespace(types.ModuleType):
1186
+ """
1187
+ An op namespace to dynamically bind Operators into Python.
1188
+
1189
+ Say a user has created a custom Operator called "my_namespace::my_op". To
1190
+ call this op, the user will write torch.ops.my_namespace.my_op(...).
1191
+ At startup, this operation will not yet be bound into Python. Instead, the
1192
+ following sequence of magic tricks will occur:
1193
+ 1. `torch.ops.my_namespace` will invoke the `__getattr__` magic method
1194
+ on the `torch.ops` object, which will create a new `_OpNamespace`
1195
+ object called `my_namespace` and set it as an attribute on the `ops`
1196
+ object.
1197
+ 2. `torch.ops.my_namespace.my_op` will then invoke `__getattr__` on
1198
+ the `my_namespace` object, which will retrieve the operation via
1199
+ `torch.get_operation`, a function bound from C++, and then in a similar
1200
+ fashion bind this new object onto the `my_namespace` object.
1201
+ 3. `torch.ops.my_namespace.my_op(...)` then calls this new operation
1202
+ and subsequent accesses will incur no further lookup (the namespace and
1203
+ operation will already exist).
1204
+ """
1205
+
1206
+ def __init__(self, name):
1207
+ super().__init__("torch.ops." + name)
1208
+ self.name = name
1209
+ self._dir = []
1210
+
1211
+ def __iter__(self):
1212
+ return iter(self._dir)
1213
+
1214
+ def __getattr__(self, op_name):
1215
+ # It is not a valid op_name when __file__ is passed in
1216
+ if op_name == "__file__":
1217
+ return "torch.ops"
1218
+ elif op_name in ["__origin__", "__self__"]:
1219
+ raise AttributeError(
1220
+ f"Invalid attribute '{op_name}' for '_OpNamespace' '{self.name}'"
1221
+ )
1222
+
1223
+ # Get the op `my_namespace::my_op` if available. This will also check
1224
+ # for overloads and raise an exception if there are more than one.
1225
+ namespace_name = self.name
1226
+ qualified_op_name = f"{namespace_name}::{op_name}"
1227
+ module_name = self.__module__ + "." + namespace_name
1228
+
1229
+ try:
1230
+ op, overload_names = _get_packet(qualified_op_name, module_name)
1231
+ if op is None:
1232
+ raise AttributeError(
1233
+ f"'_OpNamespace' '{self.name}' object has no attribute '{op_name}'"
1234
+ )
1235
+ except RuntimeError as e:
1236
+ # Turn this into AttributeError so getattr(obj, key, default)
1237
+ # works (this is called by TorchScript with __origin__)
1238
+ raise AttributeError(
1239
+ f"'_OpNamespace' '{self.name}' object has no attribute '{op_name}'"
1240
+ ) from e
1241
+
1242
+ op.__module__ = module_name
1243
+ opoverloadpacket = OpOverloadPacket(
1244
+ qualified_op_name, op_name, op, overload_names
1245
+ )
1246
+ opoverloadpacket.__module__ = self.__module__ + "." + namespace_name
1247
+ # cache the opoverloadpacket to ensure that each op corresponds to
1248
+ # a unique OpOverloadPacket object
1249
+ setattr(self, op_name, opoverloadpacket)
1250
+ self._dir.append(op_name)
1251
+ return opoverloadpacket
1252
+
1253
+
1254
+ def _get_packet(qualname, op_module):
1255
+ op, overload_names = torch._C._jit_get_operation(qualname)
1256
+ if op is not None:
1257
+ # let the script frontend know that op is identical to the builtin op
1258
+ # with qualified_op_name
1259
+ torch.jit._builtins._register_builtin(op, qualname)
1260
+ op.__module__ = op_module
1261
+ return op, overload_names
1262
+
1263
+
1264
+ def _refresh_packet(packet):
1265
+ op, overload_names = _get_packet(packet._qualified_op_name, packet._op.__module__)
1266
+ assert op is not None
1267
+ packet._op = op
1268
+ packet._overload_names = overload_names
1269
+
1270
+
1271
+ class _PyOpNamespace(_OpNamespace):
1272
+ def __init__(self, name, ops):
1273
+ super().__init__(name)
1274
+ self._ops = ops
1275
+
1276
+ def __getattr__(self, name):
1277
+ # Following _OpNamespace.__getattr__, we cache the op on the _PyOpNamespace object.
1278
+ op = self._ops.get(name, None)
1279
+ if op is None:
1280
+ raise AttributeError(
1281
+ f"'_PyOpNamespace' '{self.name}' object has no attribute '{name}'"
1282
+ )
1283
+ setattr(self, name, op)
1284
+ return op
1285
+
1286
+
1287
+ class _Ops(types.ModuleType):
1288
+ __file__ = "_ops.py"
1289
+
1290
+ def __init__(self):
1291
+ super().__init__("torch.ops")
1292
+ self.loaded_libraries = set()
1293
+ self._higher_order_op_namespace = _PyOpNamespace(
1294
+ "torch.ops.higher_order", _higher_order_ops
1295
+ )
1296
+ self._dir = []
1297
+
1298
+ def __getattr__(self, name):
1299
+ # Check if the name is a HigherOrderOperator
1300
+ if name == "higher_order":
1301
+ return self._higher_order_op_namespace
1302
+
1303
+ # Here we are creating `torch.ops.my_namespace`
1304
+ namespace = _OpNamespace(name)
1305
+ setattr(self, name, namespace)
1306
+ self._dir.append(name)
1307
+ return namespace
1308
+
1309
+ def __iter__(self):
1310
+ return iter(self._dir)
1311
+
1312
+ def import_module(self, module):
1313
+ """
1314
+ Imports a Python module that has torch.library registrations.
1315
+
1316
+ Generally, to extend PyTorch with custom operators, a user will
1317
+ create a Python module whose import triggers registration of
1318
+ the custom operators via a torch.ops.load_library call or a call
1319
+ to one or more torch.library.* APIs.
1320
+
1321
+ It is unexpected for Python modules to have side effects, so some
1322
+ linters and formatters will complain. Use this API to import Python
1323
+ modules that contain these torch.library side effects.
1324
+
1325
+ Args:
1326
+ module (str): The name of the Python module to import
1327
+
1328
+ """
1329
+ importlib.import_module(module)
1330
+
1331
+ def load_library(self, path):
1332
+ """
1333
+ Loads a shared library from the given path into the current process.
1334
+
1335
+ The library being loaded may run global initialization code to register
1336
+ custom operators with the PyTorch JIT runtime. This allows dynamically
1337
+ loading custom operators. For this, you should compile your operator
1338
+ and the static registration code into a shared library object, and then
1339
+ call ``torch.ops.load_library('path/to/libcustom.so')`` to load the
1340
+ shared object.
1341
+
1342
+ After the library is loaded, it is added to the
1343
+ ``torch.ops.loaded_libraries`` attribute, a set that may be inspected
1344
+ for the paths of all libraries loaded using this function.
1345
+
1346
+ Args:
1347
+ path (str): A path to a shared library to load.
1348
+ """
1349
+ if torch._running_with_deploy():
1350
+ return
1351
+
1352
+ path = _utils_internal.resolve_library_path(path)
1353
+ with dl_open_guard():
1354
+ # Import the shared library into the process, thus running its
1355
+ # static (global) initialization code in order to register custom
1356
+ # operators with the JIT.
1357
+ ctypes.CDLL(path)
1358
+ self.loaded_libraries.add(path)
1359
+
1360
+
1361
+ # The ops "namespace"
1362
+ ops: _Ops = _Ops()
lib/python3.10/site-packages/torch/_python_dispatcher.py ADDED
@@ -0,0 +1,182 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # mypy: allow-untyped-defs
2
+ import re
3
+
4
+ import torch._C as C
5
+
6
+
7
+ """
8
+ PythonDispatcher class is a thin python-binding to C++ dispatcher and it
9
+ is designed to show how dispatcher precompute works. In particular,
10
+ it shows for a certain op `foo`, what the computed dispatch table looks
11
+ like after user register their kernels to certains dispatch keys.
12
+
13
+ In the real C++ dispatcher we support many dispatch keys for different
14
+ functionalities. For simplicity PythonDispatcher only supports dispatch
15
+ keys for a single example of each use case. These use cases are listed below:
16
+
17
+ - CPU/AutogradCPU: represents in-tree backends which we usually have dedicated inference &
18
+ autograd kernel in pytorch core library.
19
+ E.g. CPU, CUDA
20
+ - FPGA/AutogradOther: represents in-tree backends which we usually have backend specific
21
+ inference kernels, but they share the same autograd kernel specified in AutogradOther.
22
+ E.g. FPGA, SparseCsrCPU
23
+ - XLA/AutogradXLA: represents out-of-tree backends which we don't have either inference or autograd
24
+ kernel defined in pytorch core library. Backend owner is responsible for registering both
25
+ inference & autograd kernels in their extensions(e.g. torch-xla) for the operators they support.
26
+ E.g. XLA, XPU, MPS
27
+ - CompositeExplicitAutograd: alias key mapped to inference kernels of all backends like CPU, CUDA, XLA etc.
28
+ Kernels registered to this key MUST work for inference for all backends.
29
+ - Autograd: alias key mapped to autograd of all backends like AutogradCPU, AutogradXLA, AutogradOther.
30
+ Kernels registered to this key MUST work for autograd for all backends.
31
+ - CompositeImplicitAutograd: alias key CompositeImplicitAutograd = CompositeExplicitAutograd + Autograd
32
+ Kernels registered to this key MUST work for both inference + autograd for all backends.
33
+
34
+ Note we only allow registrations to alias keys inside pytorch core library. E.g
35
+ you shouldn't register a CompositeImplicitAutograd or CompositeExplicitAutograd
36
+ kernel from torch-xla extension, instead you should upstream the kernel into
37
+ pytorch/pytorch repo so that it's available for all backends and continuously
38
+ tested even without the extension.
39
+
40
+ Usage:
41
+ dispatcher = PythonDispatcher()
42
+ dispatcher.register(["CPU", "XLA", "CompositeImplicitAutograd"])
43
+ print(dispatcher.dispatchTable()) # This tells you exactly which kernel is used for certain backend.
44
+ # For more debugging information
45
+ # print(dispatcher.keys())
46
+ # print(dispatcher.registrations())
47
+ # print(dispatcher.rawRegistrations())
48
+ # print(dispatcher.rawDispatchTable())
49
+ PythonDispatcher calls C++ dispatcher under the hood for to precompute dispatch table.
50
+ This file only provides the simplified API for developers, relevant test code is located in
51
+ test/test_dispatch.py
52
+ """
53
+
54
+
55
+ class PythonDispatcher:
56
+ namespace = "__test__"
57
+ name = "foo"
58
+ # fmt: off
59
+ runtime_keys = [
60
+ "CPU", "AutogradCPU",
61
+ "FPGA", "AutogradOther",
62
+ "XLA", "AutogradXLA",
63
+ "Lazy", "AutogradLazy",
64
+ ]
65
+ # fmt: on
66
+ alias_keys = [
67
+ "CompositeExplicitAutograd",
68
+ "Autograd",
69
+ "CompositeImplicitAutograd",
70
+ ]
71
+ supported_keys = runtime_keys + alias_keys
72
+
73
+ def __init__(self) -> None:
74
+ C._dispatch_check_invariants(self.name) # type: ignore[attr-defined]
75
+ self.ref = C._dispatch_library("FRAGMENT", self.namespace, "")
76
+ self.ref.def_("foo(Tensor x) -> Tensor")
77
+
78
+ """
79
+ Returns a list of dispatch keys supported by PythonDispatcher.
80
+ You can register kernels to these keys.
81
+ """
82
+
83
+ def keys(self):
84
+ return self.supported_keys
85
+
86
+ """
87
+ Register kernels to the target dispatchKeys.
88
+ dispatchKeys(list[str]): a list of dispatch keys that you want to register
89
+ your own kernel. Note that you don't need to write the kernel yourself in
90
+ this PythonDispatcher.E.g. for CPU key, a kernel(e.g fn_CPU for CPU) is
91
+ automatically generated and registered.
92
+ """
93
+
94
+ def register(self, dispatchKeys):
95
+ # Overriden is not supported and triggers a warning in C++ dispatcher.
96
+ if len(set(dispatchKeys)) != len(dispatchKeys):
97
+ raise RuntimeError(
98
+ f"Overriden is not allowed but found duplicates in {dispatchKeys}."
99
+ )
100
+ # We currently forbid this in codegen instead of C++ dispatcher.
101
+ if (
102
+ "CompositeImplicitAutograd" in dispatchKeys
103
+ and "CompositeExplicitAutograd" in dispatchKeys
104
+ ):
105
+ raise RuntimeError(
106
+ "Registration to both CompositeImplicitAutograd and CompositeExplicitAutograd is not allowed."
107
+ )
108
+ for key in dispatchKeys:
109
+ if key not in self.supported_keys:
110
+ raise RuntimeError(
111
+ f"{key} is not supported, please select a dispatch key in {self.supported_keys}."
112
+ )
113
+ self.ref.impl_t_t("foo", dispatch=key, debug="fn_" + key)
114
+
115
+ """
116
+ Helper function to format (key, kernel).
117
+ """
118
+
119
+ def _format_line(self, key, kernel):
120
+ return f"{key:<15} {kernel}\n"
121
+
122
+ """
123
+ Helper function to print a table header.
124
+ """
125
+
126
+ def _format_header(self, header):
127
+ s = f"""
128
+ {header}
129
+ """
130
+ s += self._format_line("key", "kernel")
131
+ s += "---------------------------\n"
132
+ return s
133
+
134
+ """
135
+ Returns raw output of all registration info for debugging only.
136
+ Use registrations() for a simplified version.
137
+ """
138
+
139
+ def rawRegistrations(self):
140
+ return C._dispatch_dump(f"{self.namespace}::{self.name}") # type: ignore[attr-defined]
141
+
142
+ """
143
+ Returns raw output of computed dispatch table for debugging only.
144
+ Use dispatchTable() for a simplified version.
145
+ """
146
+
147
+ def rawDispatchTable(self):
148
+ return C._dispatch_dump_table(f"{self.namespace}::{self.name}") # type: ignore[attr-defined]
149
+
150
+ """
151
+ Returns a table(str) including all the registrations from users.
152
+ Note this includes registrations to both runtime keys and alias keys.
153
+ """
154
+
155
+ def registrations(self):
156
+ output = self._format_header("Registered Kernels")
157
+ state = self.rawRegistrations()
158
+ state_entries = state.split("\n")
159
+ for line in state_entries:
160
+ first = line.split(":")[0]
161
+ if any(first.startswith(k) for k in self.supported_keys):
162
+ kernel = line.split("::")[0].split(" ")[1]
163
+ output += self._format_line(first, kernel)
164
+ return output
165
+
166
+ """
167
+ Returns the computed dispatch table(str). Note this only include
168
+ runtime keys, registrations to alias keys have been decoded to their
169
+ mapped runtime keys.
170
+ """
171
+
172
+ def dispatchTable(self):
173
+ output = self._format_header("Computed Dispatch Table")
174
+ table = self.rawDispatchTable()
175
+ table_entries = table.split("\n")
176
+ regex = re.compile(r"registered at .*FallbackKernel\.cpp.*(\[)")
177
+ for line in table_entries:
178
+ k = line.split(":")[0]
179
+ if k in self.runtime_keys:
180
+ entry = regex.sub("[", line)
181
+ output += self._format_line(k, entry.split(": ")[1])
182
+ return output
lib/python3.10/site-packages/torch/_size_docs.py ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # mypy: allow-untyped-defs
2
+ """Adds docstrings to torch.Size functions"""
3
+
4
+ import torch._C
5
+ from torch._C import _add_docstr as add_docstr
6
+
7
+
8
+ def add_docstr_all(method, docstr):
9
+ add_docstr(getattr(torch._C.Size, method), docstr)
10
+
11
+
12
+ add_docstr_all(
13
+ "numel",
14
+ """
15
+ numel() -> int
16
+
17
+ Returns the number of elements a :class:`torch.Tensor` with the given size would contain.
18
+
19
+ More formally, for a tensor ``x = tensor.ones(10, 10)`` with size ``s = torch.Size([10, 10])``,
20
+ ``x.numel() == x.size().numel() == s.numel() == 100`` holds true.
21
+
22
+ Example::
23
+ >>> x=torch.ones(10, 10)
24
+ >>> s=x.size()
25
+ >>> s
26
+ torch.Size([10, 10])
27
+ >>> s.numel()
28
+ 100
29
+ >>> x.numel() == s.numel()
30
+ True
31
+
32
+
33
+ .. warning::
34
+
35
+ This function does not return the number of dimensions described by :class:`torch.Size`, but instead the number
36
+ of elements a :class:`torch.Tensor` with that size would contain.
37
+
38
+ """,
39
+ )
lib/python3.10/site-packages/torch/_streambase.py ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing_extensions import deprecated
2
+
3
+ import torch
4
+
5
+
6
+ # Preserved only for BC reasons
7
+ @deprecated(
8
+ "`torch._streambase._StreamBase` is deprecated. Please use `torch.Stream` instead.",
9
+ category=FutureWarning,
10
+ )
11
+ class _StreamBase(torch.Stream):
12
+ pass
13
+
14
+
15
+ @deprecated(
16
+ "`torch._streambase._EventBase` is deprecated. Please use `torch.Event` instead.",
17
+ category=FutureWarning,
18
+ )
19
+ class _EventBase(torch.Event):
20
+ pass
lib/python3.10/site-packages/torch/_tensor.py ADDED
@@ -0,0 +1,1775 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # mypy: allow-untyped-defs
2
+ import copyreg
3
+ import enum
4
+ import functools
5
+ import warnings
6
+ from collections import OrderedDict
7
+ from copy import deepcopy
8
+ from numbers import Number
9
+ from typing import Any, Dict, List, Optional, Tuple, Union
10
+
11
+ import torch
12
+ import torch._C as _C
13
+ from torch._namedtensor_internals import (
14
+ check_serializing_named_tensor,
15
+ is_ellipsis,
16
+ resolve_ellipsis,
17
+ single_ellipsis_index,
18
+ unzip_namedshape,
19
+ update_names,
20
+ )
21
+ from torch.overrides import (
22
+ get_default_nowrap_functions,
23
+ handle_torch_function,
24
+ has_torch_function,
25
+ has_torch_function_unary,
26
+ has_torch_function_variadic,
27
+ )
28
+
29
+
30
+ def _handle_torch_function_and_wrap_type_error_to_not_implemented(f):
31
+ assigned = functools.WRAPPER_ASSIGNMENTS
32
+
33
+ @functools.wraps(f, assigned=assigned)
34
+ def wrapped(*args, **kwargs):
35
+ try:
36
+ # See https://github.com/pytorch/pytorch/issues/75462
37
+ if has_torch_function(args):
38
+ return handle_torch_function(wrapped, args, *args, **kwargs)
39
+ return f(*args, **kwargs)
40
+ except TypeError:
41
+ return NotImplemented
42
+
43
+ return wrapped
44
+
45
+
46
+ # Should not be used, this is kept only for BC of loading old serialized Tensor subclasses
47
+ def _rebuild_from_type(func, type, args, dict):
48
+ if type is Tensor:
49
+ return func(*args)
50
+
51
+ ret = func(*args).as_subclass(type)
52
+ ret.__dict__ = dict
53
+ return ret
54
+
55
+
56
+ def _rebuild_from_type_v2(func, new_type, args, state):
57
+ ret = func(*args)
58
+ if type(ret) is not new_type:
59
+ ret = ret.as_subclass(new_type)
60
+ # Tensor does define __setstate__ even though it doesn't define
61
+ # __getstate__. So only use __setstate__ if it is NOT the one defined
62
+ # on Tensor
63
+ if (
64
+ getattr(ret.__class__, "__setstate__", Tensor.__setstate__)
65
+ is not Tensor.__setstate__
66
+ ):
67
+ ret.__setstate__(state)
68
+ else:
69
+ ret = torch._utils._set_obj_state(ret, state)
70
+ return ret
71
+
72
+
73
+ # NB: If you subclass Tensor, and want to share the subclassed class
74
+ # across processes, you must also update torch/multiprocessing/reductions.py
75
+ # to define a ForkingPickler serialization mode for the class.
76
+ #
77
+ # NB: If you add a new method to Tensor, you must update
78
+ # torch/_C/__init__.pyi.in to add a type annotation for your method;
79
+ # otherwise, it will not show up in autocomplete.
80
+ class Tensor(torch._C.TensorBase):
81
+ _is_param: bool
82
+
83
+ def _clear_non_serializable_cached_data(self):
84
+ r"""Clears any data cached in the tensor's ``__dict__`` that would prevent the tensor
85
+ from being serialized.
86
+
87
+ For example, subclasses with custom dispatched sizes / strides cache this info in
88
+ non-serializable PyCapsules within the ``__dict__``, and this must be cleared out for
89
+ serialization to function.
90
+
91
+ Any subclass that overrides this MUST call ``super()._clear_non_serializable_cached_data().``
92
+ Additional data cleared within the override must be able to be re-cached transparently
93
+ to avoid breaking subclass functionality.
94
+ """
95
+ if has_torch_function_unary(self):
96
+ return handle_torch_function(
97
+ Tensor._clear_non_serializable_cached_data, (self,), self
98
+ )
99
+ # NB: Wrapper subclasses that implement custom-dispatched sizes / strides cache
100
+ # this info via non-serializable PyCapsules.
101
+ CACHED_SIZES_STRIDES_KEYS = [
102
+ "_sym_sizes_capsule",
103
+ "_sym_sizes_capsule_len",
104
+ "_sym_strides_capsule",
105
+ "_sym_strides_capsule_len",
106
+ ]
107
+ for key in CACHED_SIZES_STRIDES_KEYS:
108
+ self.__dict__.pop(key, None)
109
+
110
+ def __deepcopy__(self, memo):
111
+ if has_torch_function_unary(self):
112
+ return handle_torch_function(Tensor.__deepcopy__, (self,), self, memo)
113
+ if not self.is_leaf:
114
+ raise RuntimeError(
115
+ "Only Tensors created explicitly by the user "
116
+ "(graph leaves) support the deepcopy protocol at the moment. "
117
+ "If you were attempting to deepcopy a module, this may be because "
118
+ "of a torch.nn.utils.weight_norm usage, "
119
+ "see https://github.com/pytorch/pytorch/pull/103001"
120
+ )
121
+ if id(self) in memo:
122
+ return memo[id(self)]
123
+ with torch.no_grad():
124
+ # TODO: skipping storage copy is wrong for meta, as meta
125
+ # does accurate alias tracking; however, the code below
126
+ # doesn't work because of
127
+ # https://github.com/pytorch/pytorch/issues/47442
128
+ # Update the test in test_serialization if you remove 'meta' from here
129
+ if (
130
+ self.is_sparse
131
+ or self.device.type
132
+ in ["lazy", "xla", "mtia", "mps", "maia", "meta", "ipu"]
133
+ or (
134
+ not torch._C._has_storage(self)
135
+ and self.device.type == torch._C._get_privateuse1_backend_name()
136
+ )
137
+ or (type(self) is not Tensor and self.data_ptr() == 0)
138
+ ):
139
+ new_tensor = self.clone()
140
+ if type(new_tensor) is not type(self):
141
+ raise RuntimeError(
142
+ "The default implementation of __deepcopy__() for wrapper subclasses "
143
+ "only works for subclass types that implement clone() and for which "
144
+ "cloning returns another instance of the same subclass. You should either "
145
+ "properly implement clone() for your subclass or override __deepcopy__() "
146
+ "if it is intended behavior for clone() to return an instance of a "
147
+ "different type."
148
+ )
149
+ else:
150
+ new_storage = self._typed_storage()._deepcopy(memo)
151
+ if self.is_quantized:
152
+ # quantizer_params can be different type based on torch attribute
153
+ quantizer_params: Union[
154
+ Tuple[torch.qscheme, float, int],
155
+ Tuple[torch.qscheme, Tensor, Tensor, int],
156
+ ]
157
+ if self.qscheme() == torch.per_tensor_affine:
158
+ quantizer_params = (
159
+ self.qscheme(),
160
+ self.q_scale(),
161
+ self.q_zero_point(),
162
+ )
163
+ elif self.qscheme() in (
164
+ torch.per_channel_affine,
165
+ torch.per_channel_affine_float_qparams,
166
+ ):
167
+ quantizer_params = (
168
+ self.qscheme(),
169
+ self.q_per_channel_scales(),
170
+ self.q_per_channel_zero_points(),
171
+ self.q_per_channel_axis(),
172
+ )
173
+ else:
174
+ raise RuntimeError(
175
+ f"Unsupported qscheme {self.qscheme()} in deepcopy"
176
+ )
177
+ # TODO: Once we decide to break serialization FC, no longer
178
+ # need to wrap with TypedStorage
179
+ new_tensor = torch._utils._rebuild_qtensor(
180
+ torch.storage.TypedStorage(
181
+ wrap_storage=new_storage._untyped_storage,
182
+ dtype=self.dtype,
183
+ _internal=True,
184
+ ),
185
+ self.storage_offset(),
186
+ self.size(),
187
+ self.stride(),
188
+ quantizer_params,
189
+ self.requires_grad,
190
+ self._backward_hooks,
191
+ )
192
+ if type(new_tensor) is not type(self):
193
+ raise RuntimeError(
194
+ "The default implementation of __deepcopy__() for quantized tensors "
195
+ "expects the tensor returned by torch._utils._rebuild_qtensor() to "
196
+ "match the type of the instance being copied. If you encounter this, "
197
+ "please open an issue on PyTorch's GitHub."
198
+ )
199
+ else:
200
+ new_tensor = self.new_empty([])
201
+ if type(new_tensor) is not type(self):
202
+ raise RuntimeError(
203
+ "The default implementation of __deepcopy__() for non-wrapper subclasses "
204
+ "only works for subclass types that implement new_empty() and for which "
205
+ "that function returns another instance of the same subclass. You should "
206
+ "either properly implement new_empty() for your subclass or override "
207
+ "__deepcopy__() if it is intended behavior for new_empty() to return "
208
+ "an instance of a different type."
209
+ )
210
+ new_tensor.set_(
211
+ new_storage, self.storage_offset(), self.size(), self.stride()
212
+ )
213
+ if self.is_conj():
214
+ new_tensor = new_tensor.conj_physical()
215
+ if self.is_neg():
216
+ new_tensor = new_tensor.neg()
217
+ if self.requires_grad:
218
+ new_tensor.requires_grad_()
219
+ if self.grad is not None:
220
+ new_tensor.grad = self.grad.__deepcopy__(memo)
221
+
222
+ if type(self) is not Tensor:
223
+ if type(new_tensor) is not type(self):
224
+ raise RuntimeError(
225
+ "Type of deepcopy result does not match the type of the source tensor. "
226
+ "If you encounter this, please open an issue on PyTorch's GitHub."
227
+ )
228
+
229
+ # Plain Tensors don't have slots
230
+ slots_to_save = copyreg._slotnames(self.__class__) # type: ignore[attr-defined]
231
+ for slot in slots_to_save:
232
+ if hasattr(self, slot):
233
+ setattr(new_tensor, slot, deepcopy(getattr(self, slot), memo))
234
+
235
+ # don't try to deepcopy non-serializable cached data
236
+ self._clear_non_serializable_cached_data()
237
+ new_tensor.__dict__ = deepcopy(self.__dict__, memo)
238
+
239
+ memo[id(self)] = new_tensor
240
+ return new_tensor
241
+
242
+ def __reduce_ex__(self, proto):
243
+ materialize_fake_tensors = (
244
+ torch.serialization._serialization_tls.materialize_fake_tensors
245
+ )
246
+ state = torch._utils._get_obj_state(self)
247
+ # Ignore all state when using FakeTensor with skip_data(materialize_fake_tensors) because FakeTensor has
248
+ # some state that cannot be pickled
249
+ if (
250
+ # TODO: remove hasattr, it's a hack to support versions of torch that
251
+ # don't have _subclasses
252
+ hasattr(torch, "_subclasses")
253
+ and type(self) is torch._subclasses.fake_tensor.FakeTensor
254
+ and materialize_fake_tensors
255
+ ) or (type(self) is Tensor and not state):
256
+ # Fast path for regular tensor without Python state.
257
+ return self._reduce_ex_internal(proto)
258
+ if has_torch_function_unary(self):
259
+ return handle_torch_function(Tensor.__reduce_ex__, (self,), self, proto)
260
+ func, args = self._reduce_ex_internal(proto)
261
+ # sizes / strides cache needs to be cleared here because it'll just be re-cached
262
+ # if cleared earlier. Note that state references the -actual- tensor dict.
263
+ self._clear_non_serializable_cached_data()
264
+ return (_rebuild_from_type_v2, (func, type(self), args, state))
265
+
266
+ def storage(self):
267
+ r"""
268
+ storage() -> torch.TypedStorage
269
+
270
+ Returns the underlying :class:`TypedStorage`.
271
+
272
+ .. warning::
273
+
274
+ :class:`TypedStorage` is deprecated. It will be removed in the future, and
275
+ :class:`UntypedStorage` will be the only storage class. To access the
276
+ :class:`UntypedStorage` directly, use :attr:`Tensor.untyped_storage()`.
277
+ """
278
+ if has_torch_function_unary(self):
279
+ return handle_torch_function(Tensor.storage, (self,), self)
280
+
281
+ torch.storage._warn_typed_storage_removal(stacklevel=2)
282
+ return self._typed_storage()
283
+
284
+ # For internal use only, to avoid raising deprecation warning
285
+ def _typed_storage(self):
286
+ untyped_storage = self.untyped_storage()
287
+ return torch.TypedStorage(
288
+ wrap_storage=untyped_storage, dtype=self.dtype, _internal=True
289
+ )
290
+
291
+ def _reduce_ex_internal(self, proto):
292
+ check_serializing_named_tensor(self)
293
+
294
+ from torch.utils.hooks import warn_if_has_hooks
295
+
296
+ # See Note [Don't serialize hooks]
297
+ warn_if_has_hooks(self)
298
+ backward_hooks: Dict[Any, Any] = OrderedDict()
299
+
300
+ skip_data = torch.serialization._serialization_tls.skip_data
301
+ materialize_fake_tensors = (
302
+ torch.serialization._serialization_tls.materialize_fake_tensors
303
+ )
304
+
305
+ if self.device.type in ["xla", "maia"] or (
306
+ not torch._C._has_storage(self)
307
+ and self.device.type == torch._C._get_privateuse1_backend_name()
308
+ ):
309
+ if skip_data:
310
+ raise RuntimeError(
311
+ "Cannot serialize tensors on backends with no storage under skip_data context manager"
312
+ )
313
+ cpu_tensor = self.cpu()
314
+ return (
315
+ torch._utils._rebuild_device_tensor_from_cpu_tensor,
316
+ (cpu_tensor, self.dtype, str(self.device), self.requires_grad),
317
+ )
318
+ # Legacy comment that does not hold anymore.
319
+ # Note: Numpy array is chosen to be the rebuild component for XLA, MTIA, MAIA Tensors.
320
+ # We considered a few options:
321
+ # 1. CPU tensor can't be used here.
322
+ # Otherwise in torch.load CPU storage is reconstructed with randomly
323
+ # initialized data, moved onto backend device, and then storage is updated
324
+ # to the serialized content. This works perfectly for CPU/CUDA but not these backends;
325
+ # their tensors are disconnected with storage so they don't get the update.
326
+ # 2. Python list is not a good fit due to performance reason.
327
+ # `tolist()` converts every single element in the tensor into python objects
328
+ # and serialize them one by one.
329
+ if self.device.type in ["mtia"]:
330
+ # Convert BFloat16 tesors to Float32 before conversion to numpy, as numpy doesn't
331
+ # support BFloat16. The rebuild tensor from numpy takes in the original self.dtype,
332
+ # this would reconstruct the BFloat16 tensor from numpy.
333
+ if skip_data:
334
+ raise RuntimeError(
335
+ "Cannot serialize tensors on backends with no storage under skip_data context manager"
336
+ )
337
+ numpy_tensor = (
338
+ self.cpu().numpy()
339
+ if self.dtype != torch.bfloat16
340
+ else self.cpu().to(torch.float32).numpy()
341
+ )
342
+ return (
343
+ torch._utils._rebuild_device_tensor_from_numpy,
344
+ (numpy_tensor, self.dtype, str(self.device), self.requires_grad),
345
+ )
346
+ if self.device.type == "meta":
347
+ # NB: This implementation BREAKS storage sharing. Current
348
+ # hypothesis is that no one cares for meta tensors.
349
+ if skip_data:
350
+ warnings.warn(
351
+ "Serializing tensors on the meta device under skip_data context manager is a no-op"
352
+ )
353
+ arg_meta = (
354
+ self.dtype,
355
+ tuple(self.size()),
356
+ self.stride(),
357
+ self.requires_grad,
358
+ )
359
+ return (torch._utils._rebuild_meta_tensor_no_storage, arg_meta)
360
+ if self.is_quantized:
361
+ if skip_data:
362
+ raise RuntimeError(
363
+ "Cannot serialize qtensor under skip_data context manager, file an issue if you need this feature"
364
+ )
365
+ # quantizer_params can be different type based on torch attribute
366
+ quantizer_params: Union[
367
+ Tuple[torch.qscheme, float, int], Tuple[Any, Tensor, Tensor, int]
368
+ ]
369
+ if self.qscheme() == torch.per_tensor_affine:
370
+ quantizer_params = (
371
+ torch.per_tensor_affine,
372
+ self.q_scale(),
373
+ self.q_zero_point(),
374
+ )
375
+ elif self.qscheme() in (
376
+ torch.per_channel_affine,
377
+ torch.per_channel_affine_float_qparams,
378
+ ):
379
+ # convert scales and zero points to tuple to avoid recursive calls
380
+ # when/if we get multi-axis quantized tensors in the future, the shape
381
+ # is recoverable from the main tensor shape
382
+ quantizer_params = (
383
+ torch.per_channel_affine,
384
+ self.q_per_channel_scales(),
385
+ self.q_per_channel_zero_points(),
386
+ self.q_per_channel_axis(),
387
+ )
388
+ else:
389
+ raise RuntimeError(
390
+ f"Serialization is not supported for tensors of type {self.qscheme()}"
391
+ )
392
+ # TODO: Once we decide to break serialization FC, no longer
393
+ # need to wrap with TypedStorage
394
+ args_qtensor = (
395
+ torch.storage.TypedStorage(
396
+ wrap_storage=self._typed_storage()._untyped_storage,
397
+ dtype=self.dtype,
398
+ _internal=True,
399
+ ),
400
+ self.storage_offset(),
401
+ tuple(self.size()),
402
+ self.stride(),
403
+ quantizer_params,
404
+ self.requires_grad,
405
+ backward_hooks,
406
+ )
407
+ return (torch._utils._rebuild_qtensor, args_qtensor)
408
+ elif self.is_sparse:
409
+ if self.layout == torch.sparse_coo:
410
+ args_sparse = (
411
+ self.layout,
412
+ (self._indices(), self._values(), self.size(), self.is_coalesced()),
413
+ )
414
+ else:
415
+ raise NotImplementedError(
416
+ f"sparse tensor __reduce_ex__ for layout `{self.layout}`"
417
+ )
418
+ return (torch._utils._rebuild_sparse_tensor, args_sparse)
419
+ elif self.layout in {
420
+ torch.sparse_csr,
421
+ torch.sparse_csc,
422
+ torch.sparse_bsr,
423
+ torch.sparse_bsc,
424
+ }:
425
+ if self.layout in {torch.sparse_csr, torch.sparse_bsr}:
426
+ compressed_indices, plain_indices = (
427
+ self.crow_indices(),
428
+ self.col_indices(),
429
+ )
430
+ else:
431
+ compressed_indices, plain_indices = (
432
+ self.ccol_indices(),
433
+ self.row_indices(),
434
+ )
435
+ args_sparse_compressed = (
436
+ self.layout,
437
+ (
438
+ compressed_indices,
439
+ plain_indices,
440
+ self.values(),
441
+ self.size(),
442
+ ),
443
+ )
444
+ return (torch._utils._rebuild_sparse_tensor, args_sparse_compressed)
445
+ elif self.is_nested:
446
+ if skip_data:
447
+ raise RuntimeError(
448
+ "Cannot serialize nested tensor under skip_data context manager, file an issue if you need this feature"
449
+ )
450
+ args_nested = (
451
+ # NB: values() currently returns the storage as a buffer in an unsafe way.
452
+ # Ideally, we'd use a private API for this instead. TODO: Switch to this if
453
+ # we ever get around to adding it.
454
+ self.values(),
455
+ self._nested_tensor_size(),
456
+ self._nested_tensor_strides(),
457
+ self._nested_tensor_storage_offsets(),
458
+ )
459
+ return (torch._utils._rebuild_nested_tensor, args_nested)
460
+ elif (
461
+ type(self) is not torch.Tensor
462
+ and type(self).__torch_dispatch__ is not torch.Tensor.__torch_dispatch__
463
+ and (
464
+ isinstance(self, torch._subclasses.functional_tensor.FunctionalTensor)
465
+ or (
466
+ not isinstance(self, torch._subclasses.fake_tensor.FakeTensor)
467
+ and self.data_ptr() == 0
468
+ )
469
+ )
470
+ ):
471
+ arg_wrapper_subclass = (
472
+ type(self),
473
+ self.dtype,
474
+ tuple(self.size()),
475
+ self.stride(),
476
+ self.storage_offset(),
477
+ self.layout,
478
+ self.device,
479
+ self.requires_grad,
480
+ )
481
+ return (torch._utils._rebuild_wrapper_subclass, arg_wrapper_subclass)
482
+ elif (
483
+ type(self) is not torch.Tensor
484
+ and type(self).__torch_dispatch__ is not torch.Tensor.__torch_dispatch__
485
+ and (
486
+ isinstance(self, torch._subclasses.fake_tensor.FakeTensor)
487
+ and not (skip_data and materialize_fake_tensors)
488
+ )
489
+ ):
490
+ arg_wrapper_subclass = (
491
+ type(self),
492
+ self.dtype,
493
+ tuple(self.size()),
494
+ self.stride(),
495
+ self.storage_offset(),
496
+ self.layout,
497
+ self.device,
498
+ self.requires_grad,
499
+ )
500
+ return (torch._utils._rebuild_wrapper_subclass, arg_wrapper_subclass)
501
+ else:
502
+ v3_dtypes = torch.storage._new_dtypes()
503
+ if self.dtype in v3_dtypes:
504
+ rebuild_func = torch._utils._rebuild_tensor_v3
505
+ storage = self.untyped_storage()
506
+ else:
507
+ # TODO: Once we decide to break serialization FC, no longer
508
+ # need to wrap with TypedStorage
509
+ rebuild_func = torch._utils._rebuild_tensor_v2 # type: ignore[assignment]
510
+ storage = torch.storage.TypedStorage(
511
+ wrap_storage=self._typed_storage()._untyped_storage,
512
+ dtype=self.dtype,
513
+ _internal=True,
514
+ ) # type: ignore[assignment]
515
+
516
+ # TODO: remove hasattr, it's a hack to support versions of torch that
517
+ # don't have _subclasses
518
+ if (
519
+ hasattr(torch, "_subclasses")
520
+ and isinstance(self, torch._subclasses.fake_tensor.FakeTensor)
521
+ and skip_data
522
+ ):
523
+ storage._fake_device = self.device
524
+
525
+ args = (
526
+ storage,
527
+ self.storage_offset(),
528
+ tuple(self.size()),
529
+ self.stride(),
530
+ self.requires_grad,
531
+ backward_hooks,
532
+ ) # previously was self._backward_hooks
533
+
534
+ if isinstance(storage, torch.storage.UntypedStorage):
535
+ args = args + (self.dtype,) # type: ignore[assignment]
536
+
537
+ metadata = torch._utils.get_tensor_metadata(self)
538
+ if metadata:
539
+ args = args + (metadata,) # type: ignore[assignment]
540
+
541
+ return (rebuild_func, args)
542
+
543
+ def __setstate__(self, state):
544
+ if has_torch_function_unary(self):
545
+ return handle_torch_function(Tensor.__setstate__, (self,), self, state)
546
+ # Warning: this method is NOT called when you torch.load() a tensor;
547
+ # that is managed by _rebuild_tensor_v2
548
+ if not self.is_leaf:
549
+ raise RuntimeError("__setstate__ can be only called on leaf Tensors")
550
+ if len(state) == 4:
551
+ # legacy serialization of Tensor
552
+ self.set_(*state)
553
+ return
554
+ elif len(state) == 5:
555
+ # legacy serialization of Variable
556
+ self.data = state[0]
557
+ state = (state[3], state[4], state[2])
558
+ # The setting of _backward_hooks is expected to be a no-op.
559
+ # See Note [Don't serialize hooks]
560
+ self.requires_grad, _, self._backward_hooks = state
561
+
562
+ def __repr__(self, *, tensor_contents=None):
563
+ if has_torch_function_unary(self):
564
+ return handle_torch_function(
565
+ Tensor.__repr__, (self,), self, tensor_contents=tensor_contents
566
+ )
567
+ # All strings are unicode in Python 3.
568
+ return torch._tensor_str._str(self, tensor_contents=tensor_contents)
569
+
570
+ def backward(
571
+ self, gradient=None, retain_graph=None, create_graph=False, inputs=None
572
+ ):
573
+ r"""Computes the gradient of current tensor wrt graph leaves.
574
+
575
+ The graph is differentiated using the chain rule. If the tensor is
576
+ non-scalar (i.e. its data has more than one element) and requires
577
+ gradient, the function additionally requires specifying a ``gradient``.
578
+ It should be a tensor of matching type and shape, that represents
579
+ the gradient of the differentiated function w.r.t. ``self``.
580
+
581
+ This function accumulates gradients in the leaves - you might need to zero
582
+ ``.grad`` attributes or set them to ``None`` before calling it.
583
+ See :ref:`Default gradient layouts<default-grad-layouts>`
584
+ for details on the memory layout of accumulated gradients.
585
+
586
+ .. note::
587
+
588
+ If you run any forward ops, create ``gradient``, and/or call ``backward``
589
+ in a user-specified CUDA stream context, see
590
+ :ref:`Stream semantics of backward passes<bwd-cuda-stream-semantics>`.
591
+
592
+ .. note::
593
+
594
+ When ``inputs`` are provided and a given input is not a leaf,
595
+ the current implementation will call its grad_fn (though it is not strictly needed to get this gradients).
596
+ It is an implementation detail on which the user should not rely.
597
+ See https://github.com/pytorch/pytorch/pull/60521#issuecomment-867061780 for more details.
598
+
599
+ Args:
600
+ gradient (Tensor, optional): The gradient of the function
601
+ being differentiated w.r.t. ``self``.
602
+ This argument can be omitted if ``self`` is a scalar.
603
+ retain_graph (bool, optional): If ``False``, the graph used to compute
604
+ the grads will be freed. Note that in nearly all cases setting
605
+ this option to True is not needed and often can be worked around
606
+ in a much more efficient way. Defaults to the value of
607
+ ``create_graph``.
608
+ create_graph (bool, optional): If ``True``, graph of the derivative will
609
+ be constructed, allowing to compute higher order derivative
610
+ products. Defaults to ``False``.
611
+ inputs (sequence of Tensor, optional): Inputs w.r.t. which the gradient will be
612
+ accumulated into ``.grad``. All other tensors will be ignored. If not
613
+ provided, the gradient is accumulated into all the leaf Tensors that were
614
+ used to compute the :attr:`tensors`.
615
+ """
616
+ if has_torch_function_unary(self):
617
+ return handle_torch_function(
618
+ Tensor.backward,
619
+ (self,),
620
+ self,
621
+ gradient=gradient,
622
+ retain_graph=retain_graph,
623
+ create_graph=create_graph,
624
+ inputs=inputs,
625
+ )
626
+ torch.autograd.backward(
627
+ self, gradient, retain_graph, create_graph, inputs=inputs
628
+ )
629
+
630
+ def register_hook(self, hook):
631
+ r"""Registers a backward hook.
632
+
633
+ The hook will be called every time a gradient with respect to the
634
+ Tensor is computed. The hook should have the following signature::
635
+
636
+ hook(grad) -> Tensor or None
637
+
638
+
639
+ The hook should not modify its argument, but it can optionally return
640
+ a new gradient which will be used in place of :attr:`grad`.
641
+
642
+ This function returns a handle with a method ``handle.remove()``
643
+ that removes the hook from the module.
644
+
645
+ .. note::
646
+ See :ref:`backward-hooks-execution` for more information on how when this hook
647
+ is executed, and how its execution is ordered relative to other hooks.
648
+
649
+ Example::
650
+
651
+ >>> v = torch.tensor([0., 0., 0.], requires_grad=True)
652
+ >>> h = v.register_hook(lambda grad: grad * 2) # double the gradient
653
+ >>> v.backward(torch.tensor([1., 2., 3.]))
654
+ >>> v.grad
655
+
656
+ 2
657
+ 4
658
+ 6
659
+ [torch.FloatTensor of size (3,)]
660
+
661
+ >>> h.remove() # removes the hook
662
+ """
663
+ if has_torch_function_unary(self):
664
+ return handle_torch_function(Tensor.register_hook, (self,), self, hook)
665
+ if not self.requires_grad:
666
+ raise RuntimeError(
667
+ "cannot register a hook on a tensor that doesn't require gradient"
668
+ )
669
+ if self._backward_hooks is None:
670
+ self._backward_hooks = OrderedDict()
671
+ if self.grad_fn is not None:
672
+ self.grad_fn._register_hook_dict(self)
673
+
674
+ from torch.utils.hooks import RemovableHandle
675
+
676
+ handle = RemovableHandle(self._backward_hooks)
677
+ self._backward_hooks[handle.id] = hook
678
+ return handle
679
+
680
+ def register_post_accumulate_grad_hook(self, hook):
681
+ r"""Registers a backward hook that runs after grad accumulation.
682
+
683
+ The hook will be called after all gradients for a tensor have been accumulated,
684
+ meaning that the .grad field has been updated on that tensor. The post
685
+ accumulate grad hook is ONLY applicable for leaf tensors (tensors without a
686
+ .grad_fn field). Registering this hook on a non-leaf tensor will error!
687
+
688
+ The hook should have the following signature::
689
+
690
+ hook(param: Tensor) -> None
691
+
692
+ Note that, unlike other autograd hooks, this hook operates on the tensor
693
+ that requires grad and not the grad itself. The hook can in-place modify
694
+ and access its Tensor argument, including its .grad field.
695
+
696
+ This function returns a handle with a method ``handle.remove()``
697
+ that removes the hook from the module.
698
+
699
+ .. note::
700
+ See :ref:`backward-hooks-execution` for more information on how when this hook
701
+ is executed, and how its execution is ordered relative to other hooks. Since
702
+ this hook runs during the backward pass, it will run in no_grad mode (unless
703
+ create_graph is True). You can use torch.enable_grad() to re-enable autograd
704
+ within the hook if you need it.
705
+
706
+ Example::
707
+
708
+ >>> v = torch.tensor([0., 0., 0.], requires_grad=True)
709
+ >>> lr = 0.01
710
+ >>> # simulate a simple SGD update
711
+ >>> h = v.register_post_accumulate_grad_hook(lambda p: p.add_(p.grad, alpha=-lr))
712
+ >>> v.backward(torch.tensor([1., 2., 3.]))
713
+ >>> v
714
+ tensor([-0.0100, -0.0200, -0.0300], requires_grad=True)
715
+
716
+ >>> h.remove() # removes the hook
717
+ """
718
+ if has_torch_function_unary(self):
719
+ return handle_torch_function(
720
+ Tensor.register_post_accumulate_grad_hook, (self,), self, hook
721
+ )
722
+ if not self.requires_grad:
723
+ raise RuntimeError(
724
+ "cannot register a hook on a tensor that doesn't require gradient"
725
+ )
726
+ if self.grad_fn is not None:
727
+ raise RuntimeError(
728
+ "post accumulate grad hooks cannot be registered on non-leaf tensors"
729
+ )
730
+ if self._post_accumulate_grad_hooks is None:
731
+ self._post_accumulate_grad_hooks: Dict[Any, Any] = OrderedDict()
732
+
733
+ from torch.utils.hooks import RemovableHandle
734
+
735
+ handle = RemovableHandle(self._post_accumulate_grad_hooks)
736
+ self._post_accumulate_grad_hooks[handle.id] = hook
737
+ return handle
738
+
739
+ def reinforce(self, reward):
740
+ def trim(str):
741
+ return "\n".join([line.strip() for line in str.split("\n")])
742
+
743
+ raise RuntimeError(
744
+ trim(
745
+ r"""reinforce() was removed.
746
+ Use torch.distributions instead.
747
+ See https://pytorch.org/docs/main/distributions.html
748
+
749
+ Instead of:
750
+
751
+ probs = policy_network(state)
752
+ action = probs.multinomial()
753
+ next_state, reward = env.step(action)
754
+ action.reinforce(reward)
755
+ action.backward()
756
+
757
+ Use:
758
+
759
+ probs = policy_network(state)
760
+ # NOTE: categorical is equivalent to what used to be called multinomial
761
+ m = torch.distributions.Categorical(probs)
762
+ action = m.sample()
763
+ next_state, reward = env.step(action)
764
+ loss = -m.log_prob(action) * reward
765
+ loss.backward()
766
+ """
767
+ )
768
+ )
769
+
770
+ detach = _C._add_docstr(
771
+ _C.TensorBase.detach,
772
+ r"""
773
+ Returns a new Tensor, detached from the current graph.
774
+
775
+ The result will never require gradient.
776
+
777
+ This method also affects forward mode AD gradients and the result will never
778
+ have forward mode AD gradients.
779
+
780
+ .. note::
781
+
782
+ Returned Tensor shares the same storage with the original one.
783
+ In-place modifications on either of them will be seen, and may trigger
784
+ errors in correctness checks.
785
+ """,
786
+ )
787
+
788
+ detach_ = _C._add_docstr(
789
+ _C.TensorBase.detach_,
790
+ r"""
791
+ Detaches the Tensor from the graph that created it, making it a leaf.
792
+ Views cannot be detached in-place.
793
+
794
+ This method also affects forward mode AD gradients and the result will never
795
+ have forward mode AD gradients.
796
+ """,
797
+ )
798
+
799
+ def is_shared(self):
800
+ r"""Checks if tensor is in shared memory.
801
+
802
+ This is always ``True`` for CUDA tensors.
803
+ """
804
+ if has_torch_function_unary(self):
805
+ return handle_torch_function(Tensor.is_shared, (self,), self)
806
+ return self._typed_storage()._is_shared()
807
+
808
+ def share_memory_(self):
809
+ r"""Moves the underlying storage to shared memory.
810
+
811
+ This is a no-op if the underlying storage is already in shared memory
812
+ and for CUDA tensors. Tensors in shared memory cannot be resized.
813
+
814
+ See :meth:`torch.UntypedStorage.share_memory_` for more details.
815
+ """
816
+ if has_torch_function_unary(self):
817
+ return handle_torch_function(Tensor.share_memory_, (self,), self)
818
+ self._typed_storage()._share_memory_()
819
+ return self
820
+
821
+ def module_load(self, other, assign=False):
822
+ r"""Defines how to transform ``other`` when loading it into ``self`` in :meth:`~nn.Module.load_state_dict`.
823
+
824
+ Used when :func:`~torch.__future__.get_swap_module_params_on_conversion` is ``True``.
825
+
826
+ It is expected that ``self`` is a parameter or buffer in an ``nn.Module`` and ``other`` is the
827
+ value in the state dictionary with the corresponding key, this method defines
828
+ how ``other`` is remapped before being swapped with ``self`` via
829
+ :func:`~torch.utils.swap_tensors` in :meth:`~nn.Module.load_state_dict`.
830
+
831
+ .. note::
832
+ This method should always return a new object that is not ``self`` or ``other``.
833
+ For example, the default implementation returns ``self.copy_(other).detach()``
834
+ if ``assign`` is ``False`` or ``other.detach()`` if ``assign`` is ``True``.
835
+
836
+ Args:
837
+ other (Tensor): value in state dict with key corresponding to ``self``
838
+ assign (bool): the assign argument passed to :meth:`nn.Module.load_state_dict`
839
+
840
+ """
841
+ if has_torch_function_variadic(self, other):
842
+ return handle_torch_function(
843
+ Tensor.module_load, (self, other), self, other, assign=assign
844
+ )
845
+
846
+ if assign:
847
+ return other.detach()
848
+ else:
849
+ return self.copy_(other).detach()
850
+
851
+ def __reversed__(self):
852
+ r"""Reverses the tensor along dimension 0."""
853
+ if has_torch_function_unary(self):
854
+ return handle_torch_function(Tensor.__reversed__, (self,), self)
855
+ if self.dim() == 0:
856
+ return self
857
+ else:
858
+ return self.flip(0)
859
+
860
+ def norm(
861
+ self,
862
+ p: Optional[Union[float, str]] = "fro",
863
+ dim=None,
864
+ keepdim=False,
865
+ dtype=None,
866
+ ):
867
+ r"""See :func:`torch.norm`"""
868
+ if has_torch_function_unary(self):
869
+ return handle_torch_function(
870
+ Tensor.norm, (self,), self, p=p, dim=dim, keepdim=keepdim, dtype=dtype
871
+ )
872
+ return torch.norm(self, p, dim, keepdim, dtype=dtype)
873
+
874
+ def solve(self, other):
875
+ from torch._linalg_utils import solve
876
+
877
+ return solve(self, other)
878
+
879
+ def lstsq(self, other):
880
+ from torch._linalg_utils import lstsq
881
+
882
+ return lstsq(self, other)
883
+
884
+ def eig(self, eigenvectors=False):
885
+ from torch._linalg_utils import eig
886
+
887
+ return eig(self, eigenvectors=eigenvectors)
888
+
889
+ def symeig(self, eigenvectors=False):
890
+ from torch._linalg_utils import _symeig
891
+
892
+ return _symeig(self, eigenvectors=eigenvectors)
893
+
894
+ def lu(self, pivot=True, get_infos=False):
895
+ r"""See :func:`torch.lu`"""
896
+ # If get_infos is True, then we don't need to check for errors and vice versa
897
+ if has_torch_function_unary(self):
898
+ return handle_torch_function(
899
+ Tensor.lu, (self,), self, pivot=pivot, get_infos=get_infos
900
+ )
901
+
902
+ LU, pivots, infos = torch._lu_with_info(
903
+ self, pivot=pivot, check_errors=(not get_infos)
904
+ )
905
+ if get_infos:
906
+ return LU, pivots, infos
907
+ else:
908
+ return LU, pivots
909
+
910
+ def stft(
911
+ self,
912
+ n_fft: int,
913
+ hop_length: Optional[int] = None,
914
+ win_length: Optional[int] = None,
915
+ window: "Optional[Tensor]" = None,
916
+ center: bool = True,
917
+ pad_mode: str = "reflect",
918
+ normalized: bool = False,
919
+ onesided: Optional[bool] = None,
920
+ return_complex: Optional[bool] = None,
921
+ ):
922
+ r"""See :func:`torch.stft`
923
+
924
+ .. warning::
925
+ This function changed signature at version 0.4.1. Calling with
926
+ the previous signature may cause error or return incorrect result.
927
+ """
928
+ if has_torch_function_unary(self):
929
+ return handle_torch_function(
930
+ Tensor.stft,
931
+ (self,),
932
+ self,
933
+ n_fft,
934
+ hop_length=hop_length,
935
+ win_length=win_length,
936
+ window=window,
937
+ center=center,
938
+ pad_mode=pad_mode,
939
+ normalized=normalized,
940
+ onesided=onesided,
941
+ return_complex=return_complex,
942
+ )
943
+ return torch.stft(
944
+ self,
945
+ n_fft,
946
+ hop_length,
947
+ win_length,
948
+ window,
949
+ center,
950
+ pad_mode,
951
+ normalized,
952
+ onesided,
953
+ return_complex=return_complex,
954
+ )
955
+
956
+ def istft(
957
+ self,
958
+ n_fft: int,
959
+ hop_length: Optional[int] = None,
960
+ win_length: Optional[int] = None,
961
+ window: "Optional[Tensor]" = None,
962
+ center: bool = True,
963
+ normalized: bool = False,
964
+ onesided: Optional[bool] = None,
965
+ length: Optional[int] = None,
966
+ return_complex: bool = False,
967
+ ):
968
+ r"""See :func:`torch.istft`"""
969
+ if has_torch_function_unary(self):
970
+ return handle_torch_function(
971
+ Tensor.istft,
972
+ (self,),
973
+ self,
974
+ n_fft,
975
+ hop_length=hop_length,
976
+ win_length=win_length,
977
+ window=window,
978
+ center=center,
979
+ normalized=normalized,
980
+ onesided=onesided,
981
+ length=length,
982
+ return_complex=return_complex,
983
+ )
984
+ return torch.istft(
985
+ self,
986
+ n_fft,
987
+ hop_length,
988
+ win_length,
989
+ window,
990
+ center,
991
+ normalized,
992
+ onesided,
993
+ length,
994
+ return_complex=return_complex,
995
+ )
996
+
997
+ def resize(self, *sizes):
998
+ if has_torch_function_unary(self):
999
+ return handle_torch_function(Tensor.resize, (self,), self, *sizes)
1000
+ warnings.warn("non-inplace resize is deprecated")
1001
+ from torch.autograd._functions import Resize
1002
+
1003
+ return Resize.apply(self, sizes)
1004
+
1005
+ def resize_as(self, tensor):
1006
+ if has_torch_function_variadic(self, tensor):
1007
+ return handle_torch_function(Tensor.resize_as, (self, tensor), self, tensor)
1008
+ warnings.warn("non-inplace resize_as is deprecated")
1009
+ from torch.autograd._functions import Resize
1010
+
1011
+ return Resize.apply(self, tensor.size())
1012
+
1013
+ def split(self, split_size, dim=0):
1014
+ r"""See :func:`torch.split`"""
1015
+ if has_torch_function_unary(self):
1016
+ return handle_torch_function(
1017
+ Tensor.split, (self,), self, split_size, dim=dim
1018
+ )
1019
+ if isinstance(split_size, Tensor):
1020
+ try:
1021
+ split_size = int(split_size)
1022
+ except ValueError:
1023
+ pass
1024
+
1025
+ if isinstance(split_size, (int, torch.SymInt)):
1026
+ return torch._VF.split(self, split_size, dim) # type: ignore[attr-defined]
1027
+ else:
1028
+ return torch._VF.split_with_sizes(self, split_size, dim)
1029
+
1030
+ def unique(self, sorted=True, return_inverse=False, return_counts=False, dim=None):
1031
+ r"""Returns the unique elements of the input tensor.
1032
+
1033
+ See :func:`torch.unique`
1034
+ """
1035
+ if has_torch_function_unary(self):
1036
+ return handle_torch_function(
1037
+ Tensor.unique,
1038
+ (self,),
1039
+ self,
1040
+ sorted=sorted,
1041
+ return_inverse=return_inverse,
1042
+ return_counts=return_counts,
1043
+ dim=dim,
1044
+ )
1045
+ return torch.unique(
1046
+ self,
1047
+ sorted=sorted,
1048
+ return_inverse=return_inverse,
1049
+ return_counts=return_counts,
1050
+ dim=dim,
1051
+ )
1052
+
1053
+ def unique_consecutive(self, return_inverse=False, return_counts=False, dim=None):
1054
+ r"""Eliminates all but the first element from every consecutive group of equivalent elements.
1055
+
1056
+ See :func:`torch.unique_consecutive`
1057
+ """
1058
+ if has_torch_function_unary(self):
1059
+ return handle_torch_function(
1060
+ Tensor.unique_consecutive,
1061
+ (self,),
1062
+ self,
1063
+ return_inverse=return_inverse,
1064
+ return_counts=return_counts,
1065
+ dim=dim,
1066
+ )
1067
+ return torch.unique_consecutive(
1068
+ self, return_inverse=return_inverse, return_counts=return_counts, dim=dim
1069
+ )
1070
+
1071
+ @_handle_torch_function_and_wrap_type_error_to_not_implemented
1072
+ def __rsub__(self, other):
1073
+ return _C._VariableFunctions.rsub(self, other)
1074
+
1075
+ @_handle_torch_function_and_wrap_type_error_to_not_implemented
1076
+ def __rdiv__(self, other):
1077
+ return self.reciprocal() * other
1078
+
1079
+ __rtruediv__ = __rdiv__
1080
+ __itruediv__ = _C.TensorBase.__idiv__
1081
+
1082
+ __pow__ = _handle_torch_function_and_wrap_type_error_to_not_implemented(
1083
+ _C.TensorBase.pow
1084
+ )
1085
+ __ipow__ = _handle_torch_function_and_wrap_type_error_to_not_implemented(
1086
+ _C.TensorBase.pow_
1087
+ )
1088
+
1089
+ @_handle_torch_function_and_wrap_type_error_to_not_implemented
1090
+ def __rmod__(self, other):
1091
+ return torch.remainder(other, self)
1092
+
1093
+ def __format__(self, format_spec):
1094
+ if has_torch_function_unary(self):
1095
+ return handle_torch_function(Tensor.__format__, (self,), self, format_spec)
1096
+ if self.dim() == 0 and not self.is_meta and type(self) is Tensor:
1097
+ return self.item().__format__(format_spec)
1098
+ return object.__format__(self, format_spec)
1099
+
1100
+ @_handle_torch_function_and_wrap_type_error_to_not_implemented
1101
+ def __rpow__(self, other):
1102
+ return torch.pow(other, self)
1103
+
1104
+ @_handle_torch_function_and_wrap_type_error_to_not_implemented
1105
+ def __floordiv__(self, other):
1106
+ return torch.floor_divide(self, other)
1107
+
1108
+ @_handle_torch_function_and_wrap_type_error_to_not_implemented
1109
+ def __rfloordiv__(self, other):
1110
+ return torch.floor_divide(other, self)
1111
+
1112
+ @_handle_torch_function_and_wrap_type_error_to_not_implemented
1113
+ def __rlshift__(self, other):
1114
+ return torch.bitwise_left_shift(other, self)
1115
+
1116
+ @_handle_torch_function_and_wrap_type_error_to_not_implemented
1117
+ def __rrshift__(self, other):
1118
+ return torch.bitwise_right_shift(other, self)
1119
+
1120
+ @_handle_torch_function_and_wrap_type_error_to_not_implemented
1121
+ def __rmatmul__(self, other):
1122
+ return torch.matmul(other, self)
1123
+
1124
+ __pos__ = _C.TensorBase.positive
1125
+ __neg__ = _C.TensorBase.neg
1126
+ __abs__ = _C.TensorBase.abs
1127
+
1128
+ def __len__(self):
1129
+ if has_torch_function_unary(self):
1130
+ return handle_torch_function(Tensor.__len__, (self,), self)
1131
+ if self.dim() == 0:
1132
+ raise TypeError("len() of a 0-d tensor")
1133
+ if torch._C._get_tracing_state():
1134
+ warnings.warn(
1135
+ "Using len to get tensor shape might cause the trace to be incorrect. "
1136
+ "Recommended usage would be tensor.shape[0]. "
1137
+ "Passing a tensor of different shape might lead to errors or silently give "
1138
+ "incorrect results.",
1139
+ category=torch.jit.TracerWarning,
1140
+ stacklevel=2,
1141
+ )
1142
+ return self.shape[0]
1143
+
1144
+ def __iter__(self):
1145
+ # NB: we use 'imap' and not 'map' here, so that in Python 2 we get a
1146
+ # generator and don't eagerly perform all the indexes. This could
1147
+ # save us work, and also helps keep trace ordering deterministic
1148
+ # (e.g., if you zip(*hiddens), the eager map will force all the
1149
+ # indexes of hiddens[0] before hiddens[1], while the generator
1150
+ # map will interleave them.)
1151
+ # NB: We have intentionally skipped __torch_function__ dispatch here.
1152
+ # See gh-54457
1153
+ if self.dim() == 0:
1154
+ raise TypeError("iteration over a 0-d tensor")
1155
+ if torch._C._get_tracing_state():
1156
+ warnings.warn(
1157
+ "Iterating over a tensor might cause the trace to be incorrect. "
1158
+ "Passing a tensor of different shape won't change the number of "
1159
+ "iterations executed (and might lead to errors or silently give "
1160
+ "incorrect results).",
1161
+ category=torch.jit.TracerWarning,
1162
+ stacklevel=2,
1163
+ )
1164
+ return iter(self.unbind(0))
1165
+
1166
+ def __hash__(self):
1167
+ # Do NOT handle __torch_function__ here as user's default
1168
+ # implementation that handle most functions will most likely do it wrong.
1169
+ # It can be easily overridden by defining this method on the user
1170
+ # subclass if needed.
1171
+ return id(self)
1172
+
1173
+ def __dir__(self):
1174
+ if has_torch_function_unary(self):
1175
+ return handle_torch_function(Tensor.__dir__, (self,), self)
1176
+ tensor_methods = dir(self.__class__)
1177
+ tensor_methods.remove("volatile") # deprecated
1178
+ attrs = list(self.__dict__.keys())
1179
+ keys = tensor_methods + attrs
1180
+
1181
+ # property only available dense, cuda tensors
1182
+ if (not self.is_cuda) or self.is_sparse:
1183
+ keys.remove("__cuda_array_interface__")
1184
+
1185
+ return sorted(keys)
1186
+
1187
+ # Numpy array interface, to support `numpy.asarray(tensor) -> ndarray`
1188
+ __array_priority__ = 1000 # prefer Tensor ops over numpy ones
1189
+
1190
+ def __array__(self, dtype=None):
1191
+ if has_torch_function_unary(self):
1192
+ return handle_torch_function(Tensor.__array__, (self,), self, dtype=dtype)
1193
+ if dtype is None:
1194
+ return self.numpy()
1195
+ else:
1196
+ return self.numpy().astype(dtype, copy=False)
1197
+
1198
+ # Wrap Numpy array again in a suitable tensor when done, to support e.g.
1199
+ # `numpy.sin(tensor) -> tensor` or `numpy.greater(tensor, 0) -> ByteTensor`
1200
+ def __array_wrap__(self, array):
1201
+ if has_torch_function_unary(self):
1202
+ return handle_torch_function(
1203
+ Tensor.__array_wrap__, (self,), self, array=array
1204
+ )
1205
+ if array.dtype == bool:
1206
+ # Workaround, torch has no built-in bool tensor
1207
+ array = array.astype("uint8")
1208
+ return torch.from_numpy(array)
1209
+
1210
+ def __contains__(self, element: Any, /) -> bool:
1211
+ r"""Check if `element` is present in tensor
1212
+
1213
+ Args:
1214
+ element (Tensor or scalar): element to be checked
1215
+ for presence in current tensor"
1216
+ """
1217
+ if has_torch_function_unary(self):
1218
+ return handle_torch_function(Tensor.__contains__, (self,), self, element)
1219
+ if isinstance(
1220
+ element, (torch.Tensor, Number, torch.SymInt, torch.SymFloat, torch.SymBool)
1221
+ ):
1222
+ # type hint doesn't understand the __contains__ result array
1223
+ return bool((element == self).any().item()) # type: ignore[union-attr]
1224
+
1225
+ raise RuntimeError(
1226
+ f"Tensor.__contains__ only supports Tensor or scalar, but you passed in a {type(element)}."
1227
+ )
1228
+
1229
+ @property
1230
+ def __cuda_array_interface__(self):
1231
+ """Array view description for cuda tensors.
1232
+
1233
+ See:
1234
+ https://numba.pydata.org/numba-doc/latest/cuda/cuda_array_interface.html
1235
+ """
1236
+ if has_torch_function_unary(self):
1237
+ # TODO mypy doesn't support @property, see: https://github.com/python/mypy/issues/6185
1238
+ return handle_torch_function(
1239
+ Tensor.__cuda_array_interface__.__get__, # type: ignore[attr-defined]
1240
+ (self,),
1241
+ self,
1242
+ )
1243
+
1244
+ # raise AttributeError for unsupported tensors, so that
1245
+ # hasattr(cpu_tensor, "__cuda_array_interface__") is False.
1246
+ if not self.is_cuda:
1247
+ raise AttributeError(
1248
+ f"Can't get __cuda_array_interface__ on non-CUDA tensor type: {self.type()} "
1249
+ "If CUDA data is required use tensor.cuda() to copy tensor to device memory."
1250
+ )
1251
+
1252
+ if self.is_sparse:
1253
+ raise AttributeError(
1254
+ f"Can't get __cuda_array_interface__ on sparse type: {self.type()} "
1255
+ "Use Tensor.to_dense() to convert to a dense tensor first."
1256
+ )
1257
+
1258
+ # RuntimeError, matching tensor.__array__() behavior.
1259
+ if self.requires_grad:
1260
+ raise RuntimeError(
1261
+ "Can't get __cuda_array_interface__ on Variable that requires grad. "
1262
+ "If gradients aren't required, use var.detach() to get Variable that doesn't require grad."
1263
+ )
1264
+
1265
+ # CUDA devices are little-endian and tensors are stored in native byte
1266
+ # order. 1-byte entries are endian-agnostic.
1267
+ typestr = {
1268
+ torch.complex64: "<c8",
1269
+ torch.complex128: "<c16",
1270
+ torch.bfloat16: "<f2",
1271
+ torch.float16: "<f2",
1272
+ torch.float32: "<f4",
1273
+ torch.float64: "<f8",
1274
+ torch.uint8: "|u1",
1275
+ torch.int8: "|i1",
1276
+ torch.uint16: "<u2",
1277
+ torch.int16: "<i2",
1278
+ torch.uint32: "<u4",
1279
+ torch.int32: "<i4",
1280
+ torch.uint64: "<u8",
1281
+ torch.int64: "<i8",
1282
+ torch.bool: "|b1",
1283
+ }[self.dtype]
1284
+
1285
+ itemsize = self.element_size()
1286
+
1287
+ shape = tuple(self.shape)
1288
+ if self.is_contiguous():
1289
+ # __cuda_array_interface__ v2 requires the strides to be omitted
1290
+ # (either not set or set to None) for C-contiguous arrays.
1291
+ strides = None
1292
+ else:
1293
+ strides = tuple(s * itemsize for s in self.stride())
1294
+ data_ptr = self.data_ptr() if self.numel() > 0 else 0
1295
+ data = (data_ptr, False) # read-only is false
1296
+
1297
+ return dict(typestr=typestr, shape=shape, strides=strides, data=data, version=2)
1298
+
1299
+ def storage_type(self):
1300
+ r"""storage_type() -> type
1301
+
1302
+ Returns the type of the underlying storage.
1303
+
1304
+ """
1305
+ if has_torch_function_unary(self):
1306
+ return handle_torch_function(Tensor.storage_type, (self,), self)
1307
+
1308
+ torch.storage._warn_typed_storage_removal()
1309
+
1310
+ return self._typed_storage()._get_legacy_storage_class()
1311
+
1312
+ def refine_names(self, *names):
1313
+ r"""Refines the dimension names of :attr:`self` according to :attr:`names`.
1314
+
1315
+ Refining is a special case of renaming that "lifts" unnamed dimensions.
1316
+ A ``None`` dim can be refined to have any name; a named dim can only be
1317
+ refined to have the same name.
1318
+
1319
+ Because named tensors can coexist with unnamed tensors, refining names
1320
+ gives a nice way to write named-tensor-aware code that works with both
1321
+ named and unnamed tensors.
1322
+
1323
+ :attr:`names` may contain up to one Ellipsis (``...``).
1324
+ The Ellipsis is expanded greedily; it is expanded in-place to fill
1325
+ :attr:`names` to the same length as ``self.dim()`` using names from the
1326
+ corresponding indices of ``self.names``.
1327
+
1328
+ Python 2 does not support Ellipsis but one may use a string literal
1329
+ instead (``'...'``).
1330
+
1331
+ Args:
1332
+ names (iterable of str): The desired names of the output tensor. May
1333
+ contain up to one Ellipsis.
1334
+
1335
+ Examples::
1336
+
1337
+ >>> imgs = torch.randn(32, 3, 128, 128)
1338
+ >>> named_imgs = imgs.refine_names('N', 'C', 'H', 'W')
1339
+ >>> named_imgs.names
1340
+ ('N', 'C', 'H', 'W')
1341
+
1342
+ >>> tensor = torch.randn(2, 3, 5, 7, 11)
1343
+ >>> tensor = tensor.refine_names('A', ..., 'B', 'C')
1344
+ >>> tensor.names
1345
+ ('A', None, None, 'B', 'C')
1346
+
1347
+ .. warning::
1348
+ The named tensor API is experimental and subject to change.
1349
+
1350
+ """
1351
+ if has_torch_function_unary(self):
1352
+ return handle_torch_function(Tensor.refine_names, (self,), self, *names)
1353
+ names = resolve_ellipsis(names, self.names, "refine_names")
1354
+ return super().refine_names(names)
1355
+
1356
+ def align_to(self, *names):
1357
+ r"""Permutes the dimensions of the :attr:`self` tensor to match the order
1358
+ specified in :attr:`names`, adding size-one dims for any new names.
1359
+
1360
+ All of the dims of :attr:`self` must be named in order to use this method.
1361
+ The resulting tensor is a view on the original tensor.
1362
+
1363
+ All dimension names of :attr:`self` must be present in :attr:`names`.
1364
+ :attr:`names` may contain additional names that are not in ``self.names``;
1365
+ the output tensor has a size-one dimension for each of those new names.
1366
+
1367
+ :attr:`names` may contain up to one Ellipsis (``...``).
1368
+ The Ellipsis is expanded to be equal to all dimension names of :attr:`self`
1369
+ that are not mentioned in :attr:`names`, in the order that they appear
1370
+ in :attr:`self`.
1371
+
1372
+ Python 2 does not support Ellipsis but one may use a string literal
1373
+ instead (``'...'``).
1374
+
1375
+ Args:
1376
+ names (iterable of str): The desired dimension ordering of the
1377
+ output tensor. May contain up to one Ellipsis that is expanded
1378
+ to all unmentioned dim names of :attr:`self`.
1379
+
1380
+ Examples::
1381
+
1382
+ >>> tensor = torch.randn(2, 2, 2, 2, 2, 2)
1383
+ >>> named_tensor = tensor.refine_names('A', 'B', 'C', 'D', 'E', 'F')
1384
+
1385
+ # Move the F and E dims to the front while keeping the rest in order
1386
+ >>> named_tensor.align_to('F', 'E', ...)
1387
+
1388
+ .. warning::
1389
+ The named tensor API is experimental and subject to change.
1390
+
1391
+ """
1392
+ if has_torch_function_unary(self):
1393
+ return handle_torch_function(Tensor.align_to, (self,), self, *names)
1394
+ ellipsis_idx = single_ellipsis_index(names, "align_to")
1395
+ if ellipsis_idx is None:
1396
+ return super().align_to(names)
1397
+ return super().align_to(
1398
+ [name for name in names if not is_ellipsis(name)], ellipsis_idx
1399
+ )
1400
+
1401
+ def unflatten(self, dim, sizes): # type: ignore[override]
1402
+ r"""
1403
+ unflatten(dim, sizes) -> Tensor
1404
+
1405
+ See :func:`torch.unflatten`.
1406
+
1407
+ """
1408
+ if has_torch_function_unary(self):
1409
+ return handle_torch_function(Tensor.unflatten, (self,), self, dim, sizes)
1410
+
1411
+ if not sizes:
1412
+ raise RuntimeError("unflatten: sizes must be non-empty")
1413
+
1414
+ names = None
1415
+ if isinstance(sizes, OrderedDict) or (
1416
+ isinstance(sizes, (tuple, list)) and isinstance(sizes[0], (tuple, list))
1417
+ ):
1418
+ names, sizes = unzip_namedshape(sizes)
1419
+ return super().unflatten(dim, sizes, names)
1420
+ else:
1421
+ return super().unflatten(dim, sizes)
1422
+
1423
+ def rename_(self, *names, **rename_map):
1424
+ """In-place version of :meth:`~Tensor.rename`."""
1425
+
1426
+ if has_torch_function_unary(self):
1427
+ return handle_torch_function(
1428
+ Tensor.rename_, (self,), self, *names, **rename_map
1429
+ )
1430
+
1431
+ # Note [rename_ / rename API]
1432
+ # The Python API for these is different from the C++ API. In Python:
1433
+ # 1) tensor.rename(*names) takes a vararglist of names
1434
+ # 2) tensor.rename(**rename_map) takes a map of names to rename.
1435
+ # C++ is static, making it difficult to implement similar behavior.
1436
+ return update_names(self, names, rename_map, inplace=True)
1437
+
1438
+ def rename(self, *names, **rename_map):
1439
+ """Renames dimension names of :attr:`self`.
1440
+
1441
+ There are two main usages:
1442
+
1443
+ ``self.rename(**rename_map)`` returns a view on tensor that has dims
1444
+ renamed as specified in the mapping :attr:`rename_map`.
1445
+
1446
+ ``self.rename(*names)`` returns a view on tensor, renaming all
1447
+ dimensions positionally using :attr:`names`.
1448
+ Use ``self.rename(None)`` to drop names on a tensor.
1449
+
1450
+ One cannot specify both positional args :attr:`names` and keyword args
1451
+ :attr:`rename_map`.
1452
+
1453
+ Examples::
1454
+
1455
+ >>> imgs = torch.rand(2, 3, 5, 7, names=('N', 'C', 'H', 'W'))
1456
+ >>> renamed_imgs = imgs.rename(N='batch', C='channels')
1457
+ >>> renamed_imgs.names
1458
+ ('batch', 'channels', 'H', 'W')
1459
+
1460
+ >>> renamed_imgs = imgs.rename(None)
1461
+ >>> renamed_imgs.names
1462
+ (None, None, None, None)
1463
+
1464
+ >>> renamed_imgs = imgs.rename('batch', 'channel', 'height', 'width')
1465
+ >>> renamed_imgs.names
1466
+ ('batch', 'channel', 'height', 'width')
1467
+
1468
+ .. warning::
1469
+ The named tensor API is experimental and subject to change.
1470
+
1471
+ """
1472
+ if has_torch_function_unary(self):
1473
+ return handle_torch_function(
1474
+ Tensor.rename, (self,), self, *names, **rename_map
1475
+ )
1476
+
1477
+ # See Note [rename_ / rename API]
1478
+ return update_names(self, names, rename_map, inplace=False)
1479
+
1480
+ def to_sparse_coo(self):
1481
+ """Convert a tensor to :ref:`coordinate format <sparse-coo-docs>`.
1482
+
1483
+ Examples::
1484
+
1485
+ >>> dense = torch.randn(5, 5)
1486
+ >>> sparse = dense.to_sparse_coo()
1487
+ >>> sparse._nnz()
1488
+ 25
1489
+
1490
+ """
1491
+ return self.to_sparse()
1492
+
1493
+ def dim_order(
1494
+ self, *, ambiguity_check: Union[bool, List[torch.memory_format]] = False
1495
+ ):
1496
+ """
1497
+ dim_order(ambiguity_check=False) -> tuple
1498
+
1499
+ Returns the uniquely determined tuple of int describing the dim order or
1500
+ physical layout of :attr:`self`.
1501
+
1502
+ The dim order represents how dimensions are laid out in memory,
1503
+ starting from the outermost to the innermost dimension.
1504
+
1505
+ Note that the dim order may not always be uniquely determined.
1506
+ If `ambiguity_check` is True, this function raises a RuntimeError when the dim order cannot be uniquely determined;
1507
+ If `ambiguity_check` is a list of memory formats, this function raises a RuntimeError when tensor can not be interpreted
1508
+ into exactly one of the given memory formats, or it cannot be uniquely determined.
1509
+ If `ambiguity_check` is False, it will return one of legal dim order(s) without checking its uniqueness.
1510
+ Otherwise, it will raise TypeError.
1511
+
1512
+ Args:
1513
+ ambiguity_check (bool or List[torch.memory_format]): The check method for ambiguity of dim order.
1514
+
1515
+ >>> torch.empty((2, 3, 5, 7)).dim_order()
1516
+ (0, 1, 2, 3)
1517
+ >>> torch.empty((2, 3, 5, 7)).transpose(1, 2).dim_order()
1518
+ (0, 2, 1, 3)
1519
+ >>> torch.empty((2, 3, 5, 7), memory_format=torch.channels_last).dim_order()
1520
+ (0, 2, 3, 1)
1521
+ >>> torch.empty((1, 2, 3, 4)).dim_order()
1522
+ (0, 1, 2, 3)
1523
+ >>> try:
1524
+ ... torch.empty((1, 2, 3, 4)).dim_order(ambiguity_check=True)
1525
+ ... except RuntimeError as e:
1526
+ ... print(e)
1527
+ The tensor does not have unique dim order, or cannot map to exact one of the given memory formats.
1528
+ >>> torch.empty((1, 2, 3, 4)).dim_order(
1529
+ ... ambiguity_check=[torch.contiguous_format, torch.channels_last]
1530
+ ... ) # It can be mapped to contiguous format
1531
+ (0, 1, 2, 3)
1532
+ >>> try:
1533
+ ... torch.empty((1, 2, 3, 4)).dim_order(ambiguity_check="ILLEGAL")
1534
+ ... except TypeError as e:
1535
+ ... print(e)
1536
+ The ambiguity_check argument must be a bool or a list of memory formats.
1537
+ .. warning::
1538
+ The dim_order tensor API is experimental and subject to change.
1539
+ """
1540
+ if has_torch_function_unary(self):
1541
+ return handle_torch_function(Tensor.dim_order, (self,), self)
1542
+
1543
+ # Sanity check ambiguity_check data types
1544
+ if not isinstance(ambiguity_check, bool):
1545
+ if not isinstance(ambiguity_check, list):
1546
+ raise TypeError(
1547
+ "The ambiguity_check argument must be a bool or a list of memory formats."
1548
+ )
1549
+ for memory_format in ambiguity_check:
1550
+ if not isinstance(memory_format, torch.memory_format):
1551
+ raise TypeError(
1552
+ "The ambiguity_check argument must be a bool or a list of memory formats."
1553
+ )
1554
+
1555
+ def invalid_unique_memory_format(tensor, valid_memory_formats):
1556
+ """
1557
+ Returns True if the tensor cannot be uniquely mapped to any of the given memory formats, False otherwise.
1558
+ """
1559
+
1560
+ n_legality = 0
1561
+
1562
+ for memory_format in valid_memory_formats:
1563
+ if tensor.is_contiguous(memory_format=memory_format):
1564
+ n_legality += 1
1565
+
1566
+ return n_legality != 1
1567
+
1568
+ def has_multiple_dim_order(tensor):
1569
+ """
1570
+ Returns True if there're multiple legal dim orders for given tensor, False otherwise.
1571
+
1572
+ The tensor is considered to have multiple legal dim orders if either of the following conditions is met:
1573
+
1574
+ * Singleton Dimensions: There's at least one singleteon dimension in the tensor.
1575
+ Since their size is 1, they don't affect the memory offset (stride * index
1576
+ is zero because index is always zero). Therefore, they can be placed anywhere
1577
+ in the dimension order without changing how data is accessed.
1578
+ * Same strides: Strides reflect how the tensor is stored in memory.
1579
+ If any two dimensions have the same stride, swapping these dimensions won't
1580
+ change how data is accessed, leading to multiple correct dimension orders.
1581
+ """
1582
+
1583
+ sizes = tensor.size()
1584
+ strides = tensor.stride()
1585
+
1586
+ # Check if there are any duplicate strides
1587
+ has_duplicate_strides = any(
1588
+ earlier == later for earlier, later in zip(strides, strides[1:])
1589
+ )
1590
+
1591
+ # Check if there are any singleton dimensions
1592
+ has_singleton_dims = any(size == 1 for size in sizes)
1593
+
1594
+ return has_duplicate_strides or has_singleton_dims
1595
+
1596
+ valid_memory_formats = (
1597
+ ambiguity_check if isinstance(ambiguity_check, list) else []
1598
+ )
1599
+ check_multiple_dim_order = (
1600
+ ambiguity_check if isinstance(ambiguity_check, bool) else True
1601
+ )
1602
+
1603
+ if (
1604
+ check_multiple_dim_order and has_multiple_dim_order(self)
1605
+ ) and invalid_unique_memory_format(self, valid_memory_formats):
1606
+ raise RuntimeError(
1607
+ "The tensor does not have unique dim order, or cannot map to exact one of the given memory formats."
1608
+ )
1609
+
1610
+ import torch._prims_common as utils
1611
+
1612
+ return tuple(utils.compute_elementwise_output_logical_to_physical_perm(self))
1613
+
1614
+ def _update_names(self, names, inplace):
1615
+ if has_torch_function_unary(self):
1616
+ return handle_torch_function(
1617
+ Tensor._update_names, (self,), self, names, inplace
1618
+ )
1619
+
1620
+ # See Note [rename_ / rename API]
1621
+ if inplace:
1622
+ return super().rename_(names)
1623
+ else:
1624
+ return super().rename(names)
1625
+
1626
+ @classmethod
1627
+ def __torch_function__(cls, func, types, args=(), kwargs=None):
1628
+ """
1629
+ This __torch_function__ implementation wraps subclasses such that
1630
+ methods called on subclasses return a subclass instance instead of
1631
+ a ``torch.Tensor`` instance.
1632
+
1633
+ One corollary to this is that you need coverage for torch.Tensor
1634
+ methods if implementing __torch_function__ for subclasses.
1635
+
1636
+ We recommend always calling ``super().__torch_function__`` as the base
1637
+ case when doing the above.
1638
+
1639
+ While not mandatory, we recommend making `__torch_function__` a classmethod.
1640
+ """
1641
+ if kwargs is None:
1642
+ kwargs = {}
1643
+
1644
+ if not all(issubclass(cls, t) for t in types):
1645
+ return NotImplemented
1646
+
1647
+ with _C.DisableTorchFunctionSubclass():
1648
+ ret = func(*args, **kwargs)
1649
+ if func in get_default_nowrap_functions():
1650
+ return ret
1651
+ else:
1652
+ return _convert(ret, cls)
1653
+
1654
+ __torch_dispatch__ = _C._disabled_torch_dispatch_impl
1655
+
1656
+ def __dlpack__(self, stream=None):
1657
+ """
1658
+ Creates a DLpack `capsule https://data-apis.org/array-api/latest/design_topics/data_interchange.html#data-interchange`_
1659
+ of the current tensor to be exported to other libraries.
1660
+
1661
+ This function will be called from the `from_dlpack` method
1662
+ of the library that will consume the capsule. `from_dlpack` passes the current
1663
+ stream to this method as part of the specification.
1664
+
1665
+ Args:
1666
+ stream (integer or None): An optional Python integer representing a
1667
+ pointer to a CUDA stream. The current stream is synchronized with
1668
+ this stream before the capsule is created, and since the capsule
1669
+ shares its storage with the tensor this make it safe to access from
1670
+ both streams. If None or -1 is passed then no synchronization is performed.
1671
+ If 1 (on CUDA) or 0 (on ROCM) then the default stream is used for
1672
+ synchronization.
1673
+ """
1674
+ if has_torch_function_unary(self):
1675
+ return handle_torch_function(Tensor.__dlpack__, (self,), self, stream)
1676
+
1677
+ # DLPack capsules can't capture all of PyTorch's semantics,
1678
+ # so we prohibit exporting tensors that would lose their properties like
1679
+ # requires_grad and having the conjugate bit set.
1680
+ if self.requires_grad:
1681
+ raise RuntimeError(
1682
+ "Can't export tensors that require gradient, use tensor.detach()"
1683
+ )
1684
+ if self.is_conj():
1685
+ raise RuntimeError("Can't export tensors with the conjugate bit set")
1686
+ if self.layout != torch.strided:
1687
+ raise RuntimeError(
1688
+ "Can't export tensors with layout other than torch.strided"
1689
+ )
1690
+
1691
+ if stream is not None and type(stream) is not int:
1692
+ # Stream pointers in CUDA/ROCm are uniquely numbered and can
1693
+ # be retrieved from their integer value.
1694
+ raise TypeError("stream must be ``int`` or ``none``")
1695
+ elif stream is not None and stream != -1:
1696
+ if self.device.type == "cuda":
1697
+ # NB: This logic handles the special case values for default
1698
+ # streams and must be kept in sync with from_dlpack in
1699
+ # torch/utils/dlpack.py
1700
+ if stream == 1 and torch.version.hip is None:
1701
+ stream = torch.cuda.default_stream()
1702
+ elif stream == 0 and torch.version.hip is not None:
1703
+ stream = torch.cuda.default_stream()
1704
+ else:
1705
+ stream = torch.cuda.ExternalStream(stream)
1706
+ # Only synchronize on different streams
1707
+ sync_stream = torch.cuda.current_stream()
1708
+ if stream != sync_stream:
1709
+ event = torch.cuda.Event()
1710
+ event.record(sync_stream)
1711
+ stream.wait_event(event)
1712
+ if self.device.type == "xla":
1713
+ import torch_xla
1714
+ import torch_xla.utils.dlpack as xla_dlpack
1715
+
1716
+ if (
1717
+ len(torch_xla.real_devices()) <= 0
1718
+ or "cuda" not in torch_xla.real_devices()[0].lower()
1719
+ ):
1720
+ raise RuntimeError(
1721
+ "Can't export to dlpack an XLA tensor that is not on CUDA."
1722
+ )
1723
+ return xla_dlpack.to_dlpack(self)
1724
+ return torch.to_dlpack(self)
1725
+
1726
+ def __dlpack_device__(self) -> Tuple[enum.IntEnum, int]:
1727
+ if has_torch_function_unary(self):
1728
+ return handle_torch_function(Tensor.__dlpack_device__, (self,), self)
1729
+
1730
+ from torch.utils.dlpack import DLDeviceType
1731
+
1732
+ device = self.device
1733
+ idx = device.index if device.index is not None else 0
1734
+ torch_device_type = device.type
1735
+ if torch_device_type == "cuda" and torch.version.hip is not None:
1736
+ device_type = DLDeviceType.kDLROCM
1737
+ elif torch_device_type == "cpu" and self.is_pinned():
1738
+ device_type = DLDeviceType.kDLCPUPinned
1739
+ elif torch_device_type == "cuda":
1740
+ device_type = DLDeviceType.kDLGPU
1741
+ elif torch_device_type == "cpu":
1742
+ device_type = DLDeviceType.kDLCPU
1743
+ elif torch_device_type == "xpu":
1744
+ device_type = DLDeviceType.kDLOneAPI
1745
+ elif self.device.type == "privateuse1":
1746
+ device_type = DLDeviceType.kDLExtDev
1747
+ elif torch_device_type == "xla":
1748
+ import torch_xla
1749
+
1750
+ if (
1751
+ len(torch_xla.real_devices()) <= 0
1752
+ or "cuda" not in torch_xla.real_devices()[0].lower()
1753
+ ):
1754
+ raise ValueError(f"Unknown device type {torch_device_type} for Dlpack")
1755
+
1756
+ device_type = DLDeviceType.kDLGPU
1757
+ else:
1758
+ raise ValueError(f"Unknown device type {torch_device_type} for Dlpack")
1759
+ return (device_type, idx)
1760
+
1761
+ __module__ = "torch"
1762
+
1763
+
1764
+ def _convert(ret, cls):
1765
+ if cls is Tensor:
1766
+ return ret
1767
+
1768
+ if isinstance(ret, Tensor) and not isinstance(ret, cls):
1769
+ ret = ret.as_subclass(cls)
1770
+
1771
+ if isinstance(ret, (tuple, list)):
1772
+ # Also handles things like namedtuples
1773
+ ret = type(ret)(_convert(r, cls) for r in ret)
1774
+
1775
+ return ret
lib/python3.10/site-packages/torch/_tensor_docs.py ADDED
The diff for this file is too large to render. See raw diff
 
lib/python3.10/site-packages/torch/_tensor_str.py ADDED
@@ -0,0 +1,704 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # mypy: allow-untyped-defs
2
+ import contextlib
3
+ import dataclasses
4
+ import math
5
+ import textwrap
6
+ from typing import Any, Dict, Optional
7
+
8
+ import torch
9
+ from torch import inf
10
+
11
+
12
+ @dataclasses.dataclass
13
+ class __PrinterOptions:
14
+ precision: int = 4
15
+ threshold: float = 1000
16
+ edgeitems: int = 3
17
+ linewidth: int = 80
18
+ sci_mode: Optional[bool] = None
19
+
20
+
21
+ PRINT_OPTS = __PrinterOptions()
22
+
23
+
24
+ # We could use **kwargs, but this will give better docs
25
+ def set_printoptions(
26
+ precision=None,
27
+ threshold=None,
28
+ edgeitems=None,
29
+ linewidth=None,
30
+ profile=None,
31
+ sci_mode=None,
32
+ ):
33
+ r"""Set options for printing. Items shamelessly taken from NumPy
34
+
35
+ Args:
36
+ precision: Number of digits of precision for floating point output
37
+ (default = 4).
38
+ threshold: Total number of array elements which trigger summarization
39
+ rather than full `repr` (default = 1000).
40
+ edgeitems: Number of array items in summary at beginning and end of
41
+ each dimension (default = 3).
42
+ linewidth: The number of characters per line for the purpose of
43
+ inserting line breaks (default = 80). Thresholded matrices will
44
+ ignore this parameter.
45
+ profile: Sane defaults for pretty printing. Can override with any of
46
+ the above options. (any one of `default`, `short`, `full`)
47
+ sci_mode: Enable (True) or disable (False) scientific notation. If
48
+ None (default) is specified, the value is defined by
49
+ `torch._tensor_str._Formatter`. This value is automatically chosen
50
+ by the framework.
51
+
52
+ Example::
53
+
54
+ >>> # Limit the precision of elements
55
+ >>> torch.set_printoptions(precision=2)
56
+ >>> torch.tensor([1.12345])
57
+ tensor([1.12])
58
+ >>> # Limit the number of elements shown
59
+ >>> torch.set_printoptions(threshold=5)
60
+ >>> torch.arange(10)
61
+ tensor([0, 1, 2, ..., 7, 8, 9])
62
+ >>> # Restore defaults
63
+ >>> torch.set_printoptions(profile='default')
64
+ >>> torch.tensor([1.12345])
65
+ tensor([1.1235])
66
+ >>> torch.arange(10)
67
+ tensor([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
68
+
69
+ """
70
+ if profile is not None:
71
+ if profile == "default":
72
+ PRINT_OPTS.precision = 4
73
+ PRINT_OPTS.threshold = 1000
74
+ PRINT_OPTS.edgeitems = 3
75
+ PRINT_OPTS.linewidth = 80
76
+ elif profile == "short":
77
+ PRINT_OPTS.precision = 2
78
+ PRINT_OPTS.threshold = 1000
79
+ PRINT_OPTS.edgeitems = 2
80
+ PRINT_OPTS.linewidth = 80
81
+ elif profile == "full":
82
+ PRINT_OPTS.precision = 4
83
+ PRINT_OPTS.threshold = inf
84
+ PRINT_OPTS.edgeitems = 3
85
+ PRINT_OPTS.linewidth = 80
86
+
87
+ if precision is not None:
88
+ PRINT_OPTS.precision = precision
89
+ if threshold is not None:
90
+ PRINT_OPTS.threshold = threshold
91
+ if edgeitems is not None:
92
+ PRINT_OPTS.edgeitems = edgeitems
93
+ if linewidth is not None:
94
+ PRINT_OPTS.linewidth = linewidth
95
+ PRINT_OPTS.sci_mode = sci_mode
96
+
97
+
98
+ def get_printoptions() -> Dict[str, Any]:
99
+ r"""Gets the current options for printing, as a dictionary that
100
+ can be passed as ``**kwargs`` to set_printoptions().
101
+ """
102
+ return dataclasses.asdict(PRINT_OPTS)
103
+
104
+
105
+ @contextlib.contextmanager
106
+ def printoptions(**kwargs):
107
+ r"""Context manager that temporarily changes the print options. Accepted
108
+ arguments are same as :func:`set_printoptions`."""
109
+ old_kwargs = get_printoptions()
110
+ set_printoptions(**kwargs)
111
+ try:
112
+ yield
113
+ finally:
114
+ set_printoptions(**old_kwargs)
115
+
116
+
117
+ def tensor_totype(t):
118
+ dtype = (
119
+ torch.float
120
+ if (
121
+ t.is_mps
122
+ or (t.is_xpu and not torch.xpu.get_device_properties(t.device).has_fp64)
123
+ )
124
+ else torch.double
125
+ )
126
+ return t.to(dtype=dtype)
127
+
128
+
129
+ class _Formatter:
130
+ def __init__(self, tensor):
131
+ self.floating_dtype = tensor.dtype.is_floating_point
132
+ self.int_mode = True
133
+ self.sci_mode = False
134
+ self.max_width = 1
135
+
136
+ with torch.no_grad():
137
+ tensor_view = tensor.reshape(-1)
138
+
139
+ if not self.floating_dtype:
140
+ for value in tensor_view:
141
+ value_str = f"{value}"
142
+ self.max_width = max(self.max_width, len(value_str))
143
+
144
+ else:
145
+ nonzero_finite_vals = torch.masked_select(
146
+ tensor_view, torch.isfinite(tensor_view) & tensor_view.ne(0)
147
+ )
148
+
149
+ if nonzero_finite_vals.numel() == 0:
150
+ # no valid number, do nothing
151
+ return
152
+
153
+ # Convert to double for easy calculation. HalfTensor overflows with 1e8, and there's no div() on CPU.
154
+ nonzero_finite_abs = tensor_totype(nonzero_finite_vals.abs())
155
+ nonzero_finite_min = tensor_totype(nonzero_finite_abs.min())
156
+ nonzero_finite_max = tensor_totype(nonzero_finite_abs.max())
157
+
158
+ for value in nonzero_finite_vals:
159
+ if value != torch.ceil(value):
160
+ self.int_mode = False
161
+ break
162
+
163
+ if self.int_mode:
164
+ # in int_mode for floats, all numbers are integers, and we append a decimal to nonfinites
165
+ # to indicate that the tensor is of floating type. add 1 to the len to account for this.
166
+ if (
167
+ nonzero_finite_max / nonzero_finite_min > 1000.0
168
+ or nonzero_finite_max > 1.0e8
169
+ ):
170
+ self.sci_mode = True
171
+ for value in nonzero_finite_vals:
172
+ value_str = f"{{:.{PRINT_OPTS.precision}e}}".format(value)
173
+ self.max_width = max(self.max_width, len(value_str))
174
+ else:
175
+ for value in nonzero_finite_vals:
176
+ value_str = f"{value:.0f}"
177
+ self.max_width = max(self.max_width, len(value_str) + 1)
178
+ else:
179
+ # Check if scientific representation should be used.
180
+ if (
181
+ nonzero_finite_max / nonzero_finite_min > 1000.0
182
+ or nonzero_finite_max > 1.0e8
183
+ or nonzero_finite_min < 1.0e-4
184
+ ):
185
+ self.sci_mode = True
186
+ for value in nonzero_finite_vals:
187
+ value_str = f"{{:.{PRINT_OPTS.precision}e}}".format(value)
188
+ self.max_width = max(self.max_width, len(value_str))
189
+ else:
190
+ for value in nonzero_finite_vals:
191
+ value_str = f"{{:.{PRINT_OPTS.precision}f}}".format(value)
192
+ self.max_width = max(self.max_width, len(value_str))
193
+
194
+ if PRINT_OPTS.sci_mode is not None:
195
+ self.sci_mode = PRINT_OPTS.sci_mode
196
+
197
+ def width(self):
198
+ return self.max_width
199
+
200
+ def format(self, value):
201
+ if self.floating_dtype:
202
+ if self.sci_mode:
203
+ ret = f"{{:{self.max_width}.{PRINT_OPTS.precision}e}}".format(value)
204
+ elif self.int_mode:
205
+ ret = f"{value:.0f}"
206
+ if not (math.isinf(value) or math.isnan(value)):
207
+ ret += "."
208
+ else:
209
+ ret = f"{{:.{PRINT_OPTS.precision}f}}".format(value)
210
+ else:
211
+ ret = f"{value}"
212
+ return (self.max_width - len(ret)) * " " + ret
213
+
214
+
215
+ def _scalar_str(self, formatter1, formatter2=None):
216
+ if formatter2 is not None:
217
+ real_str = _scalar_str(self.real, formatter1)
218
+ imag_str = (_scalar_str(self.imag, formatter2) + "j").lstrip()
219
+ # handles negative numbers, +0.0, -0.0
220
+ if imag_str[0] == "+" or imag_str[0] == "-":
221
+ return real_str + imag_str
222
+ else:
223
+ return real_str + "+" + imag_str
224
+ else:
225
+ return formatter1.format(self.item())
226
+
227
+
228
+ def _vector_str(self, indent, summarize, formatter1, formatter2=None):
229
+ # length includes spaces and comma between elements
230
+ element_length = formatter1.width() + 2
231
+ if formatter2 is not None:
232
+ # width for imag_formatter + an extra j for complex
233
+ element_length += formatter2.width() + 1
234
+
235
+ elements_per_line = max(
236
+ 1, int(math.floor((PRINT_OPTS.linewidth - indent) / (element_length)))
237
+ )
238
+
239
+ def _val_formatter(val, formatter1=formatter1, formatter2=formatter2):
240
+ if formatter2 is not None:
241
+ real_str = formatter1.format(val.real)
242
+ imag_str = (formatter2.format(val.imag) + "j").lstrip()
243
+ # handles negative numbers, +0.0, -0.0
244
+ if imag_str[0] == "+" or imag_str[0] == "-":
245
+ return real_str + imag_str
246
+ else:
247
+ return real_str + "+" + imag_str
248
+ else:
249
+ return formatter1.format(val)
250
+
251
+ if summarize and not PRINT_OPTS.edgeitems:
252
+ # Deal with edge case that negative zero is zero
253
+ data = ["..."]
254
+ elif summarize and self.size(0) > 2 * PRINT_OPTS.edgeitems:
255
+ data = (
256
+ [_val_formatter(val) for val in self[: PRINT_OPTS.edgeitems].tolist()]
257
+ + [" ..."]
258
+ + [_val_formatter(val) for val in self[-PRINT_OPTS.edgeitems :].tolist()]
259
+ )
260
+ else:
261
+ data = [_val_formatter(val) for val in self.tolist()]
262
+
263
+ data_lines = [
264
+ data[i : i + elements_per_line] for i in range(0, len(data), elements_per_line)
265
+ ]
266
+ lines = [", ".join(line) for line in data_lines]
267
+ return "[" + ("," + "\n" + " " * (indent + 1)).join(lines) + "]"
268
+
269
+
270
+ # formatter2 is only used for printing complex tensors.
271
+ # For complex tensors, formatter1 and formatter2 are the formatters for tensor.real
272
+ # and tensor.imag respesectively
273
+ def _tensor_str_with_formatter(self, indent, summarize, formatter1, formatter2=None):
274
+ dim = self.dim()
275
+
276
+ if dim == 0:
277
+ return _scalar_str(self, formatter1, formatter2)
278
+
279
+ if dim == 1:
280
+ return _vector_str(self, indent, summarize, formatter1, formatter2)
281
+
282
+ if summarize and self.size(0) > 2 * PRINT_OPTS.edgeitems:
283
+ slices = (
284
+ [
285
+ _tensor_str_with_formatter(
286
+ self[i], indent + 1, summarize, formatter1, formatter2
287
+ )
288
+ for i in range(0, PRINT_OPTS.edgeitems)
289
+ ]
290
+ + ["..."]
291
+ + [
292
+ _tensor_str_with_formatter(
293
+ self[i], indent + 1, summarize, formatter1, formatter2
294
+ )
295
+ for i in range(len(self) - PRINT_OPTS.edgeitems, len(self))
296
+ ]
297
+ )
298
+ else:
299
+ slices = [
300
+ _tensor_str_with_formatter(
301
+ self[i], indent + 1, summarize, formatter1, formatter2
302
+ )
303
+ for i in range(0, self.size(0))
304
+ ]
305
+
306
+ tensor_str = ("," + "\n" * (dim - 1) + " " * (indent + 1)).join(slices)
307
+ return "[" + tensor_str + "]"
308
+
309
+
310
+ def _tensor_str(self, indent):
311
+ if self.numel() == 0:
312
+ return "[]"
313
+
314
+ if self.has_names():
315
+ # There are two main codepaths (possibly more) that tensor printing goes through:
316
+ # - tensor data can fit comfortably on screen
317
+ # - tensor data needs to be summarized
318
+ # Some of the codepaths don't fully support named tensors, so we send in
319
+ # an unnamed tensor to the formatting code as a workaround.
320
+ self = self.rename(None)
321
+
322
+ summarize = self.numel() > PRINT_OPTS.threshold
323
+
324
+ if self._is_zerotensor():
325
+ self = self.clone()
326
+
327
+ # handle the negative bit
328
+ if self.is_neg():
329
+ self = self.resolve_neg()
330
+
331
+ # TODO: Remove me when `masked_select` is implemented for FP8
332
+ if self.dtype in [
333
+ torch.float8_e5m2,
334
+ torch.float8_e5m2fnuz,
335
+ torch.float8_e4m3fn,
336
+ torch.float8_e4m3fnuz,
337
+ ]:
338
+ self = self.half()
339
+
340
+ if self.dtype.is_complex:
341
+ # handle the conjugate bit
342
+ self = self.resolve_conj()
343
+ real_formatter = _Formatter(
344
+ get_summarized_data(self.real) if summarize else self.real
345
+ )
346
+ imag_formatter = _Formatter(
347
+ get_summarized_data(self.imag) if summarize else self.imag
348
+ )
349
+ return _tensor_str_with_formatter(
350
+ self, indent, summarize, real_formatter, imag_formatter
351
+ )
352
+ else:
353
+ formatter = _Formatter(get_summarized_data(self) if summarize else self)
354
+ return _tensor_str_with_formatter(self, indent, summarize, formatter)
355
+
356
+
357
+ def _add_suffixes(tensor_str, suffixes, indent, force_newline):
358
+ tensor_strs = [tensor_str]
359
+ last_line_len = len(tensor_str) - tensor_str.rfind("\n") + 1
360
+ for suffix in suffixes:
361
+ suffix_len = len(suffix)
362
+ if force_newline or last_line_len + suffix_len + 2 > PRINT_OPTS.linewidth:
363
+ tensor_strs.append(",\n" + " " * indent + suffix)
364
+ last_line_len = indent + suffix_len
365
+ force_newline = False
366
+ else:
367
+ tensor_strs.append(", " + suffix)
368
+ last_line_len += suffix_len + 2
369
+ tensor_strs.append(")")
370
+ return "".join(tensor_strs)
371
+
372
+
373
+ def get_summarized_data(self):
374
+ dim = self.dim()
375
+ if dim == 0:
376
+ return self
377
+ if dim == 1:
378
+ if self.size(0) > 2 * PRINT_OPTS.edgeitems:
379
+ return torch.cat(
380
+ (self[: PRINT_OPTS.edgeitems], self[-PRINT_OPTS.edgeitems :])
381
+ )
382
+ else:
383
+ return self
384
+ if not PRINT_OPTS.edgeitems:
385
+ return self.new_empty([0] * self.dim())
386
+ elif self.size(0) > 2 * PRINT_OPTS.edgeitems:
387
+ start = [self[i] for i in range(0, PRINT_OPTS.edgeitems)]
388
+ end = [self[i] for i in range(len(self) - PRINT_OPTS.edgeitems, len(self))]
389
+ return torch.stack([get_summarized_data(x) for x in (start + end)])
390
+ else:
391
+ return torch.stack([get_summarized_data(x) for x in self])
392
+
393
+
394
+ def _str_intern(inp, *, tensor_contents=None):
395
+ if torch._C._functorch.is_functorch_wrapped_tensor(inp):
396
+ return _functorch_wrapper_str_intern(inp, tensor_contents=tensor_contents)
397
+ is_plain_tensor = type(inp) is torch.Tensor or type(inp) is torch.nn.Parameter
398
+ if inp.is_nested:
399
+ prefix = "nested_tensor("
400
+ elif is_plain_tensor:
401
+ prefix = "tensor("
402
+ else:
403
+ prefix = f"{type(inp).__name__}("
404
+ indent = len(prefix)
405
+ suffixes = []
406
+ custom_contents_provided = tensor_contents is not None
407
+ if custom_contents_provided:
408
+ tensor_str = tensor_contents
409
+
410
+ # This is used to extract the primal value and thus disable the forward AD
411
+ # within this function.
412
+ # TODO(albanD) This needs to be updated when more than one level is supported
413
+ self, tangent = torch.autograd.forward_ad.unpack_dual(inp)
414
+
415
+ # Note [Print tensor device]:
416
+ # A general logic here is we only print device when it doesn't match
417
+ # the device specified in default tensor type.
418
+ # Currently torch.set_default_tensor_type() only supports CPU/CUDA, thus
419
+ # torch._C._get_default_device() only returns either cpu or cuda.
420
+ # In other cases, we don't have a way to set them as default yet,
421
+ # and we should always print out device for them.
422
+ if (
423
+ self.device.type != torch._C._get_default_device()
424
+ or (
425
+ self.device.type == "cuda"
426
+ and torch.cuda.current_device() != self.device.index
427
+ )
428
+ or (self.device.type == "mps")
429
+ ):
430
+ suffixes.append("device='" + str(self.device) + "'")
431
+
432
+ # Tensor printing performs tensor operations like slice, indexing, etc to make it in a
433
+ # representable format. These operations on ipu/xla/lazy/mtia tensor results in compilations. Hence,
434
+ # to avoid compilations, copying the tensor to cpu before printing.
435
+ if self.device.type in ["xla", "lazy", "ipu", "mtia"]:
436
+ self = self.to("cpu")
437
+
438
+ # TODO: add an API to map real -> complex dtypes
439
+ _default_complex_dtype = (
440
+ torch.cdouble if torch.get_default_dtype() == torch.double else torch.cfloat
441
+ )
442
+ has_default_dtype = self.dtype in (
443
+ torch.get_default_dtype(),
444
+ _default_complex_dtype,
445
+ torch.int64,
446
+ torch.bool,
447
+ )
448
+ if self.is_sparse:
449
+ suffixes.append("size=" + str(tuple(self.shape)))
450
+ from torch._subclasses.fake_tensor import FakeTensor
451
+
452
+ is_meta = self.is_meta or isinstance(self, FakeTensor)
453
+ if not is_meta:
454
+ suffixes.append("nnz=" + str(self._nnz()))
455
+ if not has_default_dtype:
456
+ suffixes.append("dtype=" + str(self.dtype))
457
+ if not custom_contents_provided:
458
+ indices_prefix = "indices=tensor("
459
+ indices = self._indices().detach()
460
+ if is_meta:
461
+ indices_str = "..."
462
+ else:
463
+ indices_str = _tensor_str(indices, indent + len(indices_prefix))
464
+ if is_meta or indices.numel() == 0:
465
+ indices_str += ", size=" + str(tuple(indices.shape))
466
+ values_prefix = "values=tensor("
467
+ values = self._values().detach()
468
+ if is_meta:
469
+ values_str = "..."
470
+ else:
471
+ values_str = _tensor_str(values, indent + len(values_prefix))
472
+ if is_meta or values.numel() == 0:
473
+ values_str += ", size=" + str(tuple(values.shape))
474
+ tensor_str = (
475
+ indices_prefix
476
+ + indices_str
477
+ + "),\n"
478
+ + " " * indent
479
+ + values_prefix
480
+ + values_str
481
+ + ")"
482
+ )
483
+ elif self.layout in {
484
+ torch.sparse_csr,
485
+ torch.sparse_csc,
486
+ torch.sparse_bsr,
487
+ torch.sparse_bsc,
488
+ }:
489
+ from torch._subclasses.fake_tensor import FakeTensor
490
+
491
+ suffixes.append("size=" + str(tuple(self.shape)))
492
+ is_meta = self.is_meta or isinstance(self, FakeTensor)
493
+ if not is_meta:
494
+ suffixes.append("nnz=" + str(self._nnz()))
495
+ if not has_default_dtype:
496
+ suffixes.append("dtype=" + str(self.dtype))
497
+ if not custom_contents_provided:
498
+ compressed_indices_method, plain_indices_method = {
499
+ torch.sparse_csr: (torch.Tensor.crow_indices, torch.Tensor.col_indices),
500
+ torch.sparse_csc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices),
501
+ torch.sparse_bsr: (torch.Tensor.crow_indices, torch.Tensor.col_indices),
502
+ torch.sparse_bsc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices),
503
+ }[self.layout]
504
+ if self.layout in {torch.sparse_csr, torch.sparse_bsr}:
505
+ cdimname, pdimname = "row", "column"
506
+ else:
507
+ cdimname, pdimname = "column", "row"
508
+ compressed_indices_prefix = f"c{cdimname[:3]}_indices=tensor("
509
+ compressed_indices = compressed_indices_method(self).detach()
510
+ if is_meta:
511
+ compressed_indices_str = "..."
512
+ else:
513
+ compressed_indices_str = _tensor_str(
514
+ compressed_indices, indent + len(compressed_indices_prefix)
515
+ )
516
+ if compressed_indices.numel() == 0 or is_meta:
517
+ compressed_indices_str += ", size=" + str(
518
+ tuple(compressed_indices.shape)
519
+ )
520
+ plain_indices_prefix = f"{pdimname[:3]}_indices=tensor("
521
+ plain_indices = plain_indices_method(self).detach()
522
+ if is_meta:
523
+ plain_indices_str = "..."
524
+ else:
525
+ plain_indices_str = _tensor_str(
526
+ plain_indices, indent + len(plain_indices_prefix)
527
+ )
528
+ if plain_indices.numel() == 0 or is_meta:
529
+ plain_indices_str += ", size=" + str(tuple(plain_indices.shape))
530
+ values_prefix = "values=tensor("
531
+ values = self.values().detach()
532
+ if is_meta:
533
+ values_str = "..."
534
+ else:
535
+ values_str = _tensor_str(values, indent + len(values_prefix))
536
+ if values.numel() == 0 or is_meta:
537
+ values_str += ", size=" + str(tuple(values.shape))
538
+ tensor_str = (
539
+ compressed_indices_prefix
540
+ + compressed_indices_str
541
+ + "),\n"
542
+ + " " * indent
543
+ + plain_indices_prefix
544
+ + plain_indices_str
545
+ + "),\n"
546
+ + " " * indent
547
+ + values_prefix
548
+ + values_str
549
+ + ")"
550
+ )
551
+ elif self.is_quantized:
552
+ suffixes.append("size=" + str(tuple(self.shape)))
553
+ if not has_default_dtype:
554
+ suffixes.append("dtype=" + str(self.dtype))
555
+ suffixes.append("quantization_scheme=" + str(self.qscheme()))
556
+ if (
557
+ self.qscheme() == torch.per_tensor_affine
558
+ or self.qscheme() == torch.per_tensor_symmetric
559
+ ):
560
+ suffixes.append("scale=" + str(self.q_scale()))
561
+ suffixes.append("zero_point=" + str(self.q_zero_point()))
562
+ elif (
563
+ self.qscheme() == torch.per_channel_affine
564
+ or self.qscheme() == torch.per_channel_symmetric
565
+ or self.qscheme() == torch.per_channel_affine_float_qparams
566
+ ):
567
+ suffixes.append("scale=" + str(self.q_per_channel_scales()))
568
+ suffixes.append("zero_point=" + str(self.q_per_channel_zero_points()))
569
+ suffixes.append("axis=" + str(self.q_per_channel_axis()))
570
+ if not custom_contents_provided:
571
+ tensor_str = _tensor_str(self.dequantize(), indent)
572
+ elif self.is_nested:
573
+ if not custom_contents_provided:
574
+
575
+ def indented_str(s, indent):
576
+ return "\n".join(f" {line}" for line in s.split("\n"))
577
+
578
+ strs = ",\n".join(
579
+ indented_str(str(t), indent + 1)
580
+ for t in torch.ops.aten.unbind.int(self, 0)
581
+ )
582
+ tensor_str = f"[\n{strs}\n]"
583
+ elif torch._is_functional_tensor(self):
584
+ prefix = "_to_functional_tensor("
585
+ tensor_str = repr(torch._from_functional_tensor(self))
586
+ else:
587
+ # Circular import problem, so we import it here
588
+ from torch._subclasses.fake_tensor import FakeTensor
589
+
590
+ if self.is_meta or isinstance(self, FakeTensor):
591
+ suffixes.append("size=" + str(tuple(self.shape)))
592
+ if self.dtype != torch.get_default_dtype():
593
+ suffixes.append("dtype=" + str(self.dtype))
594
+ # TODO: This implies that ellipses is valid syntax for allocating
595
+ # a meta tensor or FakeTensor, which it could be, but it isn't right now
596
+ if not custom_contents_provided:
597
+ tensor_str = "..."
598
+ else:
599
+ if self.numel() == 0 and not self.is_sparse:
600
+ # Explicitly print the shape if it is not (0,), to match NumPy behavior
601
+ if self.dim() != 1:
602
+ suffixes.append("size=" + str(tuple(self.shape)))
603
+
604
+ # In an empty tensor, there are no elements to infer if the dtype
605
+ # should be int64, so it must be shown explicitly.
606
+ if self.dtype != torch.get_default_dtype():
607
+ suffixes.append("dtype=" + str(self.dtype))
608
+ if not custom_contents_provided:
609
+ tensor_str = "[]"
610
+ else:
611
+ if not PRINT_OPTS.edgeitems:
612
+ suffixes.append("size=" + str(tuple(self.shape)))
613
+
614
+ if not has_default_dtype:
615
+ suffixes.append("dtype=" + str(self.dtype))
616
+
617
+ if not custom_contents_provided:
618
+ if self.layout != torch.strided:
619
+ tensor_str = _tensor_str(self.to_dense(), indent)
620
+ else:
621
+ tensor_str = _tensor_str(self, indent)
622
+
623
+ if self.layout != torch.strided:
624
+ suffixes.append("layout=" + str(self.layout))
625
+
626
+ # Use inp here to get the original grad_fn and not the one generated by the forward grad
627
+ # unpacking.
628
+ grad_fn_name = None
629
+ try:
630
+ grad_fn = inp.grad_fn
631
+ except RuntimeError:
632
+ # Accessing the grad_fn calls rebasing logic which would cause an error
633
+ # if that tensor is a view created in no-grad mode modified in-place in
634
+ # no-grad mode. See: https://github.com/pytorch/pytorch/issues/99968
635
+ grad_fn_name = "Invalid"
636
+
637
+ if grad_fn_name is None and grad_fn is not None: # type: ignore[possibly-undefined]
638
+ grad_fn_name = type(grad_fn).__name__
639
+ if grad_fn_name == "CppFunction":
640
+ grad_fn_name = grad_fn.name().rsplit("::", 1)[-1]
641
+
642
+ if grad_fn_name is not None:
643
+ suffixes.append(f"grad_fn=<{grad_fn_name}>")
644
+ elif inp.requires_grad:
645
+ suffixes.append("requires_grad=True")
646
+
647
+ if self.has_names():
648
+ suffixes.append(f"names={self.names}")
649
+
650
+ if tangent is not None:
651
+ suffixes.append(f"tangent={tangent}")
652
+
653
+ string_repr = _add_suffixes(
654
+ prefix + tensor_str, # type: ignore[possibly-undefined]
655
+ suffixes,
656
+ indent,
657
+ force_newline=self.is_sparse,
658
+ )
659
+
660
+ # Check if this instance is flagged as a parameter and change the repr accordingly.
661
+ # Unfortunately, this function has to be aware of this detail.
662
+ # NB: This is currently skipped for plain tensor parameters to maintain BC. In the future,
663
+ # this should be done for those as well to produce a valid repr.
664
+ if isinstance(self, torch.nn.Parameter) and not is_plain_tensor:
665
+ string_repr = f"Parameter({string_repr})"
666
+
667
+ return string_repr
668
+
669
+
670
+ def _functorch_wrapper_str_intern(tensor, *, tensor_contents=None):
671
+ level = torch._C._functorch.maybe_get_level(tensor)
672
+ assert level != -1
673
+
674
+ if torch._C._functorch.is_functionaltensor(tensor):
675
+ # Since we're unwrapping the FunctionalTensorWrapper, we need to make sure
676
+ # that it's up to date first
677
+ torch._sync(tensor)
678
+
679
+ value = torch._C._functorch.get_unwrapped(tensor)
680
+ value_repr = repr(value)
681
+
682
+ indented_value_repr = textwrap.indent(value_repr, " " * 4)
683
+ if torch._C._functorch.is_batchedtensor(tensor):
684
+ bdim = torch._C._functorch.maybe_get_bdim(tensor)
685
+ assert bdim != -1
686
+ return (
687
+ f"BatchedTensor(lvl={level}, bdim={bdim}, value=\n"
688
+ f"{indented_value_repr}\n"
689
+ f")"
690
+ )
691
+ if torch._C._functorch.is_gradtrackingtensor(tensor):
692
+ return (
693
+ f"GradTrackingTensor(lvl={level}, value=\n" f"{indented_value_repr}\n" f")"
694
+ )
695
+ if torch._C._functorch.is_functionaltensor(tensor):
696
+ return f"FunctionalTensor(lvl={level}, value=\\\n{value_repr})"
697
+
698
+ raise ValueError("We don't know how to print this, please file us an issue")
699
+
700
+
701
+ def _str(self, *, tensor_contents=None):
702
+ with torch.no_grad(), torch.utils._python_dispatch._disable_current_modes():
703
+ guard = torch._C._DisableFuncTorch()
704
+ return _str_intern(self, tensor_contents=tensor_contents)
lib/python3.10/site-packages/torch/_torch_docs.py ADDED
The diff for this file is too large to render. See raw diff
 
lib/python3.10/site-packages/torch/_utils.py ADDED
@@ -0,0 +1,1056 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # mypy: allow-untyped-defs
2
+ import copyreg
3
+ import functools
4
+ import logging
5
+ import sys
6
+ import traceback
7
+ import warnings
8
+ from collections import defaultdict
9
+ from typing import Any, Callable, DefaultDict, Generic, List, Optional, TYPE_CHECKING
10
+ from typing_extensions import deprecated, ParamSpec
11
+
12
+ import torch
13
+
14
+
15
+ def _type(self, dtype=None, non_blocking=False, **kwargs):
16
+ """Returns the type if `dtype` is not provided, else casts this object to
17
+ the specified type.
18
+
19
+ If this is already of the correct type, no copy is performed and the
20
+ original object is returned.
21
+
22
+ Args:
23
+ dtype (type or string): The desired type
24
+ non_blocking (bool): If ``True``, and the source is in pinned memory
25
+ and destination is on the GPU or vice versa, the copy is performed
26
+ asynchronously with respect to the host. Otherwise, the argument
27
+ has no effect.
28
+ **kwargs: For compatibility, may contain the key ``async`` in place of
29
+ the ``non_blocking`` argument. The ``async`` arg is deprecated.
30
+ """
31
+ non_blocking = _get_async_or_non_blocking("type", non_blocking, kwargs)
32
+ if dtype is None:
33
+ return self.__module__ + "." + self.__class__.__name__
34
+
35
+ if isinstance(dtype, str):
36
+ dtype = _import_dotted_name(dtype)
37
+ if dtype == type(self):
38
+ return self
39
+ if self.is_sparse:
40
+ if not dtype.is_sparse:
41
+ raise RuntimeError("Cannot cast sparse tensor to dense tensor")
42
+ new_module_name = dtype.__module__.replace(".sparse", "")
43
+ new_values_type_name = new_module_name + "." + dtype.__name__
44
+ new_values = torch.Tensor._values(self).type(new_values_type_name, non_blocking)
45
+ new_indices_type_name = new_module_name + ".LongTensor"
46
+ new_indices = torch.Tensor._indices(self).type(
47
+ new_indices_type_name, non_blocking
48
+ )
49
+ return dtype(new_indices, new_values, self.size())
50
+ if dtype.is_sparse:
51
+ raise RuntimeError("Cannot cast dense tensor to sparse tensor")
52
+ return dtype(self.size()).copy_(self, non_blocking)
53
+
54
+
55
+ def _to(self, device, non_blocking=False):
56
+ """Returns a copy of this object in device memory.
57
+
58
+ If this object is already on the correct device, then no copy is performed
59
+ and the original object is returned.
60
+
61
+ Args:
62
+ device (int): The destination device.
63
+ non_blocking (bool): If ``True`` and the source is in pinned memory,
64
+ the copy will be asynchronous with respect to the host. Otherwise,
65
+ the argument has no effect.
66
+ """
67
+ if self.device == device:
68
+ return self
69
+
70
+ if device.type == "cpu":
71
+ pin_memory = non_blocking and self.device.type in (
72
+ "cuda",
73
+ torch._C._get_privateuse1_backend_name(),
74
+ )
75
+ untyped_storage = torch.empty(
76
+ self.nbytes(), dtype=torch.uint8, device=device, pin_memory=pin_memory
77
+ ).untyped_storage()
78
+ untyped_storage.copy_(self, non_blocking)
79
+ return untyped_storage
80
+
81
+ device_module = getattr(torch, device.type, None)
82
+ assert (
83
+ device_module is not None
84
+ ), f"{device.type.upper()} device module is not loaded"
85
+ with device_module.device(device):
86
+ if self.is_sparse and hasattr(device_module, "sparse"):
87
+ new_type = getattr(device_module.sparse, self.__class__.__name__)
88
+ indices = getattr(torch.Tensor._indices(self), device.type)(
89
+ device, non_blocking
90
+ )
91
+ values = getattr(torch.Tensor._values(self), device.type)(
92
+ device, non_blocking
93
+ )
94
+ return new_type(indices, values, self.size())
95
+ else:
96
+ assert (
97
+ not self.is_sparse
98
+ ), f"sparse storage is not supported for {device.type.upper()} tensors"
99
+ untyped_storage = torch.UntypedStorage(self.size(), device=device)
100
+ untyped_storage.copy_(self, non_blocking)
101
+ return untyped_storage
102
+
103
+
104
+ def _get_async_or_non_blocking(function_name, non_blocking, kwargs):
105
+ """Return the non-blocking flag given the function name and kwargs.
106
+
107
+ Args:
108
+ function_name (str): the name of the function being used.
109
+ non_blocking (bool): the default value.
110
+ **kwargs (dict): the kwargs passed to the function.
111
+ """
112
+ if not kwargs:
113
+ return non_blocking
114
+ if len(kwargs) != 1 or "async" not in kwargs:
115
+ message = "{}() got an unexpected keyword argument '{}'"
116
+ argument = list(kwargs.keys()).pop()
117
+ raise TypeError(message.format(function_name, argument))
118
+ warnings.warn("'async' is deprecated; use 'non_blocking'")
119
+ return kwargs["async"]
120
+
121
+
122
+ def _get_restore_location(device):
123
+ """Return the map_location location.
124
+
125
+ Used for rebuild functions where the tensor device is distinct from the storage
126
+ """
127
+
128
+ map_location = torch.serialization._serialization_tls.map_location
129
+ if map_location is None:
130
+ return device
131
+ else:
132
+ if isinstance(map_location, dict):
133
+ return map_location.get(device, device)
134
+ elif isinstance(map_location, (str, torch.device)):
135
+ return map_location
136
+ else:
137
+ assert callable(map_location)
138
+ raise RuntimeError(
139
+ "Callable map_location not supported with _rebuild_wrapper_subclass "
140
+ "or _rebuild_device_tensor_from_numpy"
141
+ )
142
+
143
+
144
+ # Note [Don't serialize hooks]
145
+ # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
146
+ # Since time immemorial, we have serialized the backward hooks associated with
147
+ # variables. This kind of half-worked--Python can pickle global functions
148
+ # (but not closures!)--but there were problems.
149
+ #
150
+ # - It's fragile. If you serialize a backward hook into a saved
151
+ # model, and then you rename the function associated with the hook,
152
+ # now your saved model is broken and you can't load it anymore.
153
+ #
154
+ # - It's not actually used. The standard recommendation is to
155
+ # serialize the *state_dict* of a model, not the model itself
156
+ # (since this is more stable to code changes affecting the model
157
+ # serialization), and the state dict saves "data" only, thus
158
+ # stripping the backward hooks. In some cases, hooks are
159
+ # essential to the well-functioning of a model (e.g., DDP),
160
+ # but DDP already manages readding the hooks!
161
+ #
162
+ # - We didn't serialize them in many cases. Prior to #10220, we
163
+ # were dropping backward hooks in ForkingPickler. We "fixed" this
164
+ # to be convenient with other serialization sites, but lack of
165
+ # serializing backward hooks wasn't actually the root cause of
166
+ # the bug.
167
+ #
168
+ # With these cases in mind, we have decided that a better strategy
169
+ # is to just NOT serialize hooks at all.
170
+ #
171
+ # Since this is a BC-breaking change, we should warn when we previously
172
+ # serialized a hook, but no longer do so. This will be done by adding a special
173
+ # sentinel property to hooks will be used to suppress this warning. If a hook
174
+ # has the property _torch_serialize_ignore, we will not emit a warning if we
175
+ # attempt to serialize a Tensor with this hook attached to it.
176
+ #
177
+ # By the way, when _backward_hooks is skipped, we must give an EMPTY
178
+ # OrderedDict(), if you pass a None you'll run afoul #12219.
179
+
180
+
181
+ # TODO: Once we decide to break serialization FC, `storage` no longer needs to
182
+ # be a TypedStorage
183
+ def _rebuild_tensor(storage, storage_offset, size, stride):
184
+ # first construct a tensor with the correct dtype/device
185
+ t = torch.empty((0,), dtype=storage.dtype, device=storage._untyped_storage.device)
186
+ return t.set_(storage._untyped_storage, storage_offset, size, stride)
187
+
188
+
189
+ def get_tensor_metadata(tensor):
190
+ # Tensor's Metadata for serializing.
191
+ # Currently, this only returns a dict[string, bool] specifing whether
192
+ # `conj` or `neg` bit is set.
193
+ assert isinstance(tensor, torch.Tensor)
194
+ return torch._C._get_tensor_metadata(tensor) # type: ignore[attr-defined]
195
+
196
+
197
+ def set_tensor_metadata(tensor, metadata):
198
+ # See `get_tensor_metadata` above
199
+ assert isinstance(metadata, dict)
200
+ assert isinstance(tensor, torch.Tensor)
201
+ torch._C._set_tensor_metadata(tensor, metadata) # type: ignore[attr-defined]
202
+
203
+
204
+ def _rebuild_tensor_v2(
205
+ storage,
206
+ storage_offset,
207
+ size,
208
+ stride,
209
+ requires_grad,
210
+ backward_hooks,
211
+ metadata=None,
212
+ ):
213
+ tensor = _rebuild_tensor(storage, storage_offset, size, stride)
214
+ tensor.requires_grad = requires_grad
215
+ if metadata:
216
+ set_tensor_metadata(tensor, metadata)
217
+
218
+ # NB: This line exists only for backwards compatibility; the
219
+ # general expectation is that backward_hooks is an empty
220
+ # OrderedDict. See Note [Don't serialize hooks]
221
+ tensor._backward_hooks = backward_hooks
222
+ return tensor
223
+
224
+
225
+ def _rebuild_tensor_v3(
226
+ storage,
227
+ storage_offset,
228
+ size,
229
+ stride,
230
+ requires_grad,
231
+ backward_hooks,
232
+ dtype,
233
+ metadata=None,
234
+ ):
235
+ t = torch.empty(
236
+ (0,),
237
+ dtype=dtype,
238
+ device=storage._untyped_storage.device,
239
+ requires_grad=requires_grad,
240
+ )
241
+ t.set_(storage._untyped_storage, storage_offset, size, stride)
242
+ if metadata:
243
+ set_tensor_metadata(t, metadata)
244
+ t._backward_hooks = backward_hooks
245
+ return t
246
+
247
+
248
+ _sparse_tensors_to_validate: List["torch.Tensor"] = []
249
+
250
+
251
+ # In _legacy_load() in serialization.py we unpickle storages after the sparse
252
+ # tensors have been already unpickled. Those storages contain data necessary for
253
+ # validating sparse tensors: indices and values. That's why sparse tensors are
254
+ # first unpickled without any validation, and then this function is called just
255
+ # before _legacy_load() returns, so that all the sparse tensors can be validated
256
+ # in bulk.
257
+ #
258
+ # The same procedure must be followed by _load() in serialization.py because due
259
+ # to Pickler semantics, we have to use the same (non-validating) function for
260
+ # unpickling sparse tensors, regardless of the caller.
261
+ def _validate_loaded_sparse_tensors():
262
+ try:
263
+ for t in _sparse_tensors_to_validate:
264
+ if t.layout is torch.sparse_coo:
265
+ torch._validate_sparse_coo_tensor_args(
266
+ t._indices(), t._values(), t.size(), t.is_coalesced()
267
+ )
268
+ elif t.layout in {
269
+ torch.sparse_csr,
270
+ torch.sparse_csc,
271
+ torch.sparse_bsr,
272
+ torch.sparse_bsc,
273
+ }:
274
+ # TODO: Validation currently involves an expensive traversal
275
+ # on CPU, which may include a device transfer.
276
+ if t.layout in {torch.sparse_csr, torch.sparse_bsr}:
277
+ compressed_indices, plain_indices = (
278
+ t.crow_indices(),
279
+ t.col_indices(),
280
+ )
281
+ else:
282
+ compressed_indices, plain_indices = (
283
+ t.ccol_indices(),
284
+ t.row_indices(),
285
+ )
286
+ torch._validate_sparse_compressed_tensor_args(
287
+ compressed_indices, plain_indices, t.values(), t.size(), t.layout
288
+ )
289
+ else:
290
+ raise NotImplementedError(
291
+ f"_validate_loaded_sparse_tensors for layout `{t.layout}`"
292
+ )
293
+
294
+ finally:
295
+ _sparse_tensors_to_validate.clear()
296
+
297
+
298
+ def _rebuild_sparse_tensor(layout, data):
299
+ """
300
+ Rebuilds a sparse tensor from its sparse storage representation.
301
+
302
+ Args:
303
+ layout (str): The sparse storage layout of the tensor.
304
+ data (tuple): The tensor's sparse storage representation.
305
+ """
306
+ if layout == torch.sparse_coo:
307
+ if len(data) == 3:
308
+ # For BC:
309
+ indices, values, size = data
310
+ is_coalesced = None
311
+ else:
312
+ indices, values, size, is_coalesced = data
313
+ result = torch.sparse_coo_tensor(
314
+ indices, values, size, check_invariants=False, is_coalesced=is_coalesced
315
+ )
316
+ _sparse_tensors_to_validate.append(result)
317
+ return result
318
+
319
+ elif layout in {
320
+ torch.sparse_csr,
321
+ torch.sparse_csc,
322
+ torch.sparse_bsr,
323
+ torch.sparse_bsc,
324
+ }:
325
+ compressed_indices, plain_indices, values, size = data
326
+ result = torch.sparse_compressed_tensor(
327
+ compressed_indices,
328
+ plain_indices,
329
+ values,
330
+ size,
331
+ layout=layout,
332
+ check_invariants=False,
333
+ )
334
+ _sparse_tensors_to_validate.append(result)
335
+ return result
336
+
337
+ raise NotImplementedError(f"rebuilding sparse tensor for layout {layout}")
338
+
339
+
340
+ def _rebuild_nested_tensor(buffer, sizes, strides, storage_offsets):
341
+ return torch._nested_view_from_buffer(buffer, sizes, strides, storage_offsets)
342
+
343
+
344
+ def _rebuild_device_tensor_from_cpu_tensor(data, dtype, device, requires_grad):
345
+ device = _get_restore_location(device)
346
+ tensor = data.to(dtype=dtype, device=device)
347
+ tensor.requires_grad = requires_grad
348
+ return tensor
349
+
350
+
351
+ def _rebuild_device_tensor_from_numpy(data, dtype, device, requires_grad):
352
+ device = _get_restore_location(device)
353
+ tensor = torch.from_numpy(data).to(dtype=dtype, device=device)
354
+ tensor.requires_grad = requires_grad
355
+ return tensor
356
+
357
+
358
+ # Should not be used, only here to be able to load Tensors serialized with older versions of pytorch
359
+ _rebuild_xla_tensor = _rebuild_device_tensor_from_numpy
360
+
361
+
362
+ def _rebuild_meta_tensor_no_storage(dtype, size, stride, requires_grad):
363
+ return torch.empty_strided(
364
+ size, stride, dtype=dtype, device="meta", requires_grad=requires_grad
365
+ )
366
+
367
+
368
+ def _rebuild_wrapper_subclass(
369
+ cls,
370
+ dtype,
371
+ size,
372
+ stride,
373
+ storage_offset,
374
+ layout,
375
+ device,
376
+ requires_grad,
377
+ ):
378
+ device = _get_restore_location(device)
379
+ return torch.Tensor._make_wrapper_subclass( # type: ignore[attr-defined]
380
+ cls,
381
+ size,
382
+ strides=stride,
383
+ dtype=dtype,
384
+ storage_offset=storage_offset,
385
+ layout=layout,
386
+ device=device,
387
+ requires_grad=requires_grad,
388
+ )
389
+
390
+
391
+ # TODO: Once we decide to break serialization FC, `storage` no longer needs to
392
+ # be a TypedStorage
393
+ def _rebuild_qtensor(
394
+ storage,
395
+ storage_offset,
396
+ size,
397
+ stride,
398
+ quantizer_params,
399
+ requires_grad,
400
+ backward_hooks,
401
+ ):
402
+ qscheme = quantizer_params[0]
403
+ if qscheme == torch.per_tensor_affine:
404
+ _, scale, zero_point = quantizer_params
405
+ tensor = torch._empty_affine_quantized(
406
+ size,
407
+ scale=scale,
408
+ zero_point=zero_point,
409
+ dtype=storage.dtype,
410
+ device=storage.device,
411
+ )
412
+ elif qscheme in (torch.per_channel_affine, torch.per_channel_affine_float_qparams):
413
+ _, scales, zero_points, axis = quantizer_params
414
+ if type(scales) is list and type(zero_points) is list:
415
+ if qscheme == torch.per_channel_affine:
416
+ scales = torch.tensor(scales, dtype=torch.double, device=storage.device)
417
+ zero_points = torch.tensor(
418
+ zero_points, dtype=torch.long, device=storage.device
419
+ )
420
+ else:
421
+ scales = torch.tensor(scales, dtype=torch.float, device=storage.device)
422
+ zero_points = torch.tensor(
423
+ zero_points, dtype=torch.float, device=storage.device
424
+ )
425
+ tensor = torch._empty_per_channel_affine_quantized(
426
+ size,
427
+ scales=scales,
428
+ zero_points=zero_points,
429
+ axis=axis,
430
+ dtype=storage.dtype,
431
+ device=storage.device,
432
+ )
433
+ else:
434
+ raise RuntimeError(f"Can't deserialize quantized tensor with qscheme {qscheme}")
435
+ tensor.set_(storage, storage_offset, size, stride)
436
+ tensor.requires_grad = requires_grad
437
+ # NB: This line exists only for backwards compatibility; the
438
+ # general expectation is that backward_hooks is an empty
439
+ # OrderedDict. See Note [Don't serialize hooks]
440
+ tensor._backward_hooks = backward_hooks
441
+ return tensor
442
+
443
+
444
+ def _rebuild_parameter(data, requires_grad, backward_hooks):
445
+ param = torch.nn.Parameter(data, requires_grad)
446
+ # NB: This line exists only for backwards compatibility; the
447
+ # general expectation is that backward_hooks is an empty
448
+ # OrderedDict. See Note [Don't serialize hooks]
449
+ param._backward_hooks = backward_hooks
450
+
451
+ return param
452
+
453
+
454
+ def _rebuild_parameter_with_state(data, requires_grad, backward_hooks, state):
455
+ param = torch.nn.Parameter(data, requires_grad)
456
+ # NB: This line exists only for backwards compatibility; the
457
+ # general expectation is that backward_hooks is an empty
458
+ # OrderedDict. See Note [Don't serialize hooks]
459
+ param._backward_hooks = backward_hooks
460
+
461
+ # Restore state on Parameter like python attr.
462
+ param = _set_obj_state(param, state)
463
+ return param
464
+
465
+
466
+ def _get_obj_state(obj):
467
+ # Get the state of the python subclass
468
+ # This loosely mimicks the function on the object class but since Tensor do not inherit
469
+ # from it, we cannot call that function directly
470
+ # https://github.com/python/cpython/blob/c83919bd635f4433f1c6ae8504996a9fe3c215e5/Objects/typeobject.c#L4891
471
+ # Note that starting with Python 3.11, this `__getstate__` is always defined and thus
472
+ # the else branch will never be taken.
473
+ getstate_fn = getattr(obj, "__getstate__", None)
474
+ if getstate_fn:
475
+ state = getstate_fn()
476
+ else:
477
+ slots_to_save = copyreg._slotnames(obj.__class__) # type: ignore[attr-defined]
478
+ if slots_to_save:
479
+ state = (
480
+ obj.__dict__,
481
+ {
482
+ name: getattr(obj, name)
483
+ for name in slots_to_save
484
+ if hasattr(obj, name)
485
+ },
486
+ )
487
+ else:
488
+ state = obj.__dict__
489
+
490
+ return state
491
+
492
+
493
+ def _set_obj_state(obj, state):
494
+ if isinstance(state, tuple):
495
+ if not len(state) == 2:
496
+ raise RuntimeError(f"Invalid serialized state: {state}")
497
+ dict_state = state[0]
498
+ slots_state = state[1]
499
+ else:
500
+ dict_state = state
501
+ slots_state = None
502
+
503
+ # Starting with Python 3.11, the __dict__ attribute is lazily created
504
+ # and is serialized as None when not needed.
505
+ if dict_state:
506
+ for k, v in dict_state.items():
507
+ setattr(obj, k, v)
508
+
509
+ if slots_state:
510
+ for k, v in slots_state.items():
511
+ setattr(obj, k, v)
512
+ return obj
513
+
514
+
515
+ def _import_dotted_name(name):
516
+ components = name.split(".")
517
+ obj = __import__(components[0])
518
+ for component in components[1:]:
519
+ obj = getattr(obj, component)
520
+ return obj
521
+
522
+
523
+ def _flatten_dense_tensors(tensors):
524
+ """Flatten dense tensors into a contiguous 1D buffer. Assume tensors are of
525
+ same dense type.
526
+
527
+ Since inputs are dense, the resulting tensor will be a concatenated 1D
528
+ buffer. Element-wise operation on this buffer will be equivalent to
529
+ operating individually.
530
+
531
+ Args:
532
+ tensors (Iterable[Tensor]): dense tensors to flatten.
533
+
534
+ Returns:
535
+ A contiguous 1D buffer containing input tensors.
536
+ """
537
+ return torch._C._nn.flatten_dense_tensors(tensors)
538
+
539
+
540
+ def _flatten_sparse_tensors(tensors):
541
+ """Flatten sparse tensors into two contiguous 1D buffers, one of indices and
542
+ one of values. Assume tensors are of same sparse type.
543
+
544
+ Args:
545
+ tensors (Iterable[Tensor]): sparse tensors to flatten.
546
+
547
+ Returns:
548
+ A tuple of two contiguous 1D buffers, one containing input tensors'
549
+ indices and the other containing the values.
550
+ """
551
+ flat_indices = torch._C._nn.flatten_dense_tensors(
552
+ [torch.Tensor._indices(t) for t in tensors]
553
+ )
554
+ flat_values = torch._C._nn.flatten_dense_tensors(
555
+ [torch.Tensor._values(t) for t in tensors]
556
+ )
557
+ return flat_indices, flat_values
558
+
559
+
560
+ def _unflatten_dense_tensors(flat, tensors):
561
+ """View a flat buffer using the sizes of tensors. Assume that tensors are of
562
+ same dense type, and that flat is given by _flatten_dense_tensors.
563
+
564
+ Args:
565
+ flat (Tensor): flattened dense tensors to unflatten.
566
+ tensors (Iterable[Tensor]): dense tensors whose sizes will be used to
567
+ unflatten flat.
568
+
569
+ Returns:
570
+ Unflattened dense tensors with sizes same as tensors and values from
571
+ flat.
572
+ """
573
+ return torch._C._nn.unflatten_dense_tensors(flat, tensors)
574
+
575
+
576
+ def _unflatten_sparse_tensors(flat, tensors):
577
+ """View flat buffer (containing indices and values) using the sizes of
578
+ tensors. Assume that tensors are of same sparse type, and that flat is given
579
+ by _flatten_sparse_tensors.
580
+
581
+ Args:
582
+ flat (tuple(Tensor, Tensor)): flattened indices and values of sparse
583
+ tensors to unflatten.
584
+ tensors (Iterable[Tensor]): sparse tensors whose sizes will be used to
585
+ unflatten flat.
586
+
587
+ Returns:
588
+ Unflattened sparse tensors with sizes same as tensors and values from
589
+ flat.
590
+ """
591
+ flat_indices, flat_values = flat
592
+ indices = torch._C._nn.unflatten_dense_tensors(
593
+ flat_indices, [torch.Tensor._indices(t) for t in tensors]
594
+ )
595
+ values = torch._C._nn.unflatten_dense_tensors(
596
+ flat_values, [torch.Tensor._values(t) for t in tensors]
597
+ )
598
+ outputs = []
599
+ for t, i, v in zip(tensors, indices, values):
600
+ outputs.append(t.new(i, v, t.size()))
601
+ return tuple(outputs)
602
+
603
+
604
+ def _reorder_tensors_as(tensors, ordered_tensors):
605
+ """Assume that tensors are of same order as ordered_tensors within their
606
+ types, e.g., from _take_tensors. Reorder them to be of same order as
607
+ ordered_tensors.
608
+
609
+ Args:
610
+ tensors (Iterable[Tensor]): tensors to be reordered. They should be of
611
+ the same order as ordered_tensors within their own types.
612
+ ordered_tensors (Iterable[Tensor]): tensors whose order will be the
613
+ reference.
614
+
615
+ Returns:
616
+ Ordered tuple of tensors with contents from tensors and order of
617
+ ordered_tensors.
618
+ """
619
+ type_dict = defaultdict(list)
620
+ for tensor in tensors:
621
+ type_dict[tensor.type()].append(tensor)
622
+ type_dict_ = {t: iter(coll) for t, coll in type_dict.items()}
623
+ return tuple(next(type_dict_[tensor.type()]) for tensor in ordered_tensors)
624
+
625
+
626
+ def _take_tensors(tensors, size_limit):
627
+ """Group tensors into chunks. This generator yields a chunk at each time,
628
+ each containing tensors of same type up to certain byte limit in total size.
629
+
630
+ Args:
631
+ tensors (Sequence): A sequence of tensors to be separated into chunks.
632
+ size_limit (int): The limit of each chunk in bytes.
633
+
634
+ Yields:
635
+ Blocks of tensors of same type and within size_limit. The yielded
636
+ tensors are only ordered as the original sequence within its types.
637
+ """
638
+ buf_dict: DefaultDict[str, List] = defaultdict(lambda: [[], 0])
639
+ for tensor in tensors:
640
+ t = tensor.type()
641
+ if tensor.is_sparse:
642
+ indices = torch.Tensor._indices(tensor)
643
+ values = torch.Tensor._values(tensor)
644
+ size = (
645
+ indices.numel() * indices.element_size()
646
+ + values.numel() * values.element_size()
647
+ )
648
+ else:
649
+ size = tensor.numel() * tensor.element_size()
650
+ buf_and_size = buf_dict[t]
651
+ if buf_and_size[1] + size > size_limit and buf_and_size[1] > 0:
652
+ yield buf_and_size[0]
653
+ buf_and_size = buf_dict[t] = [[], 0]
654
+ buf_and_size[0].append(tensor)
655
+ buf_and_size[1] += size
656
+ for buf, _ in buf_dict.values():
657
+ if len(buf) > 0:
658
+ yield buf
659
+
660
+
661
+ # annotation decorator to get annotations in a way that is compatible
662
+ # with both Python 2 and 3
663
+ def annotate(ret, **kwargs):
664
+ def dec(fun):
665
+ fun.__annotations__ = dict(kwargs)
666
+ fun.__annotations__["return"] = ret
667
+ return fun
668
+
669
+ return dec
670
+
671
+
672
+ def render_call(fn, args, kwargs):
673
+ str_fn = torch.overrides.resolve_name(fn)
674
+ if str_fn is None:
675
+ str_fn = str(fn)
676
+
677
+ str_args: List[str] = []
678
+ with torch._tensor_str.printoptions(threshold=0, edgeitems=0):
679
+ str_args.extend(repr(a) for a in args)
680
+ str_args.extend(f"{k}={repr(v)}" for k, v in kwargs.items())
681
+ r = f"{str_fn}({', '.join(str_args)})"
682
+ return r
683
+
684
+
685
+ # NOTE [ Python Traceback Reference Cycle Problem ]
686
+ #
687
+ # When using sys.exc_info(), it is important to **not** store the exc_info[2],
688
+ # which is the traceback, because otherwise you will run into the traceback
689
+ # reference cycle problem, i.e., the traceback holding reference to the frame,
690
+ # and the frame (which holds reference to all the object in its temporary scope)
691
+ # holding reference the traceback.
692
+
693
+
694
+ class KeyErrorMessage(str):
695
+ r"""str subclass that returns itself in repr"""
696
+
697
+ def __repr__(self):
698
+ return self
699
+
700
+
701
+ class ExceptionWrapper:
702
+ r"""Wraps an exception plus traceback to communicate across threads"""
703
+
704
+ def __init__(self, exc_info=None, where="in background"):
705
+ # It is important that we don't store exc_info, see
706
+ # NOTE [ Python Traceback Reference Cycle Problem ]
707
+ if exc_info is None:
708
+ exc_info = sys.exc_info()
709
+ self.exc_type = exc_info[0]
710
+ self.exc_msg = "".join(traceback.format_exception(*exc_info))
711
+ self.where = where
712
+
713
+ def reraise(self):
714
+ r"""Reraises the wrapped exception in the current thread"""
715
+ # Format a message such as: "Caught ValueError in DataLoader worker
716
+ # process 2. Original Traceback:", followed by the traceback.
717
+ msg = f"Caught {self.exc_type.__name__} {self.where}.\nOriginal {self.exc_msg}"
718
+ if self.exc_type == KeyError:
719
+ # KeyError calls repr() on its argument (usually a dict key). This
720
+ # makes stack traces unreadable. It will not be changed in Python
721
+ # (https://bugs.python.org/issue2651), so we work around it.
722
+ msg = KeyErrorMessage(msg)
723
+ elif getattr(self.exc_type, "message", None):
724
+ # Some exceptions have first argument as non-str but explicitly
725
+ # have message field
726
+ raise self.exc_type(message=msg)
727
+ try:
728
+ exception = self.exc_type(msg)
729
+ except TypeError:
730
+ # If the exception takes multiple arguments, don't try to
731
+ # instantiate since we don't know how to
732
+ raise RuntimeError(msg) from None
733
+ raise exception
734
+
735
+
736
+ def _get_available_device_type():
737
+ if torch.cuda.is_available():
738
+ return "cuda"
739
+ if torch.backends.mps.is_available():
740
+ return "mps"
741
+ if hasattr(torch, "xpu") and torch.xpu.is_available(): # type: ignore[attr-defined]
742
+ return "xpu"
743
+ if hasattr(torch, "mtia") and torch.mtia.is_available():
744
+ return "mtia"
745
+ custom_backend_name = torch._C._get_privateuse1_backend_name()
746
+ custom_device_mod = getattr(torch, custom_backend_name, None)
747
+ if custom_device_mod and custom_device_mod.is_available():
748
+ return custom_backend_name
749
+ # add more available device types here
750
+ return None
751
+
752
+
753
+ def _get_device_attr(get_member):
754
+ device_type = _get_available_device_type()
755
+ if device_type and device_type.lower() == "cuda":
756
+ return get_member(torch.cuda)
757
+ if device_type and device_type.lower() == "mps":
758
+ return get_member(torch.mps)
759
+ if device_type and device_type.lower() == "xpu":
760
+ return get_member(torch.xpu) # type: ignore[attr-defined]
761
+ if device_type and device_type.lower() == "mtia":
762
+ return get_member(torch.mtia)
763
+ if device_type == torch._C._get_privateuse1_backend_name():
764
+ return get_member(getattr(torch, device_type))
765
+ # add more available device types here
766
+ return None
767
+
768
+
769
+ def _get_current_device_index():
770
+ # current device index
771
+ return _get_device_attr(lambda m: m.current_device())
772
+
773
+
774
+ def _get_all_device_indices():
775
+ # all device index
776
+ return _get_device_attr(lambda m: list(range(m.device_count())))
777
+
778
+
779
+ def _get_devices_properties(device_ids):
780
+ # all device properties
781
+ return [_get_device_attr(lambda m: m.get_device_properties(i)) for i in device_ids]
782
+
783
+
784
+ def get_current_device_index() -> int:
785
+ r"""Checks if there are CUDA devices available and
786
+ returns the device index of the current default CUDA device.
787
+ Returns -1 in case there are no CUDA devices available.
788
+ Arguments: ``None``
789
+ """
790
+ if torch.cuda.device_count() > 0:
791
+ return torch.cuda.current_device()
792
+ return -1
793
+
794
+
795
+ def _get_device_index(
796
+ device: Any,
797
+ optional: bool = False,
798
+ allow_cpu: bool = False,
799
+ ) -> int:
800
+ r"""Gets the device index from :attr:`device`, which can be a torch.device
801
+ object, a Python integer, or ``None``.
802
+
803
+ If :attr:`device` is a torch.device object, returns the device index if it
804
+ has index. Note that for a device without a specified index,
805
+ i.e., ``torch.device('xxx')``, this will return the current default
806
+ device of that type if :attr:`optional` is ``True``. If :attr:`allow_cpu` is ``True``,
807
+ CPU devices will be accepted and ``-1`` will be returned in this case.
808
+
809
+ If :attr:`device` is a Python integer, it is returned as is.
810
+
811
+ If :attr:`device` is ``None``, this will return the current default
812
+ device of the supported runtime platform if :attr:`optional` is ``True``.
813
+ i.e., the current default CUDA device will be returned if CUDA runtime is supported.
814
+ """
815
+ if isinstance(device, str):
816
+ device = torch.device(device)
817
+ device_idx: Optional[int] = None
818
+ if isinstance(device, torch.device):
819
+ if not allow_cpu and device.type == "cpu":
820
+ raise ValueError(f"Expected a non cpu device, but got: {device}")
821
+ device_idx = -1 if device.type == "cpu" else device.index
822
+ if isinstance(device, int):
823
+ device_idx = device
824
+ if device_idx is None:
825
+ if optional:
826
+ # The eager API _get_current_device_index uses `lambda` functions which are
827
+ # not supported in JIT and hence not scriptable. The JIT equivalent API to get
828
+ # the current device index is `get_current_device_index()` which can
829
+ # be scripted. We use is_scripting to check the mode we are in and call the
830
+ # appropriate API.
831
+ if torch.jit.is_scripting():
832
+ device_idx = get_current_device_index()
833
+ else:
834
+ device_idx = _get_current_device_index()
835
+ else:
836
+ raise ValueError(
837
+ f"Expected a torch.device with a specified index or an integer, but got:{device}"
838
+ )
839
+ return device_idx
840
+
841
+
842
+ def _handle_complex(tensor):
843
+ """
844
+ Returns a real view of a tensor if complex dtype else just the tensor
845
+ need to check if a UninitializedParameter because otherwise checking is_complex is an error for a LazyModule
846
+ """
847
+ return (
848
+ torch.view_as_real(tensor)
849
+ if not isinstance(tensor, torch.nn.UninitializedParameter)
850
+ and tensor.is_complex()
851
+ else tensor
852
+ )
853
+
854
+
855
+ def _element_size(dtype):
856
+ """
857
+ Returns the element size for a dtype, in bytes
858
+ """
859
+ if not isinstance(dtype, torch.dtype):
860
+ raise RuntimeError(f"expected torch.dtype, but got {type(dtype)}")
861
+
862
+ if dtype.is_complex:
863
+ return torch.finfo(dtype).bits >> 2
864
+ elif dtype.is_floating_point:
865
+ return torch.finfo(dtype).bits >> 3
866
+ elif dtype == torch.bool:
867
+ # NOTE: torch.bool is not supported in torch.iinfo()
868
+ return 1
869
+ else:
870
+ return torch.iinfo(dtype).bits >> 3
871
+
872
+
873
+ class _ClassPropertyDescriptor:
874
+ def __init__(self, fget, fset=None):
875
+ self.fget = fget
876
+
877
+ def __get__(self, instance, owner=None):
878
+ if owner is None:
879
+ owner = type(instance)
880
+ return self.fget.__get__(instance, owner)()
881
+
882
+
883
+ def classproperty(func):
884
+ if not isinstance(func, (classmethod, staticmethod)):
885
+ func = classmethod(func)
886
+ return _ClassPropertyDescriptor(func)
887
+
888
+
889
+ if TYPE_CHECKING:
890
+ # TorchScript does not support `@deprecated`
891
+ # This is a workaround to avoid breaking TorchScript
892
+ @deprecated(
893
+ "`torch._utils.is_compiling` is deprecated. Use `torch.compiler.is_compiling` instead.",
894
+ category=FutureWarning,
895
+ )
896
+ def is_compiling() -> bool:
897
+ return torch.compiler.is_compiling()
898
+
899
+ else:
900
+
901
+ def is_compiling() -> bool:
902
+ """
903
+ Indicates whether we are tracing/compiling with torch.compile() or torch.export().
904
+ """
905
+ warnings.warn( # use `warnings.warn` instead of `@deprecated`
906
+ "`torch._utils.is_compiling` is deprecated. Use `torch.compiler.is_compiling` instead.",
907
+ # FutureWarning, # TorchScript does not support Warning type
908
+ stacklevel=2,
909
+ )
910
+ return torch.compiler.is_compiling()
911
+
912
+
913
+ def _functionalize_sync(t):
914
+ # This code lives in python instead of C++ since conditioning on a certain python subclass
915
+ # is much more of a pain in C++.
916
+ from torch._subclasses.functional_tensor import FunctionalTensor
917
+
918
+ if isinstance(t, FunctionalTensor):
919
+ # If a FunctionalTensorMode is active while syncing, we don't want it to intercept any ops that get called
920
+ # when we sync our inner tensor.
921
+ # Why?
922
+ # (1) If there are input mutations in the graph, then they will be re-applied during
923
+ # AOTAutograd when we call _sync() from inside of our functionalization kernels.
924
+ # (2) _sync() causes us to regenerate our updated the tensor from the updated base,
925
+ # which dispatches to a bunch of view ops
926
+ # (3) The input to these view ops is our inner FunctionalTensorWrapper
927
+ # (since the sync was called from C++), not the python FunctionalTensor
928
+ # (4) if a python FunctionalTensorMode is active, it will complain when it intercepts
929
+ # the view op, since it will see an input that is a C++ FunctionalTensorWrapper
930
+ # (aka a normal torch.Tensor) instead of a python `FunctionalTensor).
931
+ maybe_functional_mode = torch._C._unset_dispatch_mode(
932
+ torch._C._TorchDispatchModeKey.FUNCTIONAL
933
+ )
934
+ try:
935
+ torch._functionalize_sync(t.elem) # type: ignore[attr-defined]
936
+ finally:
937
+ if maybe_functional_mode is not None:
938
+ torch._C._set_dispatch_mode(maybe_functional_mode)
939
+ else:
940
+ torch._functionalize_sync(t) # type: ignore[attr-defined]
941
+
942
+
943
+ @functools.lru_cache(2)
944
+ def _get_device_module(device_type: str):
945
+ device_module = getattr(torch, device_type, None)
946
+ if device_module is None:
947
+ raise RuntimeError(
948
+ f"Device '{device_type}' does not have a corresponding module registered as 'torch.{device_type}'."
949
+ )
950
+ return device_module
951
+
952
+
953
+ def _dummy_type(name: str) -> type:
954
+ def get_err_fn(is_init: bool):
955
+ def err_fn(obj, *args, **kwargs):
956
+ if is_init:
957
+ class_name = obj.__class__.__name__
958
+ else:
959
+ class_name = obj.__name__
960
+ raise RuntimeError(f"Tried to instantiate dummy base class {class_name}")
961
+
962
+ return err_fn
963
+
964
+ return type(
965
+ name, (object,), {"__init__": get_err_fn(True), "__new__": get_err_fn(False)}
966
+ )
967
+
968
+
969
+ class _LazySeedTracker:
970
+ # Since seeding is memory-less, only track the latest seed.
971
+ # Note: `manual_seed_all` followed by `manual_seed` overwrites
972
+ # the seed on current device. We track the order of **latest**
973
+ # calls between these two API.
974
+ def __init__(self):
975
+ self.manual_seed_all_cb = None
976
+ self.manual_seed_cb = None
977
+ self.call_order = []
978
+
979
+ def queue_seed_all(self, cb, traceback):
980
+ self.manual_seed_all_cb = (cb, traceback)
981
+ # update seed_all to be latest
982
+ self.call_order = [self.manual_seed_cb, self.manual_seed_all_cb]
983
+
984
+ def queue_seed(self, cb, traceback):
985
+ self.manual_seed_cb = (cb, traceback)
986
+ # update seed to be latest
987
+ self.call_order = [self.manual_seed_all_cb, self.manual_seed_cb]
988
+
989
+ def get_calls(self) -> List:
990
+ return self.call_order
991
+
992
+
993
+ logger = logging.getLogger(__name__)
994
+ P = ParamSpec("P")
995
+
996
+
997
+ class CallbackRegistry(Generic[P]):
998
+ def __init__(self, name: str):
999
+ self.name = name
1000
+ self.callback_list: List[Callable[P, None]] = []
1001
+
1002
+ def add_callback(self, cb: Callable[P, None]) -> None:
1003
+ self.callback_list.append(cb)
1004
+
1005
+ def fire_callbacks(self, *args: P.args, **kwargs: P.kwargs) -> None:
1006
+ for cb in self.callback_list:
1007
+ try:
1008
+ cb(*args, **kwargs)
1009
+ except Exception as e:
1010
+ logger.exception(
1011
+ "Exception in callback for %s registered with gpu trace", self.name
1012
+ )
1013
+
1014
+
1015
+ # IMPORT_MAPPING and NAME_MAPPING are adapted from https://github.com/python/cpython/blob/main/Lib/_compat_pickle.py
1016
+ # for use in the weights_only Unpickler.
1017
+
1018
+ IMPORT_MAPPING = {
1019
+ "__builtin__": "builtins",
1020
+ "copy_reg": "copyreg",
1021
+ "Queue": "queue",
1022
+ "repr": "reprlib",
1023
+ "_abcoll": "collections.abc",
1024
+ # Non-mutual mappings.
1025
+ "UserDict": "collections",
1026
+ "UserList": "collections",
1027
+ "UserString": "collections",
1028
+ "whichdb": "dbm",
1029
+ "StringIO": "io",
1030
+ "cStringIO": "io",
1031
+ }
1032
+
1033
+
1034
+ # This contains rename rules that are easy to handle. We ignore the more
1035
+ # complex stuff (e.g. mapping the names in the urllib and types modules).
1036
+ # These rules should be run before import names are fixed.
1037
+ NAME_MAPPING = {
1038
+ ("__builtin__", "xrange"): ("builtins", "range"),
1039
+ ("__builtin__", "reduce"): ("functools", "reduce"),
1040
+ ("__builtin__", "intern"): ("sys", "intern"),
1041
+ ("__builtin__", "unichr"): ("builtins", "chr"),
1042
+ ("__builtin__", "unicode"): ("builtins", "str"),
1043
+ ("__builtin__", "long"): ("builtins", "int"),
1044
+ ("itertools", "izip"): ("builtins", "zip"),
1045
+ ("itertools", "imap"): ("builtins", "map"),
1046
+ ("itertools", "ifilter"): ("builtins", "filter"),
1047
+ ("itertools", "ifilterfalse"): ("itertools", "filterfalse"),
1048
+ ("itertools", "izip_longest"): ("itertools", "zip_longest"),
1049
+ ("UserDict", "IterableUserDict"): ("collections", "UserDict"),
1050
+ ("UserList", "UserList"): ("collections", "UserList"),
1051
+ ("UserString", "UserString"): ("collections", "UserString"),
1052
+ # Non-mutual mappings.
1053
+ ("__builtin__", "basestring"): ("builtins", "str"),
1054
+ ("exceptions", "StandardError"): ("builtins", "Exception"),
1055
+ ("UserDict", "UserDict"): ("collections", "UserDict"),
1056
+ }
lib/python3.10/site-packages/torch/_utils_internal.py ADDED
@@ -0,0 +1,274 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # mypy: allow-untyped-defs
2
+ import functools
3
+ import logging
4
+ import os
5
+ import sys
6
+ import tempfile
7
+ from typing import Any, Callable, Dict, List, Optional, Tuple, TypeVar
8
+ from typing_extensions import ParamSpec
9
+
10
+ import torch
11
+ from torch._strobelight.compile_time_profiler import StrobelightCompileTimeProfiler
12
+
13
+
14
+ _T = TypeVar("_T")
15
+ _P = ParamSpec("_P")
16
+
17
+ log = logging.getLogger(__name__)
18
+
19
+ if os.environ.get("TORCH_COMPILE_STROBELIGHT", False):
20
+ import shutil
21
+
22
+ if not shutil.which("strobeclient"):
23
+ log.info(
24
+ "TORCH_COMPILE_STROBELIGHT is true, but seems like you are not on a FB machine."
25
+ )
26
+ else:
27
+ log.info("Strobelight profiler is enabled via environment variable")
28
+ StrobelightCompileTimeProfiler.enable()
29
+
30
+ # this arbitrary-looking assortment of functionality is provided here
31
+ # to have a central place for overrideable behavior. The motivating
32
+ # use is the FB build environment, where this source file is replaced
33
+ # by an equivalent.
34
+
35
+ if torch._running_with_deploy():
36
+ # __file__ is meaningless in the context of frozen torch used in torch deploy.
37
+ # setting empty torch_parent should allow below functions to operate without crashing,
38
+ # but it's unclear if there is a valid use case for them in the context of deploy.
39
+ torch_parent = ""
40
+ else:
41
+ if os.path.basename(os.path.dirname(__file__)) == "shared":
42
+ torch_parent = os.path.dirname(os.path.dirname(os.path.dirname(__file__)))
43
+ else:
44
+ torch_parent = os.path.dirname(os.path.dirname(__file__))
45
+
46
+
47
+ def get_file_path(*path_components: str) -> str:
48
+ return os.path.join(torch_parent, *path_components)
49
+
50
+
51
+ def get_file_path_2(*path_components: str) -> str:
52
+ return os.path.join(*path_components)
53
+
54
+
55
+ def get_writable_path(path: str) -> str:
56
+ if os.access(path, os.W_OK):
57
+ return path
58
+ return tempfile.mkdtemp(suffix=os.path.basename(path))
59
+
60
+
61
+ def prepare_multiprocessing_environment(path: str) -> None:
62
+ pass
63
+
64
+
65
+ def resolve_library_path(path: str) -> str:
66
+ return os.path.realpath(path)
67
+
68
+
69
+ def throw_abstract_impl_not_imported_error(opname, module, context):
70
+ if module in sys.modules:
71
+ raise NotImplementedError(
72
+ f"{opname}: We could not find the fake impl for this operator. "
73
+ )
74
+ else:
75
+ raise NotImplementedError(
76
+ f"{opname}: We could not find the fake impl for this operator. "
77
+ f"The operator specified that you may need to import the '{module}' "
78
+ f"Python module to load the fake impl. {context}"
79
+ )
80
+
81
+
82
+ # NB! This treats "skip" kwarg specially!!
83
+ def compile_time_strobelight_meta(
84
+ phase_name: str,
85
+ ) -> Callable[[Callable[_P, _T]], Callable[_P, _T]]:
86
+ def compile_time_strobelight_meta_inner(
87
+ function: Callable[_P, _T],
88
+ ) -> Callable[_P, _T]:
89
+ @functools.wraps(function)
90
+ def wrapper_function(*args: _P.args, **kwargs: _P.kwargs) -> _T:
91
+ if "skip" in kwargs and isinstance(skip := kwargs["skip"], int):
92
+ kwargs["skip"] = skip + 1
93
+
94
+ if not StrobelightCompileTimeProfiler.enabled:
95
+ return function(*args, **kwargs)
96
+
97
+ return StrobelightCompileTimeProfiler.profile_compile_time(
98
+ function, phase_name, *args, **kwargs
99
+ )
100
+
101
+ return wrapper_function
102
+
103
+ return compile_time_strobelight_meta_inner
104
+
105
+
106
+ # Meta only, see
107
+ # https://www.internalfb.com/intern/wiki/ML_Workflow_Observability/User_Guides/Adding_instrumentation_to_your_code/
108
+ #
109
+ # This will cause an event to get logged to Scuba via the signposts API. You
110
+ # can view samples on the API at https://fburl.com/scuba/workflow_signpost/zh9wmpqs
111
+ # we log to subsystem "torch", and the category and name you provide here.
112
+ # Each of the arguments translate into a Scuba column. We're still figuring
113
+ # out local conventions in PyTorch, but category should be something like
114
+ # "dynamo" or "inductor", and name should be a specific string describing what
115
+ # kind of event happened.
116
+ #
117
+ # Killswitch is at
118
+ # https://www.internalfb.com/intern/justknobs/?name=pytorch%2Fsignpost#event
119
+ def signpost_event(category: str, name: str, parameters: Dict[str, Any]):
120
+ log.info("%s %s: %r", category, name, parameters)
121
+
122
+
123
+ def log_compilation_event(metrics):
124
+ log.info("%s", metrics)
125
+
126
+
127
+ def upload_graph(graph):
128
+ pass
129
+
130
+
131
+ def set_pytorch_distributed_envs_from_justknobs():
132
+ pass
133
+
134
+
135
+ def log_export_usage(**kwargs):
136
+ pass
137
+
138
+
139
+ def log_trace_structured_event(*args, **kwargs) -> None:
140
+ pass
141
+
142
+
143
+ def log_cache_bypass(*args, **kwargs) -> None:
144
+ pass
145
+
146
+
147
+ def log_torchscript_usage(api: str, **kwargs):
148
+ _ = api
149
+ return
150
+
151
+
152
+ def check_if_torch_exportable():
153
+ return False
154
+
155
+
156
+ def export_training_ir_rollout_check() -> bool:
157
+ return True
158
+
159
+
160
+ def log_torch_jit_trace_exportability(
161
+ api: str,
162
+ type_of_export: str,
163
+ export_outcome: str,
164
+ result: str,
165
+ ):
166
+ _, _, _, _ = api, type_of_export, export_outcome, result
167
+ return
168
+
169
+
170
+ def capture_pre_autograd_graph_using_training_ir() -> bool:
171
+ return False
172
+
173
+
174
+ def justknobs_check(name: str, default: bool = True) -> bool:
175
+ """
176
+ This function can be used to killswitch functionality in FB prod,
177
+ where you can toggle this value to False in JK without having to
178
+ do a code push. In OSS, we always have everything turned on all
179
+ the time, because downstream users can simply choose to not update
180
+ PyTorch. (If more fine-grained enable/disable is needed, we could
181
+ potentially have a map we lookup name in to toggle behavior. But
182
+ the point is that it's all tied to source code in OSS, since there's
183
+ no live server to query.)
184
+
185
+ This is the bare minimum functionality I needed to do some killswitches.
186
+ We have a more detailed plan at
187
+ https://docs.google.com/document/d/1Ukerh9_42SeGh89J-tGtecpHBPwGlkQ043pddkKb3PU/edit
188
+ In particular, in some circumstances it may be necessary to read in
189
+ a knob once at process start, and then use it consistently for the
190
+ rest of the process. Future functionality will codify these patterns
191
+ into a better high level API.
192
+
193
+ WARNING: Do NOT call this function at module import time, JK is not
194
+ fork safe and you will break anyone who forks the process and then
195
+ hits JK again.
196
+ """
197
+ return default
198
+
199
+
200
+ def justknobs_getval_int(name: str) -> int:
201
+ """
202
+ Read warning on justknobs_check
203
+ """
204
+ return 0
205
+
206
+
207
+ def is_fb_unit_test() -> bool:
208
+ return False
209
+
210
+
211
+ @functools.lru_cache(None)
212
+ def max_clock_rate():
213
+ if not torch.version.hip:
214
+ from triton.testing import nvsmi
215
+
216
+ return nvsmi(["clocks.max.sm"])[0]
217
+ else:
218
+ # Manually set max-clock speeds on ROCm until equivalent nvmsi
219
+ # functionality in triton.testing or via pyamdsmi enablement. Required
220
+ # for test_snode_runtime unit tests.
221
+ gcn_arch = str(torch.cuda.get_device_properties(0).gcnArchName.split(":", 1)[0])
222
+ if "gfx94" in gcn_arch:
223
+ return 1700
224
+ elif "gfx90a" in gcn_arch:
225
+ return 1700
226
+ elif "gfx908" in gcn_arch:
227
+ return 1502
228
+ elif "gfx11" in gcn_arch:
229
+ return 1700
230
+ elif "gfx103" in gcn_arch:
231
+ return 1967
232
+ elif "gfx101" in gcn_arch:
233
+ return 1144
234
+ else:
235
+ return 1100
236
+
237
+
238
+ def get_mast_job_name_version() -> Optional[Tuple[str, int]]:
239
+ return None
240
+
241
+
242
+ TEST_MASTER_ADDR = "127.0.0.1"
243
+ TEST_MASTER_PORT = 29500
244
+ # USE_GLOBAL_DEPS controls whether __init__.py tries to load
245
+ # libtorch_global_deps, see Note [Global dependencies]
246
+ USE_GLOBAL_DEPS = True
247
+ # USE_RTLD_GLOBAL_WITH_LIBTORCH controls whether __init__.py tries to load
248
+ # _C.so with RTLD_GLOBAL during the call to dlopen.
249
+ USE_RTLD_GLOBAL_WITH_LIBTORCH = False
250
+ # If an op was defined in C++ and extended from Python using the
251
+ # torch.library.register_fake, returns if we require that there be a
252
+ # m.set_python_module("mylib.ops") call from C++ that associates
253
+ # the C++ op with a python module.
254
+ REQUIRES_SET_PYTHON_MODULE = False
255
+
256
+
257
+ def maybe_upload_prof_stats_to_manifold(profile_path: str) -> Optional[str]:
258
+ print("Uploading profile stats (fb-only otherwise no-op)")
259
+ return None
260
+
261
+
262
+ def log_chromium_event_internal(
263
+ event: Dict[str, Any],
264
+ stack: List[str],
265
+ logger_uuid: str,
266
+ start_time_ns: int,
267
+ ):
268
+ return None
269
+
270
+
271
+ def record_chromium_event_internal(
272
+ event: Dict[str, Any],
273
+ ):
274
+ return None
lib/python3.10/site-packages/torch/_vmap_internals.py ADDED
@@ -0,0 +1,245 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # mypy: allow-untyped-defs
2
+ import functools
3
+ from typing import Any, Callable, List, Optional, Tuple, Union
4
+ from typing_extensions import deprecated
5
+
6
+ import torch
7
+ from torch import Tensor
8
+ from torch.utils._pytree import _broadcast_to_and_flatten, tree_flatten, tree_unflatten
9
+
10
+
11
+ in_dims_t = Union[int, Tuple]
12
+ out_dims_t = Union[int, Tuple[int, ...]]
13
+
14
+
15
+ # Checks that all args-to-be-batched have the same batch dim size
16
+ def _validate_and_get_batch_size(
17
+ flat_in_dims: List[Optional[int]],
18
+ flat_args: List,
19
+ ) -> int:
20
+ batch_sizes = [
21
+ arg.size(in_dim)
22
+ for in_dim, arg in zip(flat_in_dims, flat_args)
23
+ if in_dim is not None
24
+ ]
25
+ if batch_sizes and any(size != batch_sizes[0] for size in batch_sizes):
26
+ raise ValueError(
27
+ f"vmap: Expected all tensors to have the same size in the mapped "
28
+ f"dimension, got sizes {batch_sizes} for the mapped dimension"
29
+ )
30
+ return batch_sizes[0]
31
+
32
+
33
+ def _num_outputs(batched_outputs: Union[Tensor, Tuple[Tensor, ...]]) -> int:
34
+ if isinstance(batched_outputs, tuple):
35
+ return len(batched_outputs)
36
+ return 1
37
+
38
+
39
+ # If value is a tuple, check it has length `num_elements`.
40
+ # If value is not a tuple, make a tuple with `value` repeated `num_elements` times
41
+ def _as_tuple(
42
+ value: Any,
43
+ num_elements: int,
44
+ error_message_lambda: Callable[[], str],
45
+ ) -> Tuple:
46
+ if not isinstance(value, tuple):
47
+ return (value,) * num_elements
48
+ if len(value) != num_elements:
49
+ raise ValueError(error_message_lambda())
50
+ return value
51
+
52
+
53
+ # Creates BatchedTensors for every Tensor in arg that should be batched.
54
+ # Returns the (potentially) batched arguments and the batch_size.
55
+ def _create_batched_inputs(
56
+ in_dims: in_dims_t,
57
+ args: Tuple,
58
+ vmap_level: int,
59
+ func: Callable,
60
+ ) -> Tuple[Tuple, int]:
61
+ if not isinstance(in_dims, int) and not isinstance(in_dims, tuple):
62
+ raise ValueError(
63
+ f"vmap({_get_name(func)}, in_dims={in_dims}, ...)(<inputs>): "
64
+ f"expected `in_dims` to be int or a (potentially nested) tuple "
65
+ f"matching the structure of inputs, got: {type(in_dims)}."
66
+ )
67
+ if len(args) == 0:
68
+ raise ValueError(
69
+ f"vmap({_get_name(func)})(<inputs>): got no inputs. Maybe you forgot to add "
70
+ f"inputs, or you are trying to vmap over a function with no inputs. "
71
+ f"The latter is unsupported."
72
+ )
73
+
74
+ flat_args, args_spec = tree_flatten(args)
75
+ flat_in_dims = _broadcast_to_and_flatten(in_dims, args_spec)
76
+ if flat_in_dims is None:
77
+ raise ValueError(
78
+ f"vmap({_get_name(func)}, in_dims={in_dims}, ...)(<inputs>): "
79
+ f"in_dims is not compatible with the structure of `inputs`. "
80
+ f"in_dims has structure {tree_flatten(in_dims)[1]} but inputs "
81
+ f"has structure {args_spec}."
82
+ )
83
+
84
+ for arg, in_dim in zip(flat_args, flat_in_dims):
85
+ if not isinstance(in_dim, int) and in_dim is not None:
86
+ raise ValueError(
87
+ f"vmap({_get_name(func)}, in_dims={in_dims}, ...)(<inputs>): "
88
+ f"Got in_dim={in_dim} for an input but in_dim must be either "
89
+ f"an integer dimension or None."
90
+ )
91
+ if isinstance(in_dim, int) and not isinstance(arg, Tensor):
92
+ raise ValueError(
93
+ f"vmap({_get_name(func)}, in_dims={in_dims}, ...)(<inputs>): "
94
+ f"Got in_dim={in_dim} for an input but the input is of type "
95
+ f"{type(arg)}. We cannot vmap over non-Tensor arguments, "
96
+ f"please use None as the respective in_dim"
97
+ )
98
+ if in_dim is not None and (in_dim < 0 or in_dim >= arg.dim()):
99
+ raise ValueError(
100
+ f"vmap({_get_name(func)}, in_dims={in_dims}, ...)(<inputs>): "
101
+ f"Got in_dim={in_dim} for some input, but that input is a Tensor "
102
+ f"of dimensionality {arg.dim()} so expected in_dim to satisfy "
103
+ f"0 <= in_dim < {arg.dim()}."
104
+ )
105
+
106
+ batch_size = _validate_and_get_batch_size(flat_in_dims, flat_args)
107
+ # See NOTE [Ignored _remove_batch_dim, _add_batch_dim]
108
+ batched_inputs = [
109
+ arg if in_dim is None else torch._add_batch_dim(arg, in_dim, vmap_level)
110
+ for in_dim, arg in zip(flat_in_dims, flat_args)
111
+ ]
112
+ return tree_unflatten(batched_inputs, args_spec), batch_size
113
+
114
+
115
+ # Undos the batching (and any batch dimensions) associated with the `vmap_level`.
116
+ def _unwrap_batched(
117
+ batched_outputs: Union[Tensor, Tuple[Tensor, ...]],
118
+ out_dims: out_dims_t,
119
+ vmap_level: int,
120
+ batch_size: int,
121
+ func: Callable,
122
+ allow_none_pass_through: bool = False,
123
+ ) -> Tuple:
124
+ num_outputs = _num_outputs(batched_outputs)
125
+ out_dims_as_tuple = _as_tuple(
126
+ out_dims,
127
+ num_outputs,
128
+ lambda: f"vmap({_get_name(func)}, ..., out_dims={out_dims}): `out_dims` must "
129
+ f"have one dim per output (got {num_outputs} outputs) of {_get_name(func)}.",
130
+ )
131
+
132
+ # NOTE [Ignored _remove_batch_dim, _add_batch_dim]
133
+ # There is something wrong with our type bindings for functions that begin
134
+ # with '_', see #40397.
135
+ if isinstance(batched_outputs, Tensor):
136
+ out_dim = out_dims_as_tuple[0]
137
+ return torch._remove_batch_dim(batched_outputs, vmap_level, batch_size, out_dim) # type: ignore[return-value]
138
+ if allow_none_pass_through:
139
+ return tuple(
140
+ (
141
+ torch._remove_batch_dim(out, vmap_level, batch_size, out_dim)
142
+ if out is not None
143
+ else None
144
+ )
145
+ for out, out_dim in zip(batched_outputs, out_dims_as_tuple)
146
+ )
147
+ else:
148
+ return tuple(
149
+ torch._remove_batch_dim(out, vmap_level, batch_size, out_dim)
150
+ for out, out_dim in zip(batched_outputs, out_dims_as_tuple)
151
+ )
152
+
153
+
154
+ # Checks that `fn` returned one or more Tensors and nothing else.
155
+ # NB: A python function that return multiple arguments returns a single tuple,
156
+ # so we are effectively checking that `outputs` is a single Tensor or a tuple of
157
+ # Tensors.
158
+ def _validate_outputs(outputs: Any, func: Callable) -> None:
159
+ if isinstance(outputs, Tensor):
160
+ return
161
+ if not isinstance(outputs, tuple):
162
+ raise ValueError(
163
+ f"vmap({_get_name(func)}, ...): `{_get_name(func)}` must only return "
164
+ f"Tensors, got type {type(outputs)} as the return."
165
+ )
166
+ for idx, output in enumerate(outputs):
167
+ if isinstance(output, Tensor):
168
+ continue
169
+ raise ValueError(
170
+ f"vmap({_get_name(func)}, ...): `{_get_name(func)}` must only return "
171
+ f"Tensors, got type {type(output)} for return {idx}."
172
+ )
173
+
174
+
175
+ def _check_out_dims_is_int_or_int_tuple(out_dims: out_dims_t, func: Callable) -> None:
176
+ if isinstance(out_dims, int):
177
+ return
178
+ if not isinstance(out_dims, tuple) or not all(
179
+ isinstance(out_dim, int) for out_dim in out_dims
180
+ ):
181
+ raise ValueError(
182
+ f"vmap({_get_name(func)}, ..., out_dims={out_dims}): `out_dims` must be "
183
+ f"an int or a tuple of int representing where in the outputs the "
184
+ f"vmapped dimension should appear."
185
+ )
186
+
187
+
188
+ def _get_name(func: Callable):
189
+ if hasattr(func, "__name__"):
190
+ return func.__name__
191
+
192
+ # Not all callables have __name__, in fact, only static functions/methods do.
193
+ # A callable created via functools.partial or an nn.Module, to name some
194
+ # examples, don't have a __name__.
195
+ return repr(func)
196
+
197
+
198
+ # vmap(func)(inputs) wraps all Tensor inputs to be batched in BatchedTensors,
199
+ # sends those into func, and then unwraps the output BatchedTensors. Operations
200
+ # on BatchedTensors perform the batched operations that the user is asking for.
201
+ @deprecated(
202
+ "Please use `torch.vmap` instead of `torch._vmap_internals.vmap`.",
203
+ category=FutureWarning,
204
+ )
205
+ def vmap(func: Callable, in_dims: in_dims_t = 0, out_dims: out_dims_t = 0) -> Callable:
206
+ """
207
+ Please use torch.vmap instead of this API.
208
+ """
209
+ return _vmap(func, in_dims, out_dims)
210
+
211
+
212
+ # A version of vmap but without the initial "experimental prototype" warning
213
+ def _vmap(
214
+ func: Callable,
215
+ in_dims: in_dims_t = 0,
216
+ out_dims: out_dims_t = 0,
217
+ allow_none_pass_through: bool = False,
218
+ ) -> Callable:
219
+ # The `allow_none_pass_through` argument is a temporary workaround may be removed.
220
+ # Currently it enables us to wrap the call in `autograd.grad` to the autograd engine,
221
+ # which may return None if any of the inputs are unused. See the issue discussing this:
222
+ # https://github.com/facebookresearch/functorch/issues/159.
223
+ @functools.wraps(func)
224
+ def wrapped(*args):
225
+ _check_out_dims_is_int_or_int_tuple(out_dims, func)
226
+ vmap_level = torch._C._vmapmode_increment_nesting()
227
+ try:
228
+ batched_inputs, batch_size = _create_batched_inputs(
229
+ in_dims, args, vmap_level, func
230
+ )
231
+ batched_outputs = func(*batched_inputs)
232
+ if not allow_none_pass_through:
233
+ _validate_outputs(batched_outputs, func)
234
+ return _unwrap_batched(
235
+ batched_outputs,
236
+ out_dims,
237
+ vmap_level,
238
+ batch_size,
239
+ func,
240
+ allow_none_pass_through=allow_none_pass_through,
241
+ )
242
+ finally:
243
+ torch._C._vmapmode_decrement_nesting()
244
+
245
+ return wrapped
lib/python3.10/site-packages/torch/_weights_only_unpickler.py ADDED
@@ -0,0 +1,553 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # mypy: allow-untyped-defs
2
+ # Unpickler restricted to loading only state dicts
3
+ # Restrict constructing types to a list defined in _get_allowed_globals()
4
+ # Restrict BUILD operation to `Tensor`, `Parameter` and `OrderedDict` types only
5
+ # Restrict APPEND/APPENDS to `list`
6
+ # In `GLOBALS` operation do not do class lookup by name, but rather rely on dictionary
7
+ # defined by `_get_allowed_globals()` method, that contains:
8
+ # - torch types (Storage, dtypes, Tensor, `torch.Size`),
9
+ # - `torch._utils._rebuild` functions.
10
+ # - `torch.nn.Parameter`
11
+ # - `collections.Counter`
12
+ # - `collections.OrderedDict`
13
+ # Additionally, users can use an allowlist for adding classes they have deemed as safe using
14
+ # `_add_safe_globals()` (`torch.serialization.add_safe_globals`)
15
+ # `_clear_safe_globals()` (`torch.serialization.clear_safe_globals`)
16
+ # `_get_safe_globals()` (`torch.serialization.get_safe_globals`)
17
+
18
+ # Based of https://github.com/python/cpython/blob/main/Lib/pickle.py
19
+ # Expected to be useful for loading PyTorch model weights
20
+ # For example:
21
+ # data = urllib.request.urlopen('https://download.pytorch.org/models/resnet50-0676ba61.pth').read()
22
+ # buf = io.BytesIO(data)
23
+ # weights = torch.load(buf, weights_only = True)
24
+
25
+ import functools as _functools
26
+ import warnings
27
+
28
+ from _codecs import encode
29
+ from collections import Counter, OrderedDict
30
+ from pickle import (
31
+ APPEND,
32
+ APPENDS,
33
+ BINFLOAT,
34
+ BINGET,
35
+ BININT,
36
+ BININT1,
37
+ BININT2,
38
+ BINPERSID,
39
+ BINPUT,
40
+ BINUNICODE,
41
+ BUILD,
42
+ bytes_types,
43
+ decode_long,
44
+ EMPTY_DICT,
45
+ EMPTY_LIST,
46
+ EMPTY_SET,
47
+ EMPTY_TUPLE,
48
+ GLOBAL,
49
+ LONG1,
50
+ LONG_BINGET,
51
+ LONG_BINPUT,
52
+ MARK,
53
+ NEWFALSE,
54
+ NEWOBJ,
55
+ NEWTRUE,
56
+ NONE,
57
+ PROTO,
58
+ REDUCE,
59
+ SETITEM,
60
+ SETITEMS,
61
+ SHORT_BINSTRING,
62
+ STOP,
63
+ TUPLE,
64
+ TUPLE1,
65
+ TUPLE2,
66
+ TUPLE3,
67
+ UnpicklingError,
68
+ )
69
+ from struct import unpack
70
+ from sys import maxsize
71
+ from typing import Any, Callable, Dict, List, Set, Tuple, Union
72
+
73
+ import torch
74
+ from torch._utils import IMPORT_MAPPING, NAME_MAPPING
75
+
76
+
77
+ # modules in this list are never allowed, even if the user attempts to allowlist
78
+ # functions/classes from them
79
+ _blocklisted_modules = [
80
+ "sys",
81
+ "os",
82
+ "posix",
83
+ "nt",
84
+ ]
85
+
86
+ _marked_safe_globals_set: Set[Union[Callable, Tuple[Callable, str]]] = set()
87
+
88
+
89
+ def _add_safe_globals(safe_globals: List[Union[Callable, Tuple[Callable, str]]]):
90
+ global _marked_safe_globals_set
91
+ _marked_safe_globals_set = _marked_safe_globals_set.union(set(safe_globals))
92
+
93
+
94
+ def _get_safe_globals() -> List[Union[Callable, Tuple[Callable, str]]]:
95
+ global _marked_safe_globals_set
96
+ return list(_marked_safe_globals_set)
97
+
98
+
99
+ def _clear_safe_globals():
100
+ global _marked_safe_globals_set
101
+ _marked_safe_globals_set = set()
102
+
103
+
104
+ def _remove_safe_globals(
105
+ globals_to_remove: List[Union[Callable, Tuple[Callable, str]]],
106
+ ):
107
+ global _marked_safe_globals_set
108
+ _marked_safe_globals_set = _marked_safe_globals_set - set(globals_to_remove)
109
+
110
+
111
+ class _safe_globals:
112
+ def __init__(self, safe_globals: List[Union[Callable, Tuple[Callable, str]]]):
113
+ self.safe_globals = safe_globals
114
+
115
+ def __enter__(self):
116
+ _add_safe_globals(self.safe_globals)
117
+
118
+ def __exit__(self, type, value, tb):
119
+ _remove_safe_globals(self.safe_globals)
120
+
121
+
122
+ # Separate from _get_allowed_globals because of the lru_cache on _get_allowed_globals
123
+ # For example if user had a script like
124
+ # torch.load(file_a)
125
+ # torch.serialization._add_safe_globals([torch.foo])
126
+ # torch.load(file_b)
127
+ # the dynamic additions to safe_globals would not be picked up by
128
+ # _get_allowed_globals due to the lru_cache
129
+ def _get_user_allowed_globals():
130
+ rc: Dict[str, Any] = {}
131
+ for f in _marked_safe_globals_set:
132
+ if isinstance(f, tuple):
133
+ if len(f) != 2:
134
+ raise ValueError(
135
+ f"Expected tuple of length 2 (global, str of callable full path), but got tuple of length: {len(f)}"
136
+ )
137
+ if type(f[1]) is not str:
138
+ raise TypeError(
139
+ f"Expected second item in tuple to be str of callable full path, but got: {type(f[1])}"
140
+ )
141
+ f, name = f
142
+ rc[name] = f
143
+ else:
144
+ module, name = f.__module__, f.__name__
145
+ rc[f"{module}.{name}"] = f
146
+ return rc
147
+
148
+
149
+ def _tensor_rebuild_functions():
150
+ return {
151
+ torch._utils._rebuild_parameter,
152
+ torch._utils._rebuild_parameter_with_state,
153
+ torch._utils._rebuild_qtensor,
154
+ torch._utils._rebuild_tensor,
155
+ torch._utils._rebuild_tensor_v2,
156
+ torch._utils._rebuild_tensor_v3,
157
+ torch._utils._rebuild_sparse_tensor,
158
+ torch._utils._rebuild_meta_tensor_no_storage,
159
+ torch._utils._rebuild_nested_tensor,
160
+ torch._utils._rebuild_wrapper_subclass,
161
+ # Allowlisting this, but not allowlisting the numpy functions by default
162
+ # Reasoning is that we don't have control over the numpy functions, but
163
+ # this utility is provided by pytorch
164
+ torch._utils._rebuild_device_tensor_from_numpy,
165
+ # In 2.6, we should no longer have a dependency on numpy and the above
166
+ # _rebuild_device_tensor_from_numpy function.
167
+ torch._utils._rebuild_device_tensor_from_cpu_tensor,
168
+ }
169
+
170
+
171
+ # Unpickling machinery
172
+ @_functools.lru_cache(maxsize=1)
173
+ def _get_allowed_globals():
174
+ rc: Dict[str, Any] = {
175
+ "collections.OrderedDict": OrderedDict,
176
+ "collections.Counter": Counter,
177
+ "torch.nn.parameter.Parameter": torch.nn.Parameter,
178
+ "torch.serialization._get_layout": torch.serialization._get_layout,
179
+ "torch.Size": torch.Size,
180
+ "torch.Tensor": torch.Tensor,
181
+ "torch.device": torch.device,
182
+ "_codecs.encode": encode, # for bytes
183
+ "builtins.bytearray": bytearray, # for bytearray
184
+ "builtins.set": set, # for set
185
+ "builtins.complex": complex, # for complex
186
+ }
187
+
188
+ # dtype
189
+ for t in torch.storage._dtype_to_storage_type_map().keys():
190
+ rc[str(t)] = t
191
+ for t in torch.storage._new_dtypes():
192
+ rc[str(t)] = t
193
+ # Tensor classes
194
+ for tt in torch._tensor_classes:
195
+ rc[f"{tt.__module__}.{tt.__name__}"] = tt
196
+ # Storage classes
197
+ for ts in torch._storage_classes:
198
+ if ts not in (torch.storage.TypedStorage, torch.storage.UntypedStorage):
199
+ # Wrap legacy storage types in a dummy class
200
+ rc[f"{ts.__module__}.{ts.__name__}"] = torch.serialization.StorageType(
201
+ ts.__name__
202
+ )
203
+ else:
204
+ rc[f"{ts.__module__}.{ts.__name__}"] = ts
205
+ # Quantization specific
206
+ for qt in [
207
+ torch.per_tensor_affine,
208
+ torch.per_tensor_symmetric,
209
+ torch.per_channel_affine,
210
+ torch.per_channel_symmetric,
211
+ torch.per_channel_affine_float_qparams,
212
+ ]:
213
+ rc[str(qt)] = qt
214
+ # Rebuild functions
215
+ for f in _tensor_rebuild_functions():
216
+ rc[f"torch._utils.{f.__name__}"] = f
217
+
218
+ # Handles Tensor Subclasses, Tensor's with attributes.
219
+ # NOTE: It calls into above rebuild functions for regular Tensor types.
220
+ rc["torch._tensor._rebuild_from_type_v2"] = torch._tensor._rebuild_from_type_v2
221
+ return rc
222
+
223
+
224
+ def _read_global_instruction(readline: Callable) -> Tuple[str, str]:
225
+ module = readline()[:-1].decode("utf-8")
226
+ name = readline()[:-1].decode("utf-8")
227
+ # Patch since torch.save default protocol is 2
228
+ # users will be running this code in python > 3
229
+ if (module, name) in NAME_MAPPING:
230
+ module, name = NAME_MAPPING[(module, name)]
231
+ elif module in IMPORT_MAPPING:
232
+ module = IMPORT_MAPPING[module]
233
+ return module, name
234
+
235
+
236
+ def get_globals_in_pkl(file) -> Set[str]:
237
+ globals_in_checkpoint = set()
238
+ protocol = None
239
+ read = file.read
240
+ readline = file.readline
241
+ op_to_bytes_to_read = {
242
+ NEWOBJ[0]: 0,
243
+ REDUCE[0]: 0,
244
+ BUILD[0]: 0,
245
+ APPEND[0]: 0,
246
+ APPENDS[0]: 0,
247
+ SETITEM[0]: 0,
248
+ SETITEMS[0]: 0,
249
+ MARK[0]: 0,
250
+ TUPLE[0]: 0,
251
+ TUPLE1[0]: 0,
252
+ TUPLE2[0]: 0,
253
+ TUPLE3[0]: 0,
254
+ NONE[0]: 0,
255
+ NEWFALSE[0]: 0,
256
+ NEWTRUE[0]: 0,
257
+ EMPTY_TUPLE[0]: 0,
258
+ EMPTY_LIST[0]: 0,
259
+ EMPTY_DICT[0]: 0,
260
+ EMPTY_SET[0]: 0,
261
+ BINPERSID[0]: 0,
262
+ BININT[0]: 4,
263
+ BININT1[0]: 1,
264
+ BININT2[0]: 2,
265
+ BINFLOAT[0]: 8,
266
+ BINGET[0]: 1,
267
+ LONG_BINGET[0]: 4,
268
+ BINPUT[0]: 1,
269
+ LONG_BINPUT[0]: 4,
270
+ }
271
+ while True:
272
+ key = read(1)
273
+ if not key:
274
+ raise EOFError
275
+ assert isinstance(key, bytes_types)
276
+ if key[0] == GLOBAL[0]:
277
+ module, name = _read_global_instruction(readline)
278
+ globals_in_checkpoint.add(f"{module}.{name}")
279
+ elif key[0] in op_to_bytes_to_read:
280
+ bytes_to_read = op_to_bytes_to_read[key[0]]
281
+ if bytes_to_read:
282
+ read(bytes_to_read)
283
+ # ops where bytes to read depends on the data
284
+ elif key[0] == BINUNICODE[0]:
285
+ strlen = unpack("<I", read(4))[0]
286
+ if strlen > maxsize:
287
+ raise UnpicklingError("String is too long")
288
+ read(strlen)
289
+ elif key[0] in {SHORT_BINSTRING[0], LONG1[0]}:
290
+ strlen = read(1)[0]
291
+ read(strlen)
292
+ # first and last op
293
+ elif key[0] == PROTO[0]:
294
+ protocol = read(1)[0]
295
+ elif key[0] == STOP[0]:
296
+ return globals_in_checkpoint
297
+ else:
298
+ raise UnpicklingError(f"Unsupported operand {key[0]}")
299
+
300
+
301
+ class Unpickler:
302
+ def __init__(self, file, *, encoding: str = "bytes"):
303
+ self.encoding = encoding
304
+ self.readline = file.readline
305
+ self.read = file.read
306
+ self.memo: Dict[int, Any] = {}
307
+ self.proto: int = -1
308
+
309
+ def load(self):
310
+ """Read a pickled object representation from the open file.
311
+
312
+ Return the reconstituted object hierarchy specified in the file.
313
+ """
314
+ self.metastack = []
315
+ self.stack: List[Any] = []
316
+ self.append = self.stack.append
317
+ read = self.read
318
+ readline = self.readline
319
+ while True:
320
+ key = read(1)
321
+ if not key:
322
+ raise EOFError
323
+ assert isinstance(key, bytes_types)
324
+ # Risky operators
325
+ if key[0] == GLOBAL[0]:
326
+ module, name = _read_global_instruction(self.readline)
327
+ full_path = f"{module}.{name}"
328
+ if module in _blocklisted_modules:
329
+ raise UnpicklingError(
330
+ f"Trying to load unsupported GLOBAL {full_path} whose module {module} is blocked."
331
+ )
332
+ if full_path in _get_allowed_globals():
333
+ self.append(_get_allowed_globals()[full_path])
334
+ elif full_path in _get_user_allowed_globals():
335
+ self.append(_get_user_allowed_globals()[full_path])
336
+ elif full_path in (
337
+ [
338
+ "torch.nested._internal.nested_tensor.NestedTensor",
339
+ "torch.nested._internal.nested_tensor._rebuild_njt",
340
+ "torch._dynamo.decorators._DimRange",
341
+ ]
342
+ ):
343
+ raise UnpicklingError(
344
+ "``torch.nested`` and ``torch._dynamo`` must be imported to load nested jagged tensors (NJTs)"
345
+ )
346
+ elif full_path in (
347
+ [
348
+ "torch.distributed.device_mesh.DeviceMesh",
349
+ "torch.distributed.tensor._dtensor_spec.DTensorSpec",
350
+ "torch.distributed.tensor._dtensor_spec.TensorMeta",
351
+ "torch.distributed.tensor.DTensor",
352
+ "torch.distributed.tensor.placement_types.Partial",
353
+ "torch.distributed.tensor.placement_types.Replicate",
354
+ "torch.distributed.tensor.placement_types.Shard",
355
+ ]
356
+ ):
357
+ raise UnpicklingError(
358
+ "``torch.distributed.tensor`` must be imported to load DTensors"
359
+ )
360
+ else:
361
+ raise UnpicklingError(
362
+ f"Unsupported global: GLOBAL {full_path} was not an allowed global by default. "
363
+ f"Please use `torch.serialization.add_safe_globals([{name}])` or the "
364
+ f"`torch.serialization.safe_globals([{name}])` context manager to allowlist this global "
365
+ "if you trust this class/function."
366
+ )
367
+ elif key[0] == NEWOBJ[0]:
368
+ args = self.stack.pop()
369
+ cls = self.stack.pop()
370
+ if cls is torch.nn.Parameter:
371
+ self.append(torch.nn.Parameter(*args))
372
+ elif (
373
+ cls in _get_user_allowed_globals().values()
374
+ or cls in _get_allowed_globals().values()
375
+ ):
376
+ self.append(cls.__new__(cls, *args))
377
+ else:
378
+ raise UnpicklingError(
379
+ "Can only create new object for nn.Parameter or classes allowlisted "
380
+ f"via `add_safe_globals` but got {cls}"
381
+ )
382
+ elif key[0] == REDUCE[0]:
383
+ args = self.stack.pop()
384
+ func = self.stack[-1]
385
+ if (
386
+ func not in _get_allowed_globals().values()
387
+ and func not in _get_user_allowed_globals().values()
388
+ ):
389
+ raise UnpicklingError(
390
+ f"Trying to call reduce for unrecognized function {func}"
391
+ )
392
+ self.stack[-1] = func(*args)
393
+ elif key[0] == BUILD[0]:
394
+ state = self.stack.pop()
395
+ inst = self.stack[-1]
396
+ if type(inst) is torch.Tensor:
397
+ # Legacy unpickling
398
+ inst.set_(*state)
399
+ elif type(inst) is torch.nn.Parameter:
400
+ inst.__setstate__(state)
401
+ elif type(inst) is OrderedDict:
402
+ inst.__dict__.update(state)
403
+ elif (
404
+ type(inst) in _get_user_allowed_globals().values()
405
+ or type(inst) in _get_allowed_globals().values()
406
+ ):
407
+ if hasattr(inst, "__setstate__"):
408
+ inst.__setstate__(state)
409
+ else:
410
+ # mimics load_build in pickle
411
+ # https://github.com/python/cpython/blob/f0c6fccd08904787a39269367f09f263d496114c/Lib/pickle.py#L1854-L1867
412
+ slotstate = None
413
+ if isinstance(state, tuple) and len(state) == 2:
414
+ state, slotstate = state
415
+ if state:
416
+ inst.__dict__.update(state)
417
+ if slotstate:
418
+ for k, v in slotstate.items():
419
+ setattr(inst, k, v)
420
+ else:
421
+ raise UnpicklingError(
422
+ "Can only build Tensor, Parameter, OrderedDict or types allowlisted "
423
+ f"via `add_safe_globals`, but got {type(inst)}"
424
+ )
425
+ # Stack manipulation
426
+ elif key[0] == APPEND[0]:
427
+ item = self.stack.pop()
428
+ list_obj = self.stack[-1]
429
+ if type(list_obj) is not list:
430
+ raise UnpicklingError(
431
+ f"Can only append to lists, but got {type(list_obj)}"
432
+ )
433
+ list_obj.append(item)
434
+ elif key[0] == APPENDS[0]:
435
+ items = self.pop_mark()
436
+ list_obj = self.stack[-1]
437
+ if type(list_obj) is not list:
438
+ raise UnpicklingError(
439
+ f"Can only extend lists, but got {type(list_obj)}"
440
+ )
441
+ list_obj.extend(items)
442
+ elif key[0] == SETITEM[0]:
443
+ (v, k) = (self.stack.pop(), self.stack.pop())
444
+ self.stack[-1][k] = v
445
+ elif key[0] == SETITEMS[0]:
446
+ items = self.pop_mark()
447
+ for i in range(0, len(items), 2):
448
+ self.stack[-1][items[i]] = items[i + 1]
449
+ elif key[0] == MARK[0]:
450
+ self.metastack.append(self.stack)
451
+ self.stack = []
452
+ self.append = self.stack.append
453
+ elif key[0] == TUPLE[0]:
454
+ items = self.pop_mark()
455
+ self.append(tuple(items))
456
+ elif key[0] == TUPLE1[0]:
457
+ self.stack[-1] = (self.stack[-1],)
458
+ elif key[0] == TUPLE2[0]:
459
+ self.stack[-2:] = [(self.stack[-2], self.stack[-1])]
460
+ elif key[0] == TUPLE3[0]:
461
+ self.stack[-3:] = [(self.stack[-3], self.stack[-2], self.stack[-1])]
462
+ # Basic types construction
463
+ elif key[0] == NONE[0]:
464
+ self.append(None)
465
+ elif key[0] == NEWFALSE[0]:
466
+ self.append(False)
467
+ elif key[0] == NEWTRUE[0]:
468
+ self.append(True)
469
+ elif key[0] == EMPTY_TUPLE[0]:
470
+ self.append(())
471
+ elif key[0] == EMPTY_LIST[0]:
472
+ self.append([])
473
+ elif key[0] == EMPTY_DICT[0]:
474
+ self.append({})
475
+ elif key[0] == EMPTY_SET[0]:
476
+ self.append(set())
477
+ elif key[0] == BININT[0]:
478
+ self.append(unpack("<i", read(4))[0])
479
+ elif key[0] == BININT1[0]:
480
+ self.append(self.read(1)[0])
481
+ elif key[0] == BININT2[0]:
482
+ self.append(unpack("<H", read(2))[0])
483
+ elif key[0] == BINFLOAT[0]:
484
+ self.append(unpack(">d", self.read(8))[0])
485
+ elif key[0] == BINUNICODE[0]:
486
+ strlen = unpack("<I", read(4))[0]
487
+ if strlen > maxsize:
488
+ raise UnpicklingError("String is too long")
489
+ strval = str(read(strlen), "utf-8", "surrogatepass")
490
+ self.append(strval)
491
+ elif key[0] == SHORT_BINSTRING[0]:
492
+ strlen = read(1)[0]
493
+ strdata = read(strlen)
494
+ if self.encoding != "bytes":
495
+ strdata = strdata.decode(self.encoding, "strict")
496
+ self.append(strdata)
497
+ elif key[0] == BINPERSID[0]:
498
+ pid = self.stack.pop()
499
+ # Only allow persistent load of storage
500
+ if type(pid) is not tuple and not type(pid) is not int:
501
+ raise UnpicklingError(
502
+ f"persistent_load id must be tuple or int, but got {type(pid)}"
503
+ )
504
+ if (
505
+ type(pid) is tuple
506
+ and len(pid) > 0
507
+ and torch.serialization._maybe_decode_ascii(pid[0]) != "storage"
508
+ ):
509
+ raise UnpicklingError(
510
+ f"Only persistent_load of storage is allowed, but got {pid[0]}"
511
+ )
512
+ self.append(self.persistent_load(pid))
513
+ elif key[0] in [BINGET[0], LONG_BINGET[0]]:
514
+ idx = (read(1) if key[0] == BINGET[0] else unpack("<I", read(4)))[0]
515
+ self.append(self.memo[idx])
516
+ elif key[0] in [BINPUT[0], LONG_BINPUT[0]]:
517
+ i = (read(1) if key[0] == BINPUT[0] else unpack("<I", read(4)))[0]
518
+ if i < 0:
519
+ raise ValueError("negative argument")
520
+ self.memo[i] = self.stack[-1]
521
+ elif key[0] == LONG1[0]:
522
+ n = read(1)[0]
523
+ data = read(n)
524
+ self.append(decode_long(data))
525
+ # First and last deserializer ops
526
+ elif key[0] == PROTO[0]:
527
+ self.proto = read(1)[0]
528
+ if self.proto != 2:
529
+ warnings.warn(
530
+ f"Detected pickle protocol {self.proto} in the checkpoint, which was "
531
+ "not the default pickle protocol used by `torch.load` (2). The weights_only "
532
+ "Unpickler might not support all instructions implemented by this protocol, "
533
+ "please file an issue for adding support if you encounter this."
534
+ )
535
+ elif key[0] == STOP[0]:
536
+ rc = self.stack.pop()
537
+ return rc
538
+ else:
539
+ raise UnpicklingError(f"Unsupported operand {key[0]}")
540
+
541
+ # Return a list of items pushed in the stack after last MARK instruction.
542
+ def pop_mark(self):
543
+ items = self.stack
544
+ self.stack = self.metastack.pop()
545
+ self.append = self.stack.append
546
+ return items
547
+
548
+ def persistent_load(self, pid):
549
+ raise UnpicklingError("unsupported persistent id encountered")
550
+
551
+
552
+ def load(file, *, encoding: str = "ASCII"):
553
+ return Unpickler(file, encoding=encoding).load()