Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +1 -0
- lib/python3.10/site-packages/babel/locale-data/am.dat +3 -0
- lib/python3.10/site-packages/torch/include/ATen/native/BatchLinearAlgebra.h +321 -0
- lib/python3.10/site-packages/torch/include/ATen/native/CanUse32BitIndexMath.h +13 -0
- lib/python3.10/site-packages/torch/include/ATen/native/DispatchStub.h +479 -0
- lib/python3.10/site-packages/torch/include/ATen/native/EmbeddingBag.h +153 -0
- lib/python3.10/site-packages/torch/include/ATen/native/FusedAdam.h +27 -0
- lib/python3.10/site-packages/torch/include/ATen/native/GridSampler.h +298 -0
- lib/python3.10/site-packages/torch/include/ATen/native/MathBitFallThroughLists.h +71 -0
- lib/python3.10/site-packages/torch/include/ATen/native/ReduceAllOps.h +16 -0
- lib/python3.10/site-packages/torch/include/ATen/native/ReductionType.h +40 -0
- lib/python3.10/site-packages/torch/include/ATen/native/Sorting.h +28 -0
- lib/python3.10/site-packages/torch/include/ATen/ops/_addmm_activation_cpu_dispatch.h +25 -0
- lib/python3.10/site-packages/torch/include/ATen/ops/_empty_affine_quantized_ops.h +39 -0
- lib/python3.10/site-packages/torch/include/ATen/ops/_fused_sdp_choice_cpu_dispatch.h +23 -0
- lib/python3.10/site-packages/torch/include/ATen/ops/_index_put_impl_cpu_dispatch.h +23 -0
- lib/python3.10/site-packages/torch/include/ATen/ops/_log_softmax_backward_data_cpu_dispatch.h +25 -0
- lib/python3.10/site-packages/torch/include/ATen/ops/_nested_get_values_ops.h +28 -0
- lib/python3.10/site-packages/torch/include/ATen/ops/_nested_view_from_buffer_cpu_dispatch.h +23 -0
- lib/python3.10/site-packages/torch/include/ATen/ops/_nnpack_spatial_convolution.h +91 -0
- lib/python3.10/site-packages/torch/include/ATen/ops/_pad_circular_native.h +21 -0
- lib/python3.10/site-packages/torch/include/ATen/ops/_prelu_kernel_cuda_dispatch.h +23 -0
- lib/python3.10/site-packages/torch/include/ATen/ops/_print_ops.h +28 -0
- lib/python3.10/site-packages/torch/include/ATen/ops/_scaled_dot_product_attention_math_ops.h +28 -0
- lib/python3.10/site-packages/torch/include/ATen/ops/_scaled_dot_product_flash_attention_ops.h +28 -0
- lib/python3.10/site-packages/torch/include/ATen/ops/_sparse_log_softmax_ops.h +61 -0
- lib/python3.10/site-packages/torch/include/ATen/ops/_test_ambiguous_defaults_ops.h +39 -0
- lib/python3.10/site-packages/torch/include/ATen/ops/_upsample_nearest_exact1d_backward_native.h +26 -0
- lib/python3.10/site-packages/torch/include/ATen/ops/addbmm_meta_dispatch.h +23 -0
- lib/python3.10/site-packages/torch/include/ATen/ops/addcmul_meta_dispatch.h +26 -0
- lib/python3.10/site-packages/torch/include/ATen/ops/all_native.h +34 -0
- lib/python3.10/site-packages/torch/include/ATen/ops/batch_norm_backward.h +30 -0
- lib/python3.10/site-packages/torch/include/ATen/ops/binary_cross_entropy_with_logits_ops.h +39 -0
- lib/python3.10/site-packages/torch/include/ATen/ops/conv_tbc_backward.h +30 -0
- lib/python3.10/site-packages/torch/include/ATen/ops/detach_copy_compositeexplicitautograd_dispatch.h +24 -0
- lib/python3.10/site-packages/torch/include/ATen/ops/diagonal_compositeexplicitautograd_dispatch.h +23 -0
- lib/python3.10/site-packages/torch/include/ATen/ops/digamma_native.h +23 -0
- lib/python3.10/site-packages/torch/include/ATen/ops/div_ops.h +149 -0
- lib/python3.10/site-packages/torch/include/ATen/ops/embedding_sparse_backward_ops.h +28 -0
- lib/python3.10/site-packages/torch/include/ATen/ops/exp2_cpu_dispatch.h +26 -0
- lib/python3.10/site-packages/torch/include/ATen/ops/fft_hfft_native.h +22 -0
- lib/python3.10/site-packages/torch/include/ATen/ops/fft_irfft2.h +91 -0
- lib/python3.10/site-packages/torch/include/ATen/ops/gelu_backward_ops.h +39 -0
- lib/python3.10/site-packages/torch/include/ATen/ops/hardshrink_backward_ops.h +39 -0
- lib/python3.10/site-packages/torch/include/ATen/ops/is_coalesced.h +26 -0
- lib/python3.10/site-packages/torch/include/ATen/ops/is_same_size_compositeexplicitautograd_dispatch.h +23 -0
- lib/python3.10/site-packages/torch/include/ATen/ops/isfinite_compositeimplicitautograd_dispatch.h +23 -0
- lib/python3.10/site-packages/torch/include/ATen/ops/isneginf_cuda_dispatch.h +25 -0
- lib/python3.10/site-packages/torch/include/ATen/ops/isposinf_meta_dispatch.h +25 -0
- lib/python3.10/site-packages/torch/include/ATen/ops/layer_norm_native.h +21 -0
.gitattributes
CHANGED
|
@@ -177,3 +177,4 @@ lib/python3.10/site-packages/babel/locale-data/blo.dat filter=lfs diff=lfs merge
|
|
| 177 |
lib/python3.10/site-packages/babel/locale-data/ia.dat filter=lfs diff=lfs merge=lfs -text
|
| 178 |
lib/python3.10/site-packages/babel/locale-data/lt.dat filter=lfs diff=lfs merge=lfs -text
|
| 179 |
lib/python3.10/site-packages/babel/locale-data/lb.dat filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 177 |
lib/python3.10/site-packages/babel/locale-data/ia.dat filter=lfs diff=lfs merge=lfs -text
|
| 178 |
lib/python3.10/site-packages/babel/locale-data/lt.dat filter=lfs diff=lfs merge=lfs -text
|
| 179 |
lib/python3.10/site-packages/babel/locale-data/lb.dat filter=lfs diff=lfs merge=lfs -text
|
| 180 |
+
lib/python3.10/site-packages/babel/locale-data/am.dat filter=lfs diff=lfs merge=lfs -text
|
lib/python3.10/site-packages/babel/locale-data/am.dat
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4dd75f79121216fce34c5a41faf1f782348ab36afc893dc261c92bae289b5d96
|
| 3 |
+
size 173260
|
lib/python3.10/site-packages/torch/include/ATen/native/BatchLinearAlgebra.h
ADDED
|
@@ -0,0 +1,321 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#pragma once
|
| 2 |
+
|
| 3 |
+
#include <optional>
|
| 4 |
+
#include <c10/util/string_view.h>
|
| 5 |
+
#include <ATen/Config.h>
|
| 6 |
+
#include <ATen/native/DispatchStub.h>
|
| 7 |
+
|
| 8 |
+
// Forward declare TI
|
| 9 |
+
namespace at {
|
| 10 |
+
class Tensor;
|
| 11 |
+
struct TensorIterator;
|
| 12 |
+
|
| 13 |
+
namespace native {
|
| 14 |
+
enum class TransposeType;
|
| 15 |
+
}
|
| 16 |
+
|
| 17 |
+
}
|
| 18 |
+
|
| 19 |
+
namespace at::native {
|
| 20 |
+
|
| 21 |
+
enum class LapackLstsqDriverType : int64_t { Gels, Gelsd, Gelsy, Gelss};
|
| 22 |
+
|
| 23 |
+
#if AT_BUILD_WITH_LAPACK()
|
| 24 |
+
// Define per-batch functions to be used in the implementation of batched
|
| 25 |
+
// linear algebra operations
|
| 26 |
+
|
| 27 |
+
template <class scalar_t>
|
| 28 |
+
void lapackCholesky(char uplo, int n, scalar_t *a, int lda, int *info);
|
| 29 |
+
|
| 30 |
+
template <class scalar_t>
|
| 31 |
+
void lapackCholeskyInverse(char uplo, int n, scalar_t *a, int lda, int *info);
|
| 32 |
+
|
| 33 |
+
template <class scalar_t, class value_t=scalar_t>
|
| 34 |
+
void lapackEig(char jobvl, char jobvr, int n, scalar_t *a, int lda, scalar_t *w, scalar_t* vl, int ldvl, scalar_t *vr, int ldvr, scalar_t *work, int lwork, value_t *rwork, int *info);
|
| 35 |
+
|
| 36 |
+
template <class scalar_t>
|
| 37 |
+
void lapackGeqrf(int m, int n, scalar_t *a, int lda, scalar_t *tau, scalar_t *work, int lwork, int *info);
|
| 38 |
+
|
| 39 |
+
template <class scalar_t>
|
| 40 |
+
void lapackOrgqr(int m, int n, int k, scalar_t *a, int lda, scalar_t *tau, scalar_t *work, int lwork, int *info);
|
| 41 |
+
|
| 42 |
+
template <class scalar_t>
|
| 43 |
+
void lapackOrmqr(char side, char trans, int m, int n, int k, scalar_t *a, int lda, scalar_t *tau, scalar_t *c, int ldc, scalar_t *work, int lwork, int *info);
|
| 44 |
+
|
| 45 |
+
template <class scalar_t, class value_t = scalar_t>
|
| 46 |
+
void lapackSyevd(char jobz, char uplo, int n, scalar_t* a, int lda, value_t* w, scalar_t* work, int lwork, value_t* rwork, int lrwork, int* iwork, int liwork, int* info);
|
| 47 |
+
|
| 48 |
+
template <class scalar_t>
|
| 49 |
+
void lapackGels(char trans, int m, int n, int nrhs,
|
| 50 |
+
scalar_t *a, int lda, scalar_t *b, int ldb,
|
| 51 |
+
scalar_t *work, int lwork, int *info);
|
| 52 |
+
|
| 53 |
+
template <class scalar_t, class value_t = scalar_t>
|
| 54 |
+
void lapackGelsd(int m, int n, int nrhs,
|
| 55 |
+
scalar_t *a, int lda, scalar_t *b, int ldb,
|
| 56 |
+
value_t *s, value_t rcond, int *rank,
|
| 57 |
+
scalar_t* work, int lwork,
|
| 58 |
+
value_t *rwork, int* iwork, int *info);
|
| 59 |
+
|
| 60 |
+
template <class scalar_t, class value_t = scalar_t>
|
| 61 |
+
void lapackGelsy(int m, int n, int nrhs,
|
| 62 |
+
scalar_t *a, int lda, scalar_t *b, int ldb,
|
| 63 |
+
int *jpvt, value_t rcond, int *rank,
|
| 64 |
+
scalar_t *work, int lwork, value_t* rwork, int *info);
|
| 65 |
+
|
| 66 |
+
template <class scalar_t, class value_t = scalar_t>
|
| 67 |
+
void lapackGelss(int m, int n, int nrhs,
|
| 68 |
+
scalar_t *a, int lda, scalar_t *b, int ldb,
|
| 69 |
+
value_t *s, value_t rcond, int *rank,
|
| 70 |
+
scalar_t *work, int lwork,
|
| 71 |
+
value_t *rwork, int *info);
|
| 72 |
+
|
| 73 |
+
template <LapackLstsqDriverType, class scalar_t, class value_t = scalar_t>
|
| 74 |
+
struct lapackLstsq_impl;
|
| 75 |
+
|
| 76 |
+
template <class scalar_t, class value_t>
|
| 77 |
+
struct lapackLstsq_impl<LapackLstsqDriverType::Gels, scalar_t, value_t> {
|
| 78 |
+
static void call(
|
| 79 |
+
char trans, int m, int n, int nrhs,
|
| 80 |
+
scalar_t *a, int lda, scalar_t *b, int ldb,
|
| 81 |
+
scalar_t *work, int lwork, int *info, // Gels flavor
|
| 82 |
+
int *jpvt, value_t rcond, int *rank, value_t* rwork, // Gelsy flavor
|
| 83 |
+
value_t *s, // Gelss flavor
|
| 84 |
+
int *iwork // Gelsd flavor
|
| 85 |
+
) {
|
| 86 |
+
lapackGels<scalar_t>(
|
| 87 |
+
trans, m, n, nrhs,
|
| 88 |
+
a, lda, b, ldb,
|
| 89 |
+
work, lwork, info);
|
| 90 |
+
}
|
| 91 |
+
};
|
| 92 |
+
|
| 93 |
+
template <class scalar_t, class value_t>
|
| 94 |
+
struct lapackLstsq_impl<LapackLstsqDriverType::Gelsy, scalar_t, value_t> {
|
| 95 |
+
static void call(
|
| 96 |
+
char trans, int m, int n, int nrhs,
|
| 97 |
+
scalar_t *a, int lda, scalar_t *b, int ldb,
|
| 98 |
+
scalar_t *work, int lwork, int *info, // Gels flavor
|
| 99 |
+
int *jpvt, value_t rcond, int *rank, value_t* rwork, // Gelsy flavor
|
| 100 |
+
value_t *s, // Gelss flavor
|
| 101 |
+
int *iwork // Gelsd flavor
|
| 102 |
+
) {
|
| 103 |
+
lapackGelsy<scalar_t, value_t>(
|
| 104 |
+
m, n, nrhs,
|
| 105 |
+
a, lda, b, ldb,
|
| 106 |
+
jpvt, rcond, rank,
|
| 107 |
+
work, lwork, rwork, info);
|
| 108 |
+
}
|
| 109 |
+
};
|
| 110 |
+
|
| 111 |
+
template <class scalar_t, class value_t>
|
| 112 |
+
struct lapackLstsq_impl<LapackLstsqDriverType::Gelsd, scalar_t, value_t> {
|
| 113 |
+
static void call(
|
| 114 |
+
char trans, int m, int n, int nrhs,
|
| 115 |
+
scalar_t *a, int lda, scalar_t *b, int ldb,
|
| 116 |
+
scalar_t *work, int lwork, int *info, // Gels flavor
|
| 117 |
+
int *jpvt, value_t rcond, int *rank, value_t* rwork, // Gelsy flavor
|
| 118 |
+
value_t *s, // Gelss flavor
|
| 119 |
+
int *iwork // Gelsd flavor
|
| 120 |
+
) {
|
| 121 |
+
lapackGelsd<scalar_t, value_t>(
|
| 122 |
+
m, n, nrhs,
|
| 123 |
+
a, lda, b, ldb,
|
| 124 |
+
s, rcond, rank,
|
| 125 |
+
work, lwork,
|
| 126 |
+
rwork, iwork, info);
|
| 127 |
+
}
|
| 128 |
+
};
|
| 129 |
+
|
| 130 |
+
template <class scalar_t, class value_t>
|
| 131 |
+
struct lapackLstsq_impl<LapackLstsqDriverType::Gelss, scalar_t, value_t> {
|
| 132 |
+
static void call(
|
| 133 |
+
char trans, int m, int n, int nrhs,
|
| 134 |
+
scalar_t *a, int lda, scalar_t *b, int ldb,
|
| 135 |
+
scalar_t *work, int lwork, int *info, // Gels flavor
|
| 136 |
+
int *jpvt, value_t rcond, int *rank, value_t* rwork, // Gelsy flavor
|
| 137 |
+
value_t *s, // Gelss flavor
|
| 138 |
+
int *iwork // Gelsd flavor
|
| 139 |
+
) {
|
| 140 |
+
lapackGelss<scalar_t, value_t>(
|
| 141 |
+
m, n, nrhs,
|
| 142 |
+
a, lda, b, ldb,
|
| 143 |
+
s, rcond, rank,
|
| 144 |
+
work, lwork,
|
| 145 |
+
rwork, info);
|
| 146 |
+
}
|
| 147 |
+
};
|
| 148 |
+
|
| 149 |
+
template <LapackLstsqDriverType driver_type, class scalar_t, class value_t = scalar_t>
|
| 150 |
+
void lapackLstsq(
|
| 151 |
+
char trans, int m, int n, int nrhs,
|
| 152 |
+
scalar_t *a, int lda, scalar_t *b, int ldb,
|
| 153 |
+
scalar_t *work, int lwork, int *info, // Gels flavor
|
| 154 |
+
int *jpvt, value_t rcond, int *rank, value_t* rwork, // Gelsy flavor
|
| 155 |
+
value_t *s, // Gelss flavor
|
| 156 |
+
int *iwork // Gelsd flavor
|
| 157 |
+
) {
|
| 158 |
+
lapackLstsq_impl<driver_type, scalar_t, value_t>::call(
|
| 159 |
+
trans, m, n, nrhs,
|
| 160 |
+
a, lda, b, ldb,
|
| 161 |
+
work, lwork, info,
|
| 162 |
+
jpvt, rcond, rank, rwork,
|
| 163 |
+
s,
|
| 164 |
+
iwork);
|
| 165 |
+
}
|
| 166 |
+
|
| 167 |
+
template <class scalar_t>
|
| 168 |
+
void lapackLuSolve(char trans, int n, int nrhs, scalar_t *a, int lda, int *ipiv, scalar_t *b, int ldb, int *info);
|
| 169 |
+
|
| 170 |
+
template <class scalar_t>
|
| 171 |
+
void lapackLu(int m, int n, scalar_t *a, int lda, int *ipiv, int *info);
|
| 172 |
+
|
| 173 |
+
template <class scalar_t>
|
| 174 |
+
void lapackLdlHermitian(
|
| 175 |
+
char uplo,
|
| 176 |
+
int n,
|
| 177 |
+
scalar_t* a,
|
| 178 |
+
int lda,
|
| 179 |
+
int* ipiv,
|
| 180 |
+
scalar_t* work,
|
| 181 |
+
int lwork,
|
| 182 |
+
int* info);
|
| 183 |
+
|
| 184 |
+
template <class scalar_t>
|
| 185 |
+
void lapackLdlSymmetric(
|
| 186 |
+
char uplo,
|
| 187 |
+
int n,
|
| 188 |
+
scalar_t* a,
|
| 189 |
+
int lda,
|
| 190 |
+
int* ipiv,
|
| 191 |
+
scalar_t* work,
|
| 192 |
+
int lwork,
|
| 193 |
+
int* info);
|
| 194 |
+
|
| 195 |
+
template <class scalar_t>
|
| 196 |
+
void lapackLdlSolveHermitian(
|
| 197 |
+
char uplo,
|
| 198 |
+
int n,
|
| 199 |
+
int nrhs,
|
| 200 |
+
scalar_t* a,
|
| 201 |
+
int lda,
|
| 202 |
+
int* ipiv,
|
| 203 |
+
scalar_t* b,
|
| 204 |
+
int ldb,
|
| 205 |
+
int* info);
|
| 206 |
+
|
| 207 |
+
template <class scalar_t>
|
| 208 |
+
void lapackLdlSolveSymmetric(
|
| 209 |
+
char uplo,
|
| 210 |
+
int n,
|
| 211 |
+
int nrhs,
|
| 212 |
+
scalar_t* a,
|
| 213 |
+
int lda,
|
| 214 |
+
int* ipiv,
|
| 215 |
+
scalar_t* b,
|
| 216 |
+
int ldb,
|
| 217 |
+
int* info);
|
| 218 |
+
|
| 219 |
+
template<class scalar_t, class value_t=scalar_t>
|
| 220 |
+
void lapackSvd(char jobz, int m, int n, scalar_t *a, int lda, value_t *s, scalar_t *u, int ldu, scalar_t *vt, int ldvt, scalar_t *work, int lwork, value_t *rwork, int *iwork, int *info);
|
| 221 |
+
#endif
|
| 222 |
+
|
| 223 |
+
#if AT_BUILD_WITH_BLAS()
|
| 224 |
+
template <class scalar_t>
|
| 225 |
+
void blasTriangularSolve(char side, char uplo, char trans, char diag, int n, int nrhs, scalar_t* a, int lda, scalar_t* b, int ldb);
|
| 226 |
+
#endif
|
| 227 |
+
|
| 228 |
+
using cholesky_fn = void (*)(const Tensor& /*input*/, const Tensor& /*info*/, bool /*upper*/);
|
| 229 |
+
DECLARE_DISPATCH(cholesky_fn, cholesky_stub)
|
| 230 |
+
|
| 231 |
+
using cholesky_inverse_fn = Tensor& (*)(Tensor& /*result*/, Tensor& /*infos*/, bool /*upper*/);
|
| 232 |
+
|
| 233 |
+
DECLARE_DISPATCH(cholesky_inverse_fn, cholesky_inverse_stub)
|
| 234 |
+
|
| 235 |
+
using linalg_eig_fn = void (*)(Tensor& /*eigenvalues*/, Tensor& /*eigenvectors*/, Tensor& /*infos*/, const Tensor& /*input*/, bool /*compute_eigenvectors*/);
|
| 236 |
+
|
| 237 |
+
DECLARE_DISPATCH(linalg_eig_fn, linalg_eig_stub)
|
| 238 |
+
|
| 239 |
+
using geqrf_fn = void (*)(const Tensor& /*input*/, const Tensor& /*tau*/);
|
| 240 |
+
DECLARE_DISPATCH(geqrf_fn, geqrf_stub)
|
| 241 |
+
|
| 242 |
+
using orgqr_fn = Tensor& (*)(Tensor& /*result*/, const Tensor& /*tau*/);
|
| 243 |
+
DECLARE_DISPATCH(orgqr_fn, orgqr_stub)
|
| 244 |
+
|
| 245 |
+
using ormqr_fn = void (*)(const Tensor& /*input*/, const Tensor& /*tau*/, const Tensor& /*other*/, bool /*left*/, bool /*transpose*/);
|
| 246 |
+
DECLARE_DISPATCH(ormqr_fn, ormqr_stub)
|
| 247 |
+
|
| 248 |
+
using linalg_eigh_fn = void (*)(
|
| 249 |
+
const Tensor& /*eigenvalues*/,
|
| 250 |
+
const Tensor& /*eigenvectors*/,
|
| 251 |
+
const Tensor& /*infos*/,
|
| 252 |
+
bool /*upper*/,
|
| 253 |
+
bool /*compute_eigenvectors*/);
|
| 254 |
+
DECLARE_DISPATCH(linalg_eigh_fn, linalg_eigh_stub)
|
| 255 |
+
|
| 256 |
+
using lstsq_fn = void (*)(
|
| 257 |
+
const Tensor& /*a*/,
|
| 258 |
+
Tensor& /*b*/,
|
| 259 |
+
Tensor& /*rank*/,
|
| 260 |
+
Tensor& /*singular_values*/,
|
| 261 |
+
Tensor& /*infos*/,
|
| 262 |
+
double /*rcond*/,
|
| 263 |
+
std::string /*driver_name*/);
|
| 264 |
+
DECLARE_DISPATCH(lstsq_fn, lstsq_stub)
|
| 265 |
+
|
| 266 |
+
using triangular_solve_fn = void (*)(
|
| 267 |
+
const Tensor& /*A*/,
|
| 268 |
+
const Tensor& /*B*/,
|
| 269 |
+
bool /*left*/,
|
| 270 |
+
bool /*upper*/,
|
| 271 |
+
TransposeType /*transpose*/,
|
| 272 |
+
bool /*unitriangular*/);
|
| 273 |
+
DECLARE_DISPATCH(triangular_solve_fn, triangular_solve_stub)
|
| 274 |
+
|
| 275 |
+
using lu_factor_fn = void (*)(
|
| 276 |
+
const Tensor& /*input*/,
|
| 277 |
+
const Tensor& /*pivots*/,
|
| 278 |
+
const Tensor& /*infos*/,
|
| 279 |
+
bool /*compute_pivots*/);
|
| 280 |
+
DECLARE_DISPATCH(lu_factor_fn, lu_factor_stub)
|
| 281 |
+
|
| 282 |
+
using unpack_pivots_fn = void(*)(
|
| 283 |
+
TensorIterator& iter,
|
| 284 |
+
const int64_t dim_size,
|
| 285 |
+
const int64_t max_pivot);
|
| 286 |
+
DECLARE_DISPATCH(unpack_pivots_fn, unpack_pivots_stub)
|
| 287 |
+
|
| 288 |
+
using lu_solve_fn = void (*)(
|
| 289 |
+
const Tensor& /*LU*/,
|
| 290 |
+
const Tensor& /*pivots*/,
|
| 291 |
+
const Tensor& /*B*/,
|
| 292 |
+
TransposeType /*trans*/);
|
| 293 |
+
DECLARE_DISPATCH(lu_solve_fn, lu_solve_stub)
|
| 294 |
+
|
| 295 |
+
using ldl_factor_fn = void (*)(
|
| 296 |
+
const Tensor& /*LD*/,
|
| 297 |
+
const Tensor& /*pivots*/,
|
| 298 |
+
const Tensor& /*info*/,
|
| 299 |
+
bool /*upper*/,
|
| 300 |
+
bool /*hermitian*/);
|
| 301 |
+
DECLARE_DISPATCH(ldl_factor_fn, ldl_factor_stub)
|
| 302 |
+
|
| 303 |
+
using svd_fn = void (*)(
|
| 304 |
+
const Tensor& /*A*/,
|
| 305 |
+
const bool /*full_matrices*/,
|
| 306 |
+
const bool /*compute_uv*/,
|
| 307 |
+
const std::optional<std::string_view>& /*driver*/,
|
| 308 |
+
const Tensor& /*U*/,
|
| 309 |
+
const Tensor& /*S*/,
|
| 310 |
+
const Tensor& /*Vh*/,
|
| 311 |
+
const Tensor& /*info*/);
|
| 312 |
+
DECLARE_DISPATCH(svd_fn, svd_stub)
|
| 313 |
+
|
| 314 |
+
using ldl_solve_fn = void (*)(
|
| 315 |
+
const Tensor& /*LD*/,
|
| 316 |
+
const Tensor& /*pivots*/,
|
| 317 |
+
const Tensor& /*result*/,
|
| 318 |
+
bool /*upper*/,
|
| 319 |
+
bool /*hermitian*/);
|
| 320 |
+
DECLARE_DISPATCH(ldl_solve_fn, ldl_solve_stub)
|
| 321 |
+
} // namespace at::native
|
lib/python3.10/site-packages/torch/include/ATen/native/CanUse32BitIndexMath.h
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#pragma once
|
| 2 |
+
#include <c10/macros/Export.h>
|
| 3 |
+
#include <limits>
|
| 4 |
+
|
| 5 |
+
namespace at {
|
| 6 |
+
class TensorBase;
|
| 7 |
+
}
|
| 8 |
+
|
| 9 |
+
namespace at::native {
|
| 10 |
+
|
| 11 |
+
TORCH_API bool canUse32BitIndexMath(const at::TensorBase &t, int64_t max_elem=std::numeric_limits<int32_t>::max());
|
| 12 |
+
|
| 13 |
+
}
|
lib/python3.10/site-packages/torch/include/ATen/native/DispatchStub.h
ADDED
|
@@ -0,0 +1,479 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#pragma once
|
| 2 |
+
|
| 3 |
+
#include <c10/core/DeviceType.h>
|
| 4 |
+
#include <c10/macros/Macros.h>
|
| 5 |
+
#include <c10/util/Array.h>
|
| 6 |
+
|
| 7 |
+
#include <atomic>
|
| 8 |
+
#include <utility>
|
| 9 |
+
#include <variant>
|
| 10 |
+
|
| 11 |
+
// Implements instruction set specific function dispatch.
|
| 12 |
+
//
|
| 13 |
+
// Kernels that may make use of specialized instruction sets (e.g. AVX2) are
|
| 14 |
+
// compiled multiple times with different compiler flags (e.g. -mavx2). A
|
| 15 |
+
// DispatchStub contains a table of function pointers for a kernel. At runtime,
|
| 16 |
+
// the fastest available kernel is chosen based on the features reported by
|
| 17 |
+
// cpuinfo.
|
| 18 |
+
//
|
| 19 |
+
// Example:
|
| 20 |
+
//
|
| 21 |
+
// In native/MyKernel.h:
|
| 22 |
+
// using fn_type = void(*)(const Tensor& x);
|
| 23 |
+
// DECLARE_DISPATCH(fn_type, stub)
|
| 24 |
+
//
|
| 25 |
+
// In native/MyKernel.cpp
|
| 26 |
+
// DEFINE_DISPATCH(stub);
|
| 27 |
+
//
|
| 28 |
+
// In native/cpu/MyKernel.cpp:
|
| 29 |
+
// namespace {
|
| 30 |
+
// // use anonymous namespace so that different cpu versions won't conflict
|
| 31 |
+
// void kernel(const Tensor& x) { ... }
|
| 32 |
+
// }
|
| 33 |
+
// REGISTER_DISPATCH(stub, &kernel);
|
| 34 |
+
//
|
| 35 |
+
// To call:
|
| 36 |
+
// stub(kCPU, tensor);
|
| 37 |
+
//
|
| 38 |
+
// TODO: CPU instruction set selection should be folded into whatever
|
| 39 |
+
// the main dispatch mechanism is.
|
| 40 |
+
//
|
| 41 |
+
// Supported device types for registration:
|
| 42 |
+
// - CPU: Central Processing Unit
|
| 43 |
+
// - CUDA: NVIDIA GPUs
|
| 44 |
+
// - HIP: AMD GPUs
|
| 45 |
+
// - MPS: Apple Silicon GPUs (Metal Performance Shaders)
|
| 46 |
+
// - MTIA: Meta Training and Inference Devices
|
| 47 |
+
// - XPU: Intel GPUs
|
| 48 |
+
// - PrivateUse1: Reserved for private/custom device types
|
| 49 |
+
//
|
| 50 |
+
// If you want to update the list of supported devices, add a new dispatch_ptr
|
| 51 |
+
// member in DispatchStubImpl.h and update the get_call_ptr switch.
|
| 52 |
+
// As well you will need to update the inlined list in 'is_device_supported`
|
| 53 |
+
//
|
| 54 |
+
//
|
| 55 |
+
// ignore warnings about DispatchStub::DEFAULT, AVX, AVX2 defined elsewhere
|
| 56 |
+
C10_CLANG_DIAGNOSTIC_PUSH()
|
| 57 |
+
C10_CLANG_DIAGNOSTIC_IGNORE("-Wundefined-var-template")
|
| 58 |
+
|
| 59 |
+
namespace at::native {
|
| 60 |
+
|
| 61 |
+
enum class CPUCapability {
|
| 62 |
+
DEFAULT = 0,
|
| 63 |
+
#if defined(HAVE_VSX_CPU_DEFINITION)
|
| 64 |
+
VSX = 1,
|
| 65 |
+
#elif defined(HAVE_ZVECTOR_CPU_DEFINITION)
|
| 66 |
+
ZVECTOR = 1,
|
| 67 |
+
#elif defined(HAVE_SVE_CPU_DEFINITION)
|
| 68 |
+
SVE256 = 1,
|
| 69 |
+
#else
|
| 70 |
+
AVX2 = 1,
|
| 71 |
+
AVX512 = 2,
|
| 72 |
+
#endif
|
| 73 |
+
NUM_OPTIONS
|
| 74 |
+
};
|
| 75 |
+
|
| 76 |
+
// Enum for error types
|
| 77 |
+
enum class ErrorType {
|
| 78 |
+
MissingDeviceKernel,
|
| 79 |
+
DeviceNotSupported
|
| 80 |
+
};
|
| 81 |
+
|
| 82 |
+
// Alias for the return type using std::variant
|
| 83 |
+
using DispatchResult = std::variant<void*, ErrorType>;
|
| 84 |
+
|
| 85 |
+
CPUCapability get_cpu_capability();
|
| 86 |
+
|
| 87 |
+
template <typename FnPtr, typename T>
|
| 88 |
+
struct DispatchStub;
|
| 89 |
+
|
| 90 |
+
/**
|
| 91 |
+
* The sole purpose of this class is to outline methods that don't need to be
|
| 92 |
+
* specialized or otherwise inlined and duplicated (by the compiler due to
|
| 93 |
+
* template expansion), since it causes size bloat if there are a significant
|
| 94 |
+
* number of specialization of the DispatchStub<> class.
|
| 95 |
+
*/
|
| 96 |
+
struct TORCH_API DispatchStubImpl {
|
| 97 |
+
|
| 98 |
+
// The DispatchStubImpl::try_get_call_ptr() method is used to get the call
|
| 99 |
+
// pointer for a given device type. If the call pointer is not found,
|
| 100 |
+
// DispatchStubImpl::try_get_call_ptr() returns an ErrorType.
|
| 101 |
+
// The main difference between try_get_call_ptr() and get_call_ptr() is that
|
| 102 |
+
// try_get_call_ptr() will return the ErrorType and not raise an exception.
|
| 103 |
+
DispatchResult try_get_call_ptr(
|
| 104 |
+
c10::DeviceType device_type
|
| 105 |
+
, void *DEFAULT
|
| 106 |
+
#ifdef HAVE_AVX512_CPU_DEFINITION
|
| 107 |
+
, void *AVX512
|
| 108 |
+
#endif
|
| 109 |
+
#ifdef HAVE_AVX2_CPU_DEFINITION
|
| 110 |
+
, void *AVX2
|
| 111 |
+
#endif
|
| 112 |
+
#ifdef HAVE_VSX_CPU_DEFINITION
|
| 113 |
+
, void *VSX
|
| 114 |
+
#endif
|
| 115 |
+
#ifdef HAVE_ZVECTOR_CPU_DEFINITION
|
| 116 |
+
, void *ZVECTOR
|
| 117 |
+
#endif
|
| 118 |
+
#ifdef HAVE_SVE256_CPU_DEFINITION
|
| 119 |
+
, void *SVE256
|
| 120 |
+
#endif
|
| 121 |
+
);
|
| 122 |
+
|
| 123 |
+
// Analogous to try_get_call_ptr(), but it will return the ErrorType and not
|
| 124 |
+
// raise an exception.
|
| 125 |
+
DispatchResult try_choose_cpu_impl(
|
| 126 |
+
void *DEFAULT
|
| 127 |
+
#ifdef HAVE_AVX512_CPU_DEFINITION
|
| 128 |
+
, void *AVX512
|
| 129 |
+
#endif
|
| 130 |
+
#ifdef HAVE_AVX2_CPU_DEFINITION
|
| 131 |
+
, void *AVX2
|
| 132 |
+
#endif
|
| 133 |
+
#ifdef HAVE_VSX_CPU_DEFINITION
|
| 134 |
+
, void *VSX
|
| 135 |
+
#endif
|
| 136 |
+
#ifdef HAVE_ZVECTOR_CPU_DEFINITION
|
| 137 |
+
, void *ZVECTOR
|
| 138 |
+
#endif
|
| 139 |
+
#ifdef HAVE_SVE256_CPU_DEFINITION
|
| 140 |
+
, void *SVE256
|
| 141 |
+
#endif
|
| 142 |
+
);
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
void* get_call_ptr(
|
| 146 |
+
c10::DeviceType device_type
|
| 147 |
+
, void *DEFAULT
|
| 148 |
+
#ifdef HAVE_AVX512_CPU_DEFINITION
|
| 149 |
+
, void *AVX512
|
| 150 |
+
#endif
|
| 151 |
+
#ifdef HAVE_AVX2_CPU_DEFINITION
|
| 152 |
+
, void *AVX2
|
| 153 |
+
#endif
|
| 154 |
+
#ifdef HAVE_VSX_CPU_DEFINITION
|
| 155 |
+
, void *VSX
|
| 156 |
+
#endif
|
| 157 |
+
#ifdef HAVE_ZVECTOR_CPU_DEFINITION
|
| 158 |
+
, void *ZVECTOR
|
| 159 |
+
#endif
|
| 160 |
+
#ifdef HAVE_SVE256_CPU_DEFINITION
|
| 161 |
+
, void *SVE256
|
| 162 |
+
#endif
|
| 163 |
+
);
|
| 164 |
+
|
| 165 |
+
/**
|
| 166 |
+
* The CPU Dispatch actual method is chosen in decreasing order of preference by
|
| 167 |
+
* DispatchStubImpl::choose_cpu_impl() in case none is found by
|
| 168 |
+
* DispatchStubImpl::get_call_ptr() in cpu_dispatch_ptr.
|
| 169 |
+
*/
|
| 170 |
+
void* choose_cpu_impl(
|
| 171 |
+
void *DEFAULT
|
| 172 |
+
#ifdef HAVE_AVX512_CPU_DEFINITION
|
| 173 |
+
, void *AVX512
|
| 174 |
+
#endif
|
| 175 |
+
#ifdef HAVE_AVX2_CPU_DEFINITION
|
| 176 |
+
, void *AVX2
|
| 177 |
+
#endif
|
| 178 |
+
#ifdef HAVE_VSX_CPU_DEFINITION
|
| 179 |
+
, void *VSX
|
| 180 |
+
#endif
|
| 181 |
+
#ifdef HAVE_ZVECTOR_CPU_DEFINITION
|
| 182 |
+
, void *ZVECTOR
|
| 183 |
+
#endif
|
| 184 |
+
#ifdef HAVE_SVE256_CPU_DEFINITION
|
| 185 |
+
, void *SVE256
|
| 186 |
+
#endif
|
| 187 |
+
);
|
| 188 |
+
|
| 189 |
+
// Fixing dispatch error in Windows debug builds.
|
| 190 |
+
// See https://github.com/pytorch/pytorch/issues/22681 for more details.
|
| 191 |
+
#if defined(_MSC_VER) && defined(_DEBUG)
|
| 192 |
+
std::atomic<void*> cpu_dispatch_ptr;
|
| 193 |
+
void* cuda_dispatch_ptr;
|
| 194 |
+
void* hip_dispatch_ptr;
|
| 195 |
+
void* mps_dispatch_ptr;
|
| 196 |
+
void* mtia_dispatch_ptr;
|
| 197 |
+
#if defined(USE_XPU)
|
| 198 |
+
void* xpu_dispatch_ptr;
|
| 199 |
+
#endif
|
| 200 |
+
void* privateuse1_dispatch_ptr;
|
| 201 |
+
#else
|
| 202 |
+
std::atomic<void*> cpu_dispatch_ptr{nullptr};
|
| 203 |
+
void* cuda_dispatch_ptr = nullptr;
|
| 204 |
+
void* hip_dispatch_ptr = nullptr;
|
| 205 |
+
void* mps_dispatch_ptr = nullptr;
|
| 206 |
+
void* mtia_dispatch_ptr = nullptr;
|
| 207 |
+
#if defined(USE_XPU)
|
| 208 |
+
void* xpu_dispatch_ptr = nullptr;
|
| 209 |
+
#endif
|
| 210 |
+
void* privateuse1_dispatch_ptr = nullptr;
|
| 211 |
+
#endif
|
| 212 |
+
};
|
| 213 |
+
|
| 214 |
+
template <typename rT, typename T, typename... Args>
|
| 215 |
+
struct DispatchStub<rT (*)(Args...), T> {
|
| 216 |
+
using FnPtr = rT (*) (Args...);
|
| 217 |
+
|
| 218 |
+
DispatchStub() = default;
|
| 219 |
+
DispatchStub(const DispatchStub&) = delete;
|
| 220 |
+
DispatchStub& operator=(const DispatchStub&) = delete;
|
| 221 |
+
|
| 222 |
+
private:
|
| 223 |
+
FnPtr get_call_ptr(const c10::DeviceType device_type) {
|
| 224 |
+
return reinterpret_cast<FnPtr>(
|
| 225 |
+
impl.get_call_ptr(device_type
|
| 226 |
+
, reinterpret_cast<void*>(DEFAULT)
|
| 227 |
+
#ifdef HAVE_AVX512_CPU_DEFINITION
|
| 228 |
+
, reinterpret_cast<void*>(AVX512)
|
| 229 |
+
#endif
|
| 230 |
+
#ifdef HAVE_AVX2_CPU_DEFINITION
|
| 231 |
+
, reinterpret_cast<void*>(AVX2)
|
| 232 |
+
#endif
|
| 233 |
+
#ifdef HAVE_VSX_CPU_DEFINITION
|
| 234 |
+
, reinterpret_cast<void*>(VSX)
|
| 235 |
+
#endif
|
| 236 |
+
#ifdef HAVE_ZVECTOR_CPU_DEFINITION
|
| 237 |
+
, reinterpret_cast<void*>(ZVECTOR)
|
| 238 |
+
#endif
|
| 239 |
+
#ifdef HAVE_SVE256_CPU_DEFINITION
|
| 240 |
+
, reinterpret_cast<void*>(SVE256)
|
| 241 |
+
#endif
|
| 242 |
+
)
|
| 243 |
+
);
|
| 244 |
+
}
|
| 245 |
+
|
| 246 |
+
public:
|
| 247 |
+
template <typename... ArgTypes>
|
| 248 |
+
rT operator()(c10::DeviceType device_type, ArgTypes&&... args) {
|
| 249 |
+
FnPtr call_ptr = get_call_ptr(device_type);
|
| 250 |
+
return (*call_ptr)(std::forward<ArgTypes>(args)...);
|
| 251 |
+
}
|
| 252 |
+
|
| 253 |
+
void set_cuda_dispatch_ptr(FnPtr fn_ptr) {
|
| 254 |
+
impl.cuda_dispatch_ptr = reinterpret_cast<void*>(fn_ptr);
|
| 255 |
+
}
|
| 256 |
+
|
| 257 |
+
#if defined(USE_XPU)
|
| 258 |
+
void set_xpu_dispatch_ptr(FnPtr fn_ptr){
|
| 259 |
+
impl.xpu_dispatch_ptr = reinterpret_cast<void*>(fn_ptr);
|
| 260 |
+
}
|
| 261 |
+
#endif
|
| 262 |
+
|
| 263 |
+
void set_hip_dispatch_ptr(FnPtr fn_ptr) {
|
| 264 |
+
impl.hip_dispatch_ptr = reinterpret_cast<void*>(fn_ptr);
|
| 265 |
+
}
|
| 266 |
+
|
| 267 |
+
void set_mps_dispatch_ptr(FnPtr fn_ptr) {
|
| 268 |
+
impl.mps_dispatch_ptr = reinterpret_cast<void*>(fn_ptr);
|
| 269 |
+
}
|
| 270 |
+
|
| 271 |
+
void set_mtia_dispatch_ptr(FnPtr fn_ptr) {
|
| 272 |
+
impl.mtia_dispatch_ptr = reinterpret_cast<void*>(fn_ptr);
|
| 273 |
+
}
|
| 274 |
+
|
| 275 |
+
void set_privateuse1_dispatch_ptr(FnPtr fn_ptr) {
|
| 276 |
+
impl.privateuse1_dispatch_ptr = reinterpret_cast<void*>(fn_ptr);
|
| 277 |
+
}
|
| 278 |
+
|
| 279 |
+
// Returns true if the dispatcher has a kernel registered for this device
|
| 280 |
+
// type.
|
| 281 |
+
bool is_device_supported(const c10::DeviceType device_type) {
|
| 282 |
+
auto result = impl.try_get_call_ptr(device_type
|
| 283 |
+
, reinterpret_cast<void*>(DEFAULT)
|
| 284 |
+
#ifdef HAVE_AVX512_CPU_DEFINITION
|
| 285 |
+
, reinterpret_cast<void*>(AVX512)
|
| 286 |
+
#endif
|
| 287 |
+
#ifdef HAVE_AVX2_CPU_DEFINITION
|
| 288 |
+
, reinterpret_cast<void*>(AVX2)
|
| 289 |
+
#endif
|
| 290 |
+
#ifdef HAVE_VSX_CPU_DEFINITION
|
| 291 |
+
, reinterpret_cast<void*>(VSX)
|
| 292 |
+
#endif
|
| 293 |
+
#ifdef HAVE_ZVECTOR_CPU_DEFINITION
|
| 294 |
+
, reinterpret_cast<void*>(ZVECTOR)
|
| 295 |
+
#endif
|
| 296 |
+
#ifdef HAVE_SVE256_CPU_DEFINITION
|
| 297 |
+
, reinterpret_cast<void*>(SVE256)
|
| 298 |
+
#endif
|
| 299 |
+
);
|
| 300 |
+
if (std::holds_alternative<ErrorType>(result)){
|
| 301 |
+
return false;
|
| 302 |
+
}
|
| 303 |
+
return true;
|
| 304 |
+
}
|
| 305 |
+
|
| 306 |
+
static TORCH_API FnPtr DEFAULT;
|
| 307 |
+
#ifdef HAVE_AVX512_CPU_DEFINITION
|
| 308 |
+
static TORCH_API FnPtr AVX512;
|
| 309 |
+
#endif
|
| 310 |
+
#ifdef HAVE_AVX2_CPU_DEFINITION
|
| 311 |
+
static TORCH_API FnPtr AVX2;
|
| 312 |
+
#endif
|
| 313 |
+
#ifdef HAVE_VSX_CPU_DEFINITION
|
| 314 |
+
static TORCH_API FnPtr VSX;
|
| 315 |
+
#endif
|
| 316 |
+
#ifdef HAVE_ZVECTOR_CPU_DEFINITION
|
| 317 |
+
static TORCH_API FnPtr ZVECTOR;
|
| 318 |
+
#endif
|
| 319 |
+
#ifdef HAVE_SVE256_CPU_DEFINITION
|
| 320 |
+
static TORCH_API FnPtr SVE256;
|
| 321 |
+
#endif
|
| 322 |
+
private:
|
| 323 |
+
DispatchStubImpl impl;
|
| 324 |
+
};
|
| 325 |
+
|
| 326 |
+
namespace {
|
| 327 |
+
template <typename DispatchStub>
|
| 328 |
+
struct RegisterCUDADispatch {
|
| 329 |
+
RegisterCUDADispatch(DispatchStub &stub, typename DispatchStub::FnPtr value) {
|
| 330 |
+
stub.set_cuda_dispatch_ptr(value);
|
| 331 |
+
}
|
| 332 |
+
};
|
| 333 |
+
|
| 334 |
+
template <typename DispatchStub>
|
| 335 |
+
struct RegisterXPUDispatch {
|
| 336 |
+
RegisterXPUDispatch(DispatchStub &stub, typename DispatchStub::FnPtr value){
|
| 337 |
+
stub.set_xpu_dispatch_ptr(value);
|
| 338 |
+
}
|
| 339 |
+
};
|
| 340 |
+
|
| 341 |
+
template <typename DispatchStub>
|
| 342 |
+
struct RegisterMPSDispatch {
|
| 343 |
+
RegisterMPSDispatch(DispatchStub &stub, typename DispatchStub::FnPtr value) {
|
| 344 |
+
stub.set_mps_dispatch_ptr(value);
|
| 345 |
+
}
|
| 346 |
+
};
|
| 347 |
+
|
| 348 |
+
template <typename DispatchStub>
|
| 349 |
+
struct RegisterHIPDispatch {
|
| 350 |
+
RegisterHIPDispatch(DispatchStub &stub, typename DispatchStub::FnPtr value) {
|
| 351 |
+
// TODO: make this point at hip_dispatch_ptr
|
| 352 |
+
stub.set_cuda_dispatch_ptr(value);
|
| 353 |
+
}
|
| 354 |
+
};
|
| 355 |
+
|
| 356 |
+
template <typename DispatchStub>
|
| 357 |
+
struct RegisterMTIADispatch {
|
| 358 |
+
RegisterMTIADispatch(DispatchStub &stub, typename DispatchStub::FnPtr value) {
|
| 359 |
+
stub.set_mtia_dispatch_ptr(value);
|
| 360 |
+
}
|
| 361 |
+
};
|
| 362 |
+
|
| 363 |
+
template <typename DispatchStub>
|
| 364 |
+
struct RegisterPRIVATEUSE1Dispatch {
|
| 365 |
+
RegisterPRIVATEUSE1Dispatch(DispatchStub &stub, typename DispatchStub::FnPtr value) {
|
| 366 |
+
stub.set_privateuse1_dispatch_ptr(value);
|
| 367 |
+
}
|
| 368 |
+
};
|
| 369 |
+
|
| 370 |
+
} // anonymous namespace
|
| 371 |
+
// Compiler will complain if you put things like std::tuple<Tensor, Tensor> in
|
| 372 |
+
// the `fn` argument of DECLARE_DISPATCH. Some possible workarounds, e.g.,
|
| 373 |
+
// adding parentheses and using helper struct to get rid of the parentheses, do
|
| 374 |
+
// not work with MSVC. So do a `using`-declaration if you need to pass in such
|
| 375 |
+
// `fn`, e.g., grid_sampler_2d_backward_cpu_kernel in GridSampleKernel.h.
|
| 376 |
+
#define DECLARE_DISPATCH(fn, name) \
|
| 377 |
+
struct name##_DECLARE_DISPATCH_type : DispatchStub<fn, name##_DECLARE_DISPATCH_type> { \
|
| 378 |
+
name##_DECLARE_DISPATCH_type() = default; \
|
| 379 |
+
name##_DECLARE_DISPATCH_type(const name##_DECLARE_DISPATCH_type&) = delete; \
|
| 380 |
+
name##_DECLARE_DISPATCH_type& operator=(const name##_DECLARE_DISPATCH_type&) = delete; \
|
| 381 |
+
name##_DECLARE_DISPATCH_type(name##_DECLARE_DISPATCH_type&&) = delete; \
|
| 382 |
+
name##_DECLARE_DISPATCH_type& operator=(name##_DECLARE_DISPATCH_type&&) = delete; \
|
| 383 |
+
~name##_DECLARE_DISPATCH_type() = default; \
|
| 384 |
+
}; \
|
| 385 |
+
extern TORCH_API struct name##_DECLARE_DISPATCH_type name;
|
| 386 |
+
|
| 387 |
+
#define DEFINE_DISPATCH(name) struct name##_DECLARE_DISPATCH_type name
|
| 388 |
+
|
| 389 |
+
#define REGISTER_ARCH_DISPATCH(name, arch, fn) \
|
| 390 |
+
template <> name##_DECLARE_DISPATCH_type::FnPtr TORCH_API DispatchStub<name##_DECLARE_DISPATCH_type::FnPtr, struct name##_DECLARE_DISPATCH_type>::arch = fn;
|
| 391 |
+
|
| 392 |
+
#ifdef HAVE_AVX512_CPU_DEFINITION
|
| 393 |
+
#define REGISTER_AVX512_DISPATCH(name, fn) REGISTER_ARCH_DISPATCH(name, AVX512, fn)
|
| 394 |
+
#else
|
| 395 |
+
#define REGISTER_AVX512_DISPATCH(name, fn)
|
| 396 |
+
#endif
|
| 397 |
+
|
| 398 |
+
#ifdef HAVE_AVX2_CPU_DEFINITION
|
| 399 |
+
#define REGISTER_AVX2_DISPATCH(name, fn) REGISTER_ARCH_DISPATCH(name, AVX2, fn)
|
| 400 |
+
#else
|
| 401 |
+
#define REGISTER_AVX2_DISPATCH(name, fn)
|
| 402 |
+
#endif
|
| 403 |
+
|
| 404 |
+
#ifdef HAVE_VSX_CPU_DEFINITION
|
| 405 |
+
#define REGISTER_VSX_DISPATCH(name, fn) REGISTER_ARCH_DISPATCH(name, VSX, fn)
|
| 406 |
+
#else
|
| 407 |
+
#define REGISTER_VSX_DISPATCH(name, fn)
|
| 408 |
+
#endif
|
| 409 |
+
|
| 410 |
+
#ifdef HAVE_ZVECTOR_CPU_DEFINITION
|
| 411 |
+
#define REGISTER_ZVECTOR_DISPATCH(name, fn) REGISTER_ARCH_DISPATCH(name, ZVECTOR, fn)
|
| 412 |
+
#else
|
| 413 |
+
#define REGISTER_ZVECTOR_DISPATCH(name, fn)
|
| 414 |
+
#endif
|
| 415 |
+
|
| 416 |
+
#ifdef HAVE_SVE256_CPU_DEFINITION
|
| 417 |
+
#define REGISTER_SVE256_DISPATCH(name, fn) REGISTER_ARCH_DISPATCH(name, SVE256, fn)
|
| 418 |
+
#else
|
| 419 |
+
#define REGISTER_SVE256_DISPATCH(name, fn)
|
| 420 |
+
#endif
|
| 421 |
+
|
| 422 |
+
// Macro to register the same kernel for all CPU arch types. This is useful
|
| 423 |
+
// if a kernel does not benefit from being recompiled across different arch types.
|
| 424 |
+
#define REGISTER_ALL_CPU_DISPATCH(name, fn) \
|
| 425 |
+
REGISTER_ARCH_DISPATCH(name, DEFAULT, fn) \
|
| 426 |
+
REGISTER_AVX512_DISPATCH(name, fn) \
|
| 427 |
+
REGISTER_AVX2_DISPATCH(name, fn) \
|
| 428 |
+
REGISTER_VSX_DISPATCH(name, fn) \
|
| 429 |
+
REGISTER_ZVECTOR_DISPATCH(name, fn) \
|
| 430 |
+
REGISTER_SVE256_DISPATCH(name, fn)
|
| 431 |
+
|
| 432 |
+
#define REGISTER_NO_CPU_DISPATCH(name) \
|
| 433 |
+
REGISTER_ALL_CPU_DISPATCH(name, nullptr)
|
| 434 |
+
|
| 435 |
+
#define REGISTER_CUDA_DISPATCH(name, fn) \
|
| 436 |
+
static RegisterCUDADispatch<struct name##_DECLARE_DISPATCH_type> name ## __register(name, fn);
|
| 437 |
+
|
| 438 |
+
#define REGISTER_XPU_DISPATCH(name, fn) \
|
| 439 |
+
static RegisterXPUDispatch<struct name##_DECLARE_DISPATCH_type> name ## __register(name, fn);
|
| 440 |
+
|
| 441 |
+
#define REGISTER_HIP_DISPATCH(name, fn) \
|
| 442 |
+
static RegisterHIPDispatch<struct name##_DECLARE_DISPATCH_type> name ## __register(name, fn);
|
| 443 |
+
|
| 444 |
+
#define REGISTER_MPS_DISPATCH(name, fn) \
|
| 445 |
+
static RegisterMPSDispatch<struct name##_DECLARE_DISPATCH_type> name ## __register(name, fn);
|
| 446 |
+
|
| 447 |
+
#define REGISTER_MTIA_DISPATCH(name, fn) \
|
| 448 |
+
static RegisterMTIADispatch<struct name##_DECLARE_DISPATCH_type> name ## __register(name, fn);
|
| 449 |
+
|
| 450 |
+
#define REGISTER_PRIVATEUSE1_DISPATCH(name, fn) \
|
| 451 |
+
static RegisterPRIVATEUSE1Dispatch<struct name##_DECLARE_DISPATCH_type> name ## __register(name, fn);
|
| 452 |
+
|
| 453 |
+
// NB: This macro must be used in an actual 'cu' file; if you try using
|
| 454 |
+
// it from a 'cpp' file it will not work!
|
| 455 |
+
#if defined(__CUDACC__)
|
| 456 |
+
#define REGISTER_DISPATCH(name, fn) REGISTER_CUDA_DISPATCH(name, fn)
|
| 457 |
+
#elif defined(__HIPCC__)
|
| 458 |
+
// TODO: cut this over to HIP dispatch once we stop pretending that CUDA
|
| 459 |
+
// is HIP in the PyTorch HIPify build.
|
| 460 |
+
#define REGISTER_DISPATCH(name, fn) REGISTER_CUDA_DISPATCH(name, fn)
|
| 461 |
+
// #define REGISTER_DISPATCH(name, fn) REGISTER_HIP_DISPATCH(name, fn)
|
| 462 |
+
#elif defined(__OBJC__) && defined(USE_MPS)
|
| 463 |
+
// NB: this macro must be used from a 'mm' file in order to dispatch a MPS kernel
|
| 464 |
+
#define REGISTER_DISPATCH(name, fn) REGISTER_MPS_DISPATCH(name, fn)
|
| 465 |
+
#elif defined(CPU_CAPABILITY)
|
| 466 |
+
// REGISTER_DISPATCH now dispatches an AVX512 kernel to nullptr but registers other dispatches.
|
| 467 |
+
// ALSO_REGISTER_AVX512_DISPATCH should be used for ensuring AVX512 dispatch, among others.
|
| 468 |
+
// ALSO_REGISTER_SVE256_DISPATCH should be used for ensuring SVE256 dispatch, among others.
|
| 469 |
+
#ifdef CPU_CAPABILITY_AVX512
|
| 470 |
+
#define REGISTER_DISPATCH(name, fn) REGISTER_ARCH_DISPATCH(name, CPU_CAPABILITY, ((void*)(fn) ? nullptr : nullptr))
|
| 471 |
+
#else
|
| 472 |
+
#define REGISTER_DISPATCH(name, fn) REGISTER_ARCH_DISPATCH(name, CPU_CAPABILITY, fn)
|
| 473 |
+
#endif
|
| 474 |
+
#define ALSO_REGISTER_AVX512_DISPATCH(name, fn) REGISTER_ARCH_DISPATCH(name, CPU_CAPABILITY, fn)
|
| 475 |
+
#define ALSO_REGISTER_SVE256_DISPATCH(name, fn) REGISTER_ARCH_DISPATCH(name, CPU_CAPABILITY, fn)
|
| 476 |
+
#endif
|
| 477 |
+
} // namespace at::native
|
| 478 |
+
|
| 479 |
+
C10_CLANG_DIAGNOSTIC_POP()
|
lib/python3.10/site-packages/torch/include/ATen/native/EmbeddingBag.h
ADDED
|
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#include <ATen/core/Tensor.h>
|
| 2 |
+
#include <ATen/Config.h>
|
| 3 |
+
#include <cstdint>
|
| 4 |
+
|
| 5 |
+
#ifdef USE_FBGEMM
|
| 6 |
+
#include <fbgemm/FbgemmEmbedding.h>
|
| 7 |
+
#endif
|
| 8 |
+
|
| 9 |
+
namespace at::native {
|
| 10 |
+
|
| 11 |
+
enum class EmbeddingBagMode {
|
| 12 |
+
SUM = 0,
|
| 13 |
+
MEAN = 1,
|
| 14 |
+
MAX = 2,
|
| 15 |
+
};
|
| 16 |
+
|
| 17 |
+
[[maybe_unused]] static bool operator==(int64_t op1, EmbeddingBagMode op2) {
|
| 18 |
+
return op1 == static_cast<int64_t>(op2);
|
| 19 |
+
}
|
| 20 |
+
|
| 21 |
+
[[maybe_unused]] static bool operator!=(int64_t op1, EmbeddingBagMode op2) {
|
| 22 |
+
return !(op1 == op2);
|
| 23 |
+
}
|
| 24 |
+
|
| 25 |
+
void check_arguments(
|
| 26 |
+
const Tensor& weight,
|
| 27 |
+
const Tensor& indices,
|
| 28 |
+
const Tensor& offsets,
|
| 29 |
+
const int64_t mode,
|
| 30 |
+
const std::optional<Tensor>& per_sample_weights,
|
| 31 |
+
bool include_last_offset);
|
| 32 |
+
|
| 33 |
+
void make_bag_size_out(
|
| 34 |
+
Tensor& bag_size_out,
|
| 35 |
+
const Tensor& offsets,
|
| 36 |
+
const Tensor& indices,
|
| 37 |
+
const int64_t mode,
|
| 38 |
+
const bool include_last_offset,
|
| 39 |
+
const bool requires_grad);
|
| 40 |
+
|
| 41 |
+
void make_max_indices_out(
|
| 42 |
+
Tensor& max_indices_out,
|
| 43 |
+
const Tensor& weight,
|
| 44 |
+
const Tensor& indices,
|
| 45 |
+
const Tensor& offsets,
|
| 46 |
+
const Tensor& bag_size,
|
| 47 |
+
const int64_t mode,
|
| 48 |
+
bool include_last_offset);
|
| 49 |
+
|
| 50 |
+
void make_offset2bag_out(
|
| 51 |
+
Tensor& offset2bag,
|
| 52 |
+
Tensor& output,
|
| 53 |
+
const Tensor& weight,
|
| 54 |
+
const Tensor& indices,
|
| 55 |
+
const Tensor& offsets,
|
| 56 |
+
const int64_t mode,
|
| 57 |
+
const std::optional<Tensor>& per_sample_weights,
|
| 58 |
+
const int64_t padding_idx = -1);
|
| 59 |
+
|
| 60 |
+
#ifdef USE_FBGEMM
|
| 61 |
+
|
| 62 |
+
template<bool has_weight, typename TIndex, typename TData>
|
| 63 |
+
struct _CallbackAndBlockSize {
|
| 64 |
+
using TCallback = typename fbgemm::EmbeddingSpMDMKernelSignature<TData, TIndex, TIndex, TData>::Type;
|
| 65 |
+
|
| 66 |
+
int64_t blockSize = -1;
|
| 67 |
+
TCallback callback = nullptr;
|
| 68 |
+
|
| 69 |
+
static TCallback generateCallback(int64_t block_size) {
|
| 70 |
+
return fbgemm::GenerateEmbeddingSpMDM<TData, TIndex, TIndex, TData>(
|
| 71 |
+
block_size,
|
| 72 |
+
has_weight,
|
| 73 |
+
/* normalize_by_lengths */false,
|
| 74 |
+
/* prefetch */16,
|
| 75 |
+
/* is_weight_positional */false,
|
| 76 |
+
/* use_offsets */true);
|
| 77 |
+
}
|
| 78 |
+
|
| 79 |
+
_CallbackAndBlockSize() = default;
|
| 80 |
+
|
| 81 |
+
explicit _CallbackAndBlockSize(std::optional<int64_t> maybe_block_size)
|
| 82 |
+
: blockSize(maybe_block_size.value_or(-1))
|
| 83 |
+
, callback(maybe_block_size.has_value() ? generateCallback(maybe_block_size.value()) : nullptr)
|
| 84 |
+
{}
|
| 85 |
+
};
|
| 86 |
+
|
| 87 |
+
template<typename... StorageMixins>
|
| 88 |
+
struct _EmbeddingBagKernelCacheImpl : private StorageMixins... {
|
| 89 |
+
|
| 90 |
+
_EmbeddingBagKernelCacheImpl() = default;
|
| 91 |
+
// use each of the mixins to store corresponding kernel and block size
|
| 92 |
+
explicit _EmbeddingBagKernelCacheImpl(std::optional<int64_t> maybe_block_size)
|
| 93 |
+
: StorageMixins(maybe_block_size)...
|
| 94 |
+
{}
|
| 95 |
+
|
| 96 |
+
// this method is thread safe (call sites may call from different threads)
|
| 97 |
+
template<bool has_weight, typename TIndex, typename TData>
|
| 98 |
+
typename _CallbackAndBlockSize<has_weight, TIndex, TData>::TCallback
|
| 99 |
+
getCallback(int64_t block_size) const {
|
| 100 |
+
// if the cache doesn't store the kernel for the incoming block size
|
| 101 |
+
// (so it is different from the one stored in corresponding mixin)
|
| 102 |
+
// regenerate the kernel (not writing it into the cache so we avoid locks)
|
| 103 |
+
if (block_size != _CallbackAndBlockSize<has_weight, TIndex, TData>::blockSize) {
|
| 104 |
+
return _CallbackAndBlockSize<has_weight, TIndex, TData>::generateCallback(block_size);
|
| 105 |
+
}
|
| 106 |
+
// else retrieve the cached kernel from the corresponding mixin
|
| 107 |
+
return _CallbackAndBlockSize<has_weight, TIndex, TData>::callback;
|
| 108 |
+
}
|
| 109 |
+
};
|
| 110 |
+
|
| 111 |
+
// instantiate the cache with the list of storage mixins
|
| 112 |
+
// for each of the 8 _EmbeddingBagKernelCache* usages in the EmbeddingBag.cpp impl file
|
| 113 |
+
using _EmbeddingBagKernelCache = _EmbeddingBagKernelCacheImpl<
|
| 114 |
+
_CallbackAndBlockSize<true, int32_t, float>,
|
| 115 |
+
_CallbackAndBlockSize<false, int32_t, float>,
|
| 116 |
+
_CallbackAndBlockSize<true, int64_t, float>,
|
| 117 |
+
_CallbackAndBlockSize<false, int64_t, float>,
|
| 118 |
+
_CallbackAndBlockSize<true, int32_t, unsigned short>,
|
| 119 |
+
_CallbackAndBlockSize<false, int32_t, unsigned short>,
|
| 120 |
+
_CallbackAndBlockSize<true, int64_t, unsigned short>,
|
| 121 |
+
_CallbackAndBlockSize<false, int64_t, unsigned short>>;
|
| 122 |
+
#else
|
| 123 |
+
struct _EmbeddingBagKernelCache {
|
| 124 |
+
explicit _EmbeddingBagKernelCache(std::optional<int64_t> /* maybe_block_size */) {}
|
| 125 |
+
};
|
| 126 |
+
#endif
|
| 127 |
+
|
| 128 |
+
void _embedding_bag_cpu_impl_out(Tensor& output, Tensor& offset2bag,
|
| 129 |
+
Tensor& bag_size, Tensor* max_indices,
|
| 130 |
+
const Tensor &weight, const Tensor &indices,
|
| 131 |
+
const Tensor &offsets, const int64_t mode = 0,
|
| 132 |
+
const std::optional<Tensor>& per_sample_weights = std::nullopt,
|
| 133 |
+
bool include_last_offset = false,
|
| 134 |
+
int64_t padding_idx = -1,
|
| 135 |
+
_EmbeddingBagKernelCache* fbgemm_kernel_cache = nullptr);
|
| 136 |
+
|
| 137 |
+
void _embedding_bag_cpu_out(
|
| 138 |
+
at::Tensor& output,
|
| 139 |
+
at::Tensor& offset2bag,
|
| 140 |
+
at::Tensor& bag_size,
|
| 141 |
+
at::Tensor* p_max_indices,
|
| 142 |
+
const at::Tensor& weight,
|
| 143 |
+
const at::Tensor& indices,
|
| 144 |
+
const at::Tensor& offsets,
|
| 145 |
+
const bool scale_grad_by_freq,
|
| 146 |
+
const int64_t mode,
|
| 147 |
+
const bool sparse,
|
| 148 |
+
const std::optional<at::Tensor>& per_sample_weights,
|
| 149 |
+
const bool include_last_offset,
|
| 150 |
+
const std::optional<int64_t>& padding_idx,
|
| 151 |
+
_EmbeddingBagKernelCache* fbgemm_kernel_cache = nullptr);
|
| 152 |
+
|
| 153 |
+
} // namespace at::native
|
lib/python3.10/site-packages/torch/include/ATen/native/FusedAdam.h
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#include <ATen/core/Tensor.h>
|
| 2 |
+
#include <ATen/native/DispatchStub.h>
|
| 3 |
+
|
| 4 |
+
namespace at::native {
|
| 5 |
+
|
| 6 |
+
enum class ADAM_MODE : uint8_t { ORIGINAL = 0, ADAMW = 1 };
|
| 7 |
+
|
| 8 |
+
using fused_adam_fn = void (*)(
|
| 9 |
+
const at::Tensor& param,
|
| 10 |
+
const at::Tensor& grad,
|
| 11 |
+
const at::Tensor& exp_avg,
|
| 12 |
+
const at::Tensor& exp_avg_sq,
|
| 13 |
+
const at::Tensor& max_exp_avg_sq,
|
| 14 |
+
const at::Tensor& state_step,
|
| 15 |
+
const double lr,
|
| 16 |
+
const double beta1,
|
| 17 |
+
const double beta2,
|
| 18 |
+
const double weight_decay,
|
| 19 |
+
const double eps,
|
| 20 |
+
const bool amsgrad,
|
| 21 |
+
const bool maximize,
|
| 22 |
+
const float* grad_scale_ptr,
|
| 23 |
+
const ADAM_MODE);
|
| 24 |
+
|
| 25 |
+
DECLARE_DISPATCH(fused_adam_fn, fused_adam_stub)
|
| 26 |
+
|
| 27 |
+
} // namespace at::native
|
lib/python3.10/site-packages/torch/include/ATen/native/GridSampler.h
ADDED
|
@@ -0,0 +1,298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#pragma once
|
| 2 |
+
|
| 3 |
+
#include <algorithm>
|
| 4 |
+
#include <cmath>
|
| 5 |
+
#include <cstdint>
|
| 6 |
+
#include <utility>
|
| 7 |
+
|
| 8 |
+
#include <ATen/native/GridSamplerUtils.h>
|
| 9 |
+
|
| 10 |
+
namespace at::native {
|
| 11 |
+
|
| 12 |
+
using detail::GridSamplerInterpolation;
|
| 13 |
+
using detail::GridSamplerPadding;
|
| 14 |
+
|
| 15 |
+
// Unnormalizes a coordinate from the -1 to +1 scale to its pixel index value,
|
| 16 |
+
// where we view each pixel as an area between (idx - 0.5) and (idx + 0.5).
|
| 17 |
+
// if align_corners: -1 and +1 get sent to the centers of the corner pixels
|
| 18 |
+
// -1 --> 0
|
| 19 |
+
// +1 --> (size - 1)
|
| 20 |
+
// scale_factor = (size - 1) / 2
|
| 21 |
+
// if not align_corners: -1 and +1 get sent to the image edges
|
| 22 |
+
// -1 --> -0.5
|
| 23 |
+
// +1 --> (size - 1) + 0.5 == size - 0.5
|
| 24 |
+
// scale_factor = size / 2
|
| 25 |
+
template <typename scalar_t>
|
| 26 |
+
static inline scalar_t grid_sampler_unnormalize(scalar_t coord, int64_t size,
|
| 27 |
+
bool align_corners) {
|
| 28 |
+
if (align_corners) {
|
| 29 |
+
// unnormalize coord from [-1, 1] to [0, size - 1]
|
| 30 |
+
return ((coord + 1) / 2) * (size - 1);
|
| 31 |
+
} else {
|
| 32 |
+
// unnormalize coord from [-1, 1] to [-0.5, size - 0.5]
|
| 33 |
+
return ((coord + 1) * size - 1) / 2;
|
| 34 |
+
}
|
| 35 |
+
}
|
| 36 |
+
|
| 37 |
+
// grid_sampler_unnormalize_set_grad works the same as grid_sampler_unnormalize
|
| 38 |
+
// except that it also returns the `d output / d input` via pointer argument
|
| 39 |
+
// `grad_in`.
|
| 40 |
+
// This is useful in the backward pass of grid_sampler.
|
| 41 |
+
template <typename scalar_t>
|
| 42 |
+
static inline scalar_t grid_sampler_unnormalize_set_grad(scalar_t coord, int64_t size,
|
| 43 |
+
bool align_corners, scalar_t *grad_in) {
|
| 44 |
+
if (align_corners) {
|
| 45 |
+
// unnormalize coord from [-1, 1] to [0, size - 1]
|
| 46 |
+
*grad_in = static_cast<scalar_t>(size - 1) / 2;
|
| 47 |
+
return ((coord + 1) / 2) * (size - 1);
|
| 48 |
+
} else {
|
| 49 |
+
// unnormalize coord from [-1, 1] to [-0.5, size - 0.5]
|
| 50 |
+
*grad_in = static_cast<scalar_t>(size) / 2;
|
| 51 |
+
return ((coord + 1) * size - 1) / 2;
|
| 52 |
+
}
|
| 53 |
+
}
|
| 54 |
+
|
| 55 |
+
// Clips coordinates to between 0 and clip_limit - 1
|
| 56 |
+
template<typename scalar_t>
|
| 57 |
+
static inline scalar_t clip_coordinates(scalar_t in, int64_t clip_limit) {
|
| 58 |
+
return std::min(static_cast<scalar_t>(clip_limit - 1), std::max(in, static_cast<scalar_t>(0)));
|
| 59 |
+
}
|
| 60 |
+
|
| 61 |
+
// clip_coordinates_set_grad works similarly to clip_coordinates except that
|
| 62 |
+
// it also returns the `d output / d input` via pointer argument `grad_in`.
|
| 63 |
+
// This is useful in the backward pass of grid_sampler.
|
| 64 |
+
template<typename scalar_t>
|
| 65 |
+
static inline scalar_t clip_coordinates_set_grad(scalar_t in, int64_t clip_limit,
|
| 66 |
+
scalar_t *grad_in) {
|
| 67 |
+
// Note that it is important for the gradient calculation that borders
|
| 68 |
+
// are considered out of bounds.
|
| 69 |
+
if (in <= static_cast<scalar_t>(0)) {
|
| 70 |
+
*grad_in = static_cast<scalar_t>(0);
|
| 71 |
+
return static_cast<scalar_t>(0);
|
| 72 |
+
} else {
|
| 73 |
+
scalar_t max = static_cast<scalar_t>(clip_limit - 1);
|
| 74 |
+
if (in >= max) {
|
| 75 |
+
*grad_in = static_cast<scalar_t>(0);
|
| 76 |
+
return max;
|
| 77 |
+
} else {
|
| 78 |
+
*grad_in = static_cast<scalar_t>(1);
|
| 79 |
+
return in;
|
| 80 |
+
}
|
| 81 |
+
}
|
| 82 |
+
}
|
| 83 |
+
|
| 84 |
+
// Reflects coordinates until they fall between low and high (inclusive).
|
| 85 |
+
// The bounds are passed as twice their value so that half-integer values
|
| 86 |
+
// can be represented as ints.
|
| 87 |
+
template<typename scalar_t>
|
| 88 |
+
static inline scalar_t reflect_coordinates(scalar_t in, int64_t twice_low,
|
| 89 |
+
int64_t twice_high) {
|
| 90 |
+
if (twice_low == twice_high) {
|
| 91 |
+
return static_cast<scalar_t>(0);
|
| 92 |
+
}
|
| 93 |
+
scalar_t min = static_cast<scalar_t>(twice_low) / 2;
|
| 94 |
+
scalar_t span = static_cast<scalar_t>(twice_high - twice_low) / 2;
|
| 95 |
+
in = std::fabs(in - min);
|
| 96 |
+
// `fmod` returns same sign as `in`, which is positive after the `fabs` above.
|
| 97 |
+
scalar_t extra = std::fmod(in, span);
|
| 98 |
+
int flips = static_cast<int>(std::floor(in / span));
|
| 99 |
+
if (flips % 2 == 0) {
|
| 100 |
+
return extra + min;
|
| 101 |
+
} else {
|
| 102 |
+
return span - extra + min;
|
| 103 |
+
}
|
| 104 |
+
}
|
| 105 |
+
|
| 106 |
+
// reflect_coordinates_set_grad works similarly to reflect_coordinates except
|
| 107 |
+
// that it also returns the `d output / d input` via pointer argument
|
| 108 |
+
// `grad_in`.
|
| 109 |
+
// This is useful in the backward pass of grid_sampler.
|
| 110 |
+
template<typename scalar_t>
|
| 111 |
+
static inline scalar_t reflect_coordinates_set_grad(scalar_t in, int64_t twice_low,
|
| 112 |
+
int64_t twice_high, scalar_t *grad_in) {
|
| 113 |
+
if (twice_low == twice_high) {
|
| 114 |
+
*grad_in = static_cast<scalar_t>(0);
|
| 115 |
+
return static_cast<scalar_t>(0);
|
| 116 |
+
}
|
| 117 |
+
int grad_in_mult_;
|
| 118 |
+
scalar_t min = static_cast<scalar_t>(twice_low) / 2;
|
| 119 |
+
scalar_t span = static_cast<scalar_t>(twice_high - twice_low) / 2;
|
| 120 |
+
in = in - min;
|
| 121 |
+
if (in < static_cast<scalar_t>(0)) {
|
| 122 |
+
grad_in_mult_ = -1;
|
| 123 |
+
in = -in;
|
| 124 |
+
} else {
|
| 125 |
+
grad_in_mult_ = 1;
|
| 126 |
+
}
|
| 127 |
+
// `fmod` returns same sign as `in`, which is positive after the `if` above.
|
| 128 |
+
scalar_t extra = std::fmod(in, span);
|
| 129 |
+
int flips = static_cast<int>(std::floor(in / span));
|
| 130 |
+
if (flips % 2 == 0) {
|
| 131 |
+
*grad_in = static_cast<scalar_t>(grad_in_mult_);
|
| 132 |
+
return extra + min;
|
| 133 |
+
} else {
|
| 134 |
+
*grad_in = static_cast<scalar_t>(-grad_in_mult_);
|
| 135 |
+
return span - extra + min;
|
| 136 |
+
}
|
| 137 |
+
}
|
| 138 |
+
|
| 139 |
+
// Mapping the out-of-boundary points back into boundary
|
| 140 |
+
// This would only affect padding_mode=border or reflection
|
| 141 |
+
template<typename scalar_t>
|
| 142 |
+
static inline scalar_t compute_coordinates(scalar_t coord, int64_t size,
|
| 143 |
+
GridSamplerPadding padding_mode,
|
| 144 |
+
bool align_corners) {
|
| 145 |
+
if (padding_mode == GridSamplerPadding::Border) {
|
| 146 |
+
// clip coordinates to image borders
|
| 147 |
+
coord = clip_coordinates(coord, size);
|
| 148 |
+
} else if (padding_mode == GridSamplerPadding::Reflection) {
|
| 149 |
+
// reflect coordinates by image borders
|
| 150 |
+
if (align_corners) {
|
| 151 |
+
coord = reflect_coordinates(coord, 0, 2*(size - 1));
|
| 152 |
+
} else {
|
| 153 |
+
coord = reflect_coordinates(coord, -1, 2*size - 1);
|
| 154 |
+
}
|
| 155 |
+
// clip coordinates to image borders
|
| 156 |
+
coord = clip_coordinates(coord, size);
|
| 157 |
+
}
|
| 158 |
+
return coord;
|
| 159 |
+
}
|
| 160 |
+
|
| 161 |
+
// Computes the pixel source index value for a grid coordinate
|
| 162 |
+
template <typename scalar_t>
|
| 163 |
+
static inline scalar_t grid_sampler_compute_source_index(
|
| 164 |
+
scalar_t coord,
|
| 165 |
+
int64_t size,
|
| 166 |
+
GridSamplerPadding padding_mode,
|
| 167 |
+
bool align_corners) {
|
| 168 |
+
coord = grid_sampler_unnormalize(coord, size, align_corners);
|
| 169 |
+
coord = compute_coordinates(coord, size, padding_mode, align_corners);
|
| 170 |
+
return coord;
|
| 171 |
+
}
|
| 172 |
+
|
| 173 |
+
// grid_sampler_compute_source_index_set_grad works similarly to
|
| 174 |
+
// grid_sampler_compute_source_index except that it also returns the
|
| 175 |
+
// `d output / d input` via pointer argument `grad_in`.
|
| 176 |
+
// This is useful in the backward pass of grid_sampler.
|
| 177 |
+
template <typename scalar_t>
|
| 178 |
+
static inline scalar_t grid_sampler_compute_source_index_set_grad(
|
| 179 |
+
scalar_t coord,
|
| 180 |
+
int64_t size,
|
| 181 |
+
GridSamplerPadding padding_mode,
|
| 182 |
+
bool align_corners,
|
| 183 |
+
scalar_t *grad_in) {
|
| 184 |
+
scalar_t grad_clip, grad_refl;
|
| 185 |
+
coord = grid_sampler_unnormalize_set_grad(coord, size, align_corners, grad_in);
|
| 186 |
+
if (padding_mode == GridSamplerPadding::Border) {
|
| 187 |
+
// clip coordinates to image borders
|
| 188 |
+
coord = clip_coordinates_set_grad(coord, size, &grad_clip);
|
| 189 |
+
*grad_in = (*grad_in) * grad_clip;
|
| 190 |
+
} else if (padding_mode == GridSamplerPadding::Reflection) {
|
| 191 |
+
// reflect coordinates by image borders
|
| 192 |
+
if (align_corners) {
|
| 193 |
+
coord = reflect_coordinates_set_grad(coord, 0, 2*(size - 1), &grad_refl);
|
| 194 |
+
} else {
|
| 195 |
+
coord = reflect_coordinates_set_grad(coord, -1, 2*size - 1, &grad_refl);
|
| 196 |
+
}
|
| 197 |
+
// clip coordinates to image borders
|
| 198 |
+
coord = clip_coordinates_set_grad(coord, size, &grad_clip);
|
| 199 |
+
*grad_in = (*grad_in) * grad_refl * grad_clip;
|
| 200 |
+
}
|
| 201 |
+
return coord;
|
| 202 |
+
}
|
| 203 |
+
|
| 204 |
+
static inline bool within_bounds_2d(int64_t h, int64_t w, int64_t H, int64_t W) {
|
| 205 |
+
return h >= 0 && h < H && w >= 0 && w < W;
|
| 206 |
+
}
|
| 207 |
+
|
| 208 |
+
static inline bool within_bounds_3d(int64_t d, int64_t h, int64_t w, int64_t D, int64_t H, int64_t W) {
|
| 209 |
+
return d >= 0 && d < D && h >= 0 && h < H && w >= 0 && w < W;
|
| 210 |
+
}
|
| 211 |
+
|
| 212 |
+
template<typename scalar_t>
|
| 213 |
+
static inline scalar_t get_value_bounded(
|
| 214 |
+
const scalar_t* data,
|
| 215 |
+
scalar_t x,
|
| 216 |
+
scalar_t y,
|
| 217 |
+
int64_t W,
|
| 218 |
+
int64_t H,
|
| 219 |
+
int64_t sW,
|
| 220 |
+
int64_t sH,
|
| 221 |
+
GridSamplerPadding padding_mode,
|
| 222 |
+
bool align_corners) {
|
| 223 |
+
|
| 224 |
+
x = compute_coordinates(x, W, padding_mode, align_corners);
|
| 225 |
+
y = compute_coordinates(y, H, padding_mode, align_corners);
|
| 226 |
+
|
| 227 |
+
int64_t ix = static_cast<int64_t>(x);
|
| 228 |
+
int64_t iy = static_cast<int64_t>(y);
|
| 229 |
+
|
| 230 |
+
if (within_bounds_2d(iy, ix, H, W)) {
|
| 231 |
+
return data[iy * sH + ix * sW];
|
| 232 |
+
}
|
| 233 |
+
return static_cast<scalar_t>(0);
|
| 234 |
+
}
|
| 235 |
+
|
| 236 |
+
template<typename scalar_t>
|
| 237 |
+
static inline void safe_add_2d(scalar_t *data, int64_t h, int64_t w,
|
| 238 |
+
int64_t sH, int64_t sW, int64_t H, int64_t W,
|
| 239 |
+
scalar_t delta) {
|
| 240 |
+
if (within_bounds_2d(h, w, H, W)) {
|
| 241 |
+
data[h * sH + w * sW] += delta;
|
| 242 |
+
}
|
| 243 |
+
}
|
| 244 |
+
|
| 245 |
+
template<typename scalar_t>
|
| 246 |
+
static inline void safe_add_3d(scalar_t *data, int64_t d, int64_t h, int64_t w,
|
| 247 |
+
int64_t sD, int64_t sH, int64_t sW,
|
| 248 |
+
int64_t D, int64_t H, int64_t W,
|
| 249 |
+
scalar_t delta) {
|
| 250 |
+
if (within_bounds_3d(d, h, w, D, H, W)) {
|
| 251 |
+
data[d * sD + h * sH + w * sW] += delta;
|
| 252 |
+
}
|
| 253 |
+
}
|
| 254 |
+
|
| 255 |
+
template<typename scalar_t>
|
| 256 |
+
static inline void add_value_bounded(
|
| 257 |
+
scalar_t* data,
|
| 258 |
+
scalar_t x,
|
| 259 |
+
scalar_t y,
|
| 260 |
+
int64_t W,
|
| 261 |
+
int64_t H,
|
| 262 |
+
int64_t sW,
|
| 263 |
+
int64_t sH,
|
| 264 |
+
scalar_t delta,
|
| 265 |
+
GridSamplerPadding padding_mode,
|
| 266 |
+
bool align_corners) {
|
| 267 |
+
|
| 268 |
+
x = compute_coordinates(x, W, padding_mode, align_corners);
|
| 269 |
+
y = compute_coordinates(y, H, padding_mode, align_corners);
|
| 270 |
+
|
| 271 |
+
int64_t ix = static_cast<int64_t>(x);
|
| 272 |
+
int64_t iy = static_cast<int64_t>(y);
|
| 273 |
+
|
| 274 |
+
safe_add_2d(data, iy, ix, sH, sW, H, W, delta);
|
| 275 |
+
}
|
| 276 |
+
|
| 277 |
+
// Calculate the differential of the cubic convolution, i.e. `d coeff / d x`
|
| 278 |
+
template<typename scalar_t>
|
| 279 |
+
static inline void get_cubic_coefficients_grad(
|
| 280 |
+
scalar_t coeffs[4],
|
| 281 |
+
scalar_t t) {
|
| 282 |
+
|
| 283 |
+
// Must be the same as forward calculation in
|
| 284 |
+
// aten/src/ATen/native/UpSample.h:get_cubic_upsample_coefficients
|
| 285 |
+
scalar_t A = -0.75;
|
| 286 |
+
|
| 287 |
+
scalar_t x;
|
| 288 |
+
x = -1 - t; // 1 < x = |-1 - tx| < 2
|
| 289 |
+
coeffs[0] = (-3 * A * x - 10 * A ) * x - 8 * A;
|
| 290 |
+
x = -t; // x = |0 - tx| <= 1
|
| 291 |
+
coeffs[1] = (-3 * (A + 2) * x - 2 * (A + 3)) * x;
|
| 292 |
+
x = 1 - t; // x = |1 - tx| <= 1
|
| 293 |
+
coeffs[2] = (3 * (A + 2) * x - 2 * (A + 3)) * x;
|
| 294 |
+
x = 2 - t; // 1 < x = |2 - tx| < 2
|
| 295 |
+
coeffs[3] = (3 * A * x - 10 * A) * x + 8 * A;
|
| 296 |
+
}
|
| 297 |
+
|
| 298 |
+
} // namespace at::native
|
lib/python3.10/site-packages/torch/include/ATen/native/MathBitFallThroughLists.h
ADDED
|
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#pragma once
|
| 2 |
+
|
| 3 |
+
namespace at {
|
| 4 |
+
// views and their in-place version ops
|
| 5 |
+
#define TORCH_VIEW_FNS(m) \
|
| 6 |
+
m.impl("as_strided_", torch::CppFunction::makeFallthrough()); \
|
| 7 |
+
m.impl("detach", torch::CppFunction::makeFallthrough()); \
|
| 8 |
+
m.impl("detach_", torch::CppFunction::makeFallthrough()); \
|
| 9 |
+
m.impl("diagonal", torch::CppFunction::makeFallthrough()); \
|
| 10 |
+
m.impl("expand", torch::CppFunction::makeFallthrough()); \
|
| 11 |
+
m.impl("expand_as", torch::CppFunction::makeFallthrough()); \
|
| 12 |
+
m.impl("movedim.int", torch::CppFunction::makeFallthrough()); \
|
| 13 |
+
m.impl("movedim.intlist", torch::CppFunction::makeFallthrough()); \
|
| 14 |
+
m.impl("narrow", torch::CppFunction::makeFallthrough()); \
|
| 15 |
+
m.impl("permute", torch::CppFunction::makeFallthrough()); \
|
| 16 |
+
m.impl("select.Dimname", torch::CppFunction::makeFallthrough()); \
|
| 17 |
+
m.impl("select.int", torch::CppFunction::makeFallthrough()); \
|
| 18 |
+
m.impl("squeeze", torch::CppFunction::makeFallthrough()); \
|
| 19 |
+
m.impl("squeeze_", torch::CppFunction::makeFallthrough()); \
|
| 20 |
+
m.impl("transpose.int", torch::CppFunction::makeFallthrough()); \
|
| 21 |
+
m.impl("transpose.Dimname", torch::CppFunction::makeFallthrough()); \
|
| 22 |
+
m.impl("transpose_", torch::CppFunction::makeFallthrough()); \
|
| 23 |
+
m.impl("t", torch::CppFunction::makeFallthrough()); \
|
| 24 |
+
m.impl("t_", torch::CppFunction::makeFallthrough()); \
|
| 25 |
+
m.impl("real", torch::CppFunction::makeFallthrough()); \
|
| 26 |
+
m.impl("imag", torch::CppFunction::makeFallthrough()); \
|
| 27 |
+
m.impl("view_as_real", torch::CppFunction::makeFallthrough()); \
|
| 28 |
+
m.impl("unflatten.int", torch::CppFunction::makeFallthrough()); \
|
| 29 |
+
m.impl("unflatten.Dimname", torch::CppFunction::makeFallthrough()); \
|
| 30 |
+
m.impl("unfold", torch::CppFunction::makeFallthrough()); \
|
| 31 |
+
m.impl("unsqueeze", torch::CppFunction::makeFallthrough()); \
|
| 32 |
+
m.impl("unsqueeze_", torch::CppFunction::makeFallthrough()); \
|
| 33 |
+
m.impl("view_as", torch::CppFunction::makeFallthrough()); \
|
| 34 |
+
m.impl("unbind.int", torch::CppFunction::makeFallthrough()); \
|
| 35 |
+
m.impl("unbind.Dimname", torch::CppFunction::makeFallthrough()); \
|
| 36 |
+
m.impl("split.Tensor", torch::CppFunction::makeFallthrough()); \
|
| 37 |
+
m.impl("split_with_sizes", torch::CppFunction::makeFallthrough()); \
|
| 38 |
+
m.impl("swapaxes", torch::CppFunction::makeFallthrough()); \
|
| 39 |
+
m.impl("swapdims", torch::CppFunction::makeFallthrough()); \
|
| 40 |
+
m.impl("chunk", torch::CppFunction::makeFallthrough()); \
|
| 41 |
+
m.impl("reshape", torch::CppFunction::makeFallthrough()); \
|
| 42 |
+
m.impl("alias", torch::CppFunction::makeFallthrough()); \
|
| 43 |
+
m.impl("hsplit.int", torch::CppFunction::makeFallthrough()); \
|
| 44 |
+
m.impl("hsplit.array", torch::CppFunction::makeFallthrough()); \
|
| 45 |
+
m.impl("dsplit.int", torch::CppFunction::makeFallthrough()); \
|
| 46 |
+
m.impl("dsplit.array", torch::CppFunction::makeFallthrough()); \
|
| 47 |
+
m.impl("vsplit.int", torch::CppFunction::makeFallthrough()); \
|
| 48 |
+
m.impl("vsplit.array", torch::CppFunction::makeFallthrough()); \
|
| 49 |
+
m.impl("conj", torch::CppFunction::makeFallthrough()); \
|
| 50 |
+
m.impl("_conj", torch::CppFunction::makeFallthrough()); \
|
| 51 |
+
m.impl("_unsafe_view", torch::CppFunction::makeFallthrough()); \
|
| 52 |
+
m.impl("resize_", torch::CppFunction::makeFallthrough());
|
| 53 |
+
|
| 54 |
+
#define TENSOR_UTILITIES_AND_CONSTRUCTORS(m) \
|
| 55 |
+
m.impl("empty_like", torch::CppFunction::makeFallthrough()); \
|
| 56 |
+
m.impl("empty.memory_format", torch::CppFunction::makeFallthrough()); \
|
| 57 |
+
m.impl("empty.out", torch::CppFunction::makeFallthrough()); \
|
| 58 |
+
m.impl("empty_strided", torch::CppFunction::makeFallthrough()); \
|
| 59 |
+
m.impl("full_like", torch::CppFunction::makeFallthrough()); \
|
| 60 |
+
m.impl("stride.int", torch::CppFunction::makeFallthrough()); \
|
| 61 |
+
m.impl("stride.Dimname", torch::CppFunction::makeFallthrough()); \
|
| 62 |
+
m.impl("size.int", torch::CppFunction::makeFallthrough()); \
|
| 63 |
+
m.impl("size.Dimname", torch::CppFunction::makeFallthrough()); \
|
| 64 |
+
m.impl("is_complex", torch::CppFunction::makeFallthrough()); \
|
| 65 |
+
m.impl("is_floating_point", torch::CppFunction::makeFallthrough()); \
|
| 66 |
+
m.impl("requires_grad_", torch::CppFunction::makeFallthrough());
|
| 67 |
+
}
|
| 68 |
+
|
| 69 |
+
#define TORCH_VIEW_FNS_NATIVE_FN_REGISTRATION(m) \
|
| 70 |
+
m.impl("as_strided", torch::CppFunction::makeFallthrough()); \
|
| 71 |
+
m.impl("view", torch::CppFunction::makeFallthrough());
|
lib/python3.10/site-packages/torch/include/ATen/native/ReduceAllOps.h
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#pragma once
|
| 2 |
+
|
| 3 |
+
#include <ATen/native/DispatchStub.h>
|
| 4 |
+
|
| 5 |
+
namespace at {
|
| 6 |
+
class Tensor;
|
| 7 |
+
}
|
| 8 |
+
|
| 9 |
+
namespace at::native {
|
| 10 |
+
|
| 11 |
+
using reduce_all_fn = void (*)(Tensor & result, const Tensor & self);
|
| 12 |
+
using reduce_min_max_fn = void (*)(Tensor & max_result, Tensor & min_result, const Tensor & self);
|
| 13 |
+
DECLARE_DISPATCH(reduce_all_fn, min_all_stub)
|
| 14 |
+
DECLARE_DISPATCH(reduce_all_fn, max_all_stub)
|
| 15 |
+
|
| 16 |
+
} // namespace at::native
|
lib/python3.10/site-packages/torch/include/ATen/native/ReductionType.h
ADDED
|
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#pragma once
|
| 2 |
+
|
| 3 |
+
#include <c10/core/Scalar.h>
|
| 4 |
+
|
| 5 |
+
namespace at::native {
|
| 6 |
+
|
| 7 |
+
enum class ReductionType {MAX, MEAN, MIN, SUM, PROD};
|
| 8 |
+
|
| 9 |
+
inline ReductionType get_reduction_enum(const std::string_view& reduce) {
|
| 10 |
+
if (reduce == "max" || reduce == "amax") {
|
| 11 |
+
return ReductionType::MAX;
|
| 12 |
+
} else if (reduce == "mean") {
|
| 13 |
+
return ReductionType::MEAN;
|
| 14 |
+
} else if (reduce == "min" || reduce == "amin") {
|
| 15 |
+
return ReductionType::MIN;
|
| 16 |
+
} else if (reduce == "sum") {
|
| 17 |
+
return ReductionType::SUM;
|
| 18 |
+
} else if (reduce == "prod") {
|
| 19 |
+
return ReductionType::PROD;
|
| 20 |
+
} else {
|
| 21 |
+
TORCH_CHECK(false, "reduce argument must be either sum, prod, mean, amax or amin, got ", reduce);
|
| 22 |
+
}
|
| 23 |
+
}
|
| 24 |
+
|
| 25 |
+
// used for `scatter_reduce`, old options for BC.
|
| 26 |
+
inline ReductionType get_operator_enum(const std::string_view reduce, bool use_new_options) {
|
| 27 |
+
if (use_new_options) {
|
| 28 |
+
return get_reduction_enum(reduce);
|
| 29 |
+
} else {
|
| 30 |
+
if (reduce == "add") {
|
| 31 |
+
return ReductionType::SUM;
|
| 32 |
+
} else if (reduce == "multiply") {
|
| 33 |
+
return ReductionType::PROD;
|
| 34 |
+
} else {
|
| 35 |
+
TORCH_CHECK(false, "reduce argument must be either add or multiply.")
|
| 36 |
+
}
|
| 37 |
+
}
|
| 38 |
+
}
|
| 39 |
+
|
| 40 |
+
} // at::native
|
lib/python3.10/site-packages/torch/include/ATen/native/Sorting.h
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#pragma once
|
| 2 |
+
|
| 3 |
+
#include <ATen/native/DispatchStub.h>
|
| 4 |
+
#include <cstdint>
|
| 5 |
+
|
| 6 |
+
namespace at {
|
| 7 |
+
class TensorBase;
|
| 8 |
+
}
|
| 9 |
+
|
| 10 |
+
namespace at::native {
|
| 11 |
+
|
| 12 |
+
enum class QUANTILE_INTERPOLATION_MODE : uint8_t {
|
| 13 |
+
LINEAR,
|
| 14 |
+
LOWER,
|
| 15 |
+
HIGHER,
|
| 16 |
+
MIDPOINT,
|
| 17 |
+
NEAREST
|
| 18 |
+
};
|
| 19 |
+
|
| 20 |
+
using sort_fn = void(*)(const TensorBase&, const TensorBase&, const TensorBase&, int64_t, bool, bool);
|
| 21 |
+
using topk_fn = void(*)(const TensorBase&, const TensorBase&, const TensorBase&, int64_t, int64_t, bool, bool);
|
| 22 |
+
|
| 23 |
+
DECLARE_DISPATCH(sort_fn, sort_stub)
|
| 24 |
+
DECLARE_DISPATCH(topk_fn, topk_stub)
|
| 25 |
+
|
| 26 |
+
void _fill_indices(const TensorBase &indices, int64_t dim);
|
| 27 |
+
|
| 28 |
+
} // namespace at::native
|
lib/python3.10/site-packages/torch/include/ATen/ops/_addmm_activation_cpu_dispatch.h
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#pragma once
|
| 2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
| 3 |
+
|
| 4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
| 5 |
+
|
| 6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
| 7 |
+
#include <c10/core/MemoryFormat.h>
|
| 8 |
+
#include <c10/core/Scalar.h>
|
| 9 |
+
#include <ATen/core/Reduction.h>
|
| 10 |
+
|
| 11 |
+
// Forward declarations of any types needed in the operator signatures.
|
| 12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
| 13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
| 14 |
+
#include <ATen/core/ATen_fwd.h>
|
| 15 |
+
|
| 16 |
+
namespace at {
|
| 17 |
+
|
| 18 |
+
namespace cpu {
|
| 19 |
+
|
| 20 |
+
TORCH_API at::Tensor _addmm_activation(const at::Tensor & self, const at::Tensor & mat1, const at::Tensor & mat2, const at::Scalar & beta=1, const at::Scalar & alpha=1, bool use_gelu=false);
|
| 21 |
+
TORCH_API at::Tensor & _addmm_activation_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & mat1, const at::Tensor & mat2, const at::Scalar & beta=1, const at::Scalar & alpha=1, bool use_gelu=false);
|
| 22 |
+
TORCH_API at::Tensor & _addmm_activation_outf(const at::Tensor & self, const at::Tensor & mat1, const at::Tensor & mat2, const at::Scalar & beta, const at::Scalar & alpha, bool use_gelu, at::Tensor & out);
|
| 23 |
+
|
| 24 |
+
} // namespace cpu
|
| 25 |
+
} // namespace at
|
lib/python3.10/site-packages/torch/include/ATen/ops/_empty_affine_quantized_ops.h
ADDED
|
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#pragma once
|
| 2 |
+
|
| 3 |
+
// @generated by torchgen/gen.py from Operator.h
|
| 4 |
+
|
| 5 |
+
#include <tuple>
|
| 6 |
+
#include <vector>
|
| 7 |
+
|
| 8 |
+
// Forward declarations of any types needed in the operator signatures.
|
| 9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
| 10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
| 11 |
+
#include <ATen/core/ATen_fwd.h>
|
| 12 |
+
|
| 13 |
+
namespace at {
|
| 14 |
+
namespace _ops {
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
struct TORCH_API _empty_affine_quantized {
|
| 18 |
+
using schema = at::Tensor (c10::SymIntArrayRef, ::std::optional<at::ScalarType>, ::std::optional<at::Layout>, ::std::optional<at::Device>, ::std::optional<bool>, double, int64_t, ::std::optional<at::MemoryFormat>);
|
| 19 |
+
using ptr_schema = schema*;
|
| 20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
| 21 |
+
static constexpr const char* name = "aten::_empty_affine_quantized";
|
| 22 |
+
static constexpr const char* overload_name = "";
|
| 23 |
+
static constexpr const char* schema_str = "_empty_affine_quantized(SymInt[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, float scale=1, int zero_point=0, MemoryFormat? memory_format=contiguous_format) -> Tensor";
|
| 24 |
+
static at::Tensor call(c10::SymIntArrayRef size, ::std::optional<at::ScalarType> dtype, ::std::optional<at::Layout> layout, ::std::optional<at::Device> device, ::std::optional<bool> pin_memory, double scale, int64_t zero_point, ::std::optional<at::MemoryFormat> memory_format);
|
| 25 |
+
static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, c10::SymIntArrayRef size, ::std::optional<at::ScalarType> dtype, ::std::optional<at::Layout> layout, ::std::optional<at::Device> device, ::std::optional<bool> pin_memory, double scale, int64_t zero_point, ::std::optional<at::MemoryFormat> memory_format);
|
| 26 |
+
};
|
| 27 |
+
|
| 28 |
+
struct TORCH_API _empty_affine_quantized_out {
|
| 29 |
+
using schema = at::Tensor & (c10::SymIntArrayRef, double, int64_t, ::std::optional<at::MemoryFormat>, at::Tensor &);
|
| 30 |
+
using ptr_schema = schema*;
|
| 31 |
+
// See Note [static constexpr char* members for windows NVCC]
|
| 32 |
+
static constexpr const char* name = "aten::_empty_affine_quantized";
|
| 33 |
+
static constexpr const char* overload_name = "out";
|
| 34 |
+
static constexpr const char* schema_str = "_empty_affine_quantized.out(SymInt[] size, *, float scale=1, int zero_point=0, MemoryFormat? memory_format=contiguous_format, Tensor(a!) out) -> Tensor(a!)";
|
| 35 |
+
static at::Tensor & call(c10::SymIntArrayRef size, double scale, int64_t zero_point, ::std::optional<at::MemoryFormat> memory_format, at::Tensor & out);
|
| 36 |
+
static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, c10::SymIntArrayRef size, double scale, int64_t zero_point, ::std::optional<at::MemoryFormat> memory_format, at::Tensor & out);
|
| 37 |
+
};
|
| 38 |
+
|
| 39 |
+
}} // namespace at::_ops
|
lib/python3.10/site-packages/torch/include/ATen/ops/_fused_sdp_choice_cpu_dispatch.h
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#pragma once
|
| 2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
| 3 |
+
|
| 4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
| 5 |
+
|
| 6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
| 7 |
+
#include <c10/core/MemoryFormat.h>
|
| 8 |
+
#include <c10/core/Scalar.h>
|
| 9 |
+
#include <ATen/core/Reduction.h>
|
| 10 |
+
|
| 11 |
+
// Forward declarations of any types needed in the operator signatures.
|
| 12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
| 13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
| 14 |
+
#include <ATen/core/ATen_fwd.h>
|
| 15 |
+
|
| 16 |
+
namespace at {
|
| 17 |
+
|
| 18 |
+
namespace cpu {
|
| 19 |
+
|
| 20 |
+
TORCH_API int64_t _fused_sdp_choice(const at::Tensor & query, const at::Tensor & key, const at::Tensor & value, const ::std::optional<at::Tensor> & attn_mask={}, double dropout_p=0.0, bool is_causal=false, ::std::optional<double> scale=::std::nullopt, bool enable_gqa=false);
|
| 21 |
+
|
| 22 |
+
} // namespace cpu
|
| 23 |
+
} // namespace at
|
lib/python3.10/site-packages/torch/include/ATen/ops/_index_put_impl_cpu_dispatch.h
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#pragma once
|
| 2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
| 3 |
+
|
| 4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
| 5 |
+
|
| 6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
| 7 |
+
#include <c10/core/MemoryFormat.h>
|
| 8 |
+
#include <c10/core/Scalar.h>
|
| 9 |
+
#include <ATen/core/Reduction.h>
|
| 10 |
+
|
| 11 |
+
// Forward declarations of any types needed in the operator signatures.
|
| 12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
| 13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
| 14 |
+
#include <ATen/core/ATen_fwd.h>
|
| 15 |
+
|
| 16 |
+
namespace at {
|
| 17 |
+
|
| 18 |
+
namespace cpu {
|
| 19 |
+
|
| 20 |
+
TORCH_API at::Tensor & _index_put_impl_(at::Tensor & self, const c10::List<::std::optional<at::Tensor>> & indices, const at::Tensor & values, bool accumulate=false, bool unsafe=false);
|
| 21 |
+
|
| 22 |
+
} // namespace cpu
|
| 23 |
+
} // namespace at
|
lib/python3.10/site-packages/torch/include/ATen/ops/_log_softmax_backward_data_cpu_dispatch.h
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#pragma once
|
| 2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
| 3 |
+
|
| 4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
| 5 |
+
|
| 6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
| 7 |
+
#include <c10/core/MemoryFormat.h>
|
| 8 |
+
#include <c10/core/Scalar.h>
|
| 9 |
+
#include <ATen/core/Reduction.h>
|
| 10 |
+
|
| 11 |
+
// Forward declarations of any types needed in the operator signatures.
|
| 12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
| 13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
| 14 |
+
#include <ATen/core/ATen_fwd.h>
|
| 15 |
+
|
| 16 |
+
namespace at {
|
| 17 |
+
|
| 18 |
+
namespace cpu {
|
| 19 |
+
|
| 20 |
+
TORCH_API at::Tensor _log_softmax_backward_data(const at::Tensor & grad_output, const at::Tensor & output, int64_t dim, at::ScalarType input_dtype);
|
| 21 |
+
TORCH_API at::Tensor & _log_softmax_backward_data_out(at::Tensor & out, const at::Tensor & grad_output, const at::Tensor & output, int64_t dim, at::ScalarType input_dtype);
|
| 22 |
+
TORCH_API at::Tensor & _log_softmax_backward_data_outf(const at::Tensor & grad_output, const at::Tensor & output, int64_t dim, at::ScalarType input_dtype, at::Tensor & out);
|
| 23 |
+
|
| 24 |
+
} // namespace cpu
|
| 25 |
+
} // namespace at
|
lib/python3.10/site-packages/torch/include/ATen/ops/_nested_get_values_ops.h
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#pragma once
|
| 2 |
+
|
| 3 |
+
// @generated by torchgen/gen.py from Operator.h
|
| 4 |
+
|
| 5 |
+
#include <tuple>
|
| 6 |
+
#include <vector>
|
| 7 |
+
|
| 8 |
+
// Forward declarations of any types needed in the operator signatures.
|
| 9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
| 10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
| 11 |
+
#include <ATen/core/ATen_fwd.h>
|
| 12 |
+
|
| 13 |
+
namespace at {
|
| 14 |
+
namespace _ops {
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
struct TORCH_API _nested_get_values {
|
| 18 |
+
using schema = at::Tensor (const at::Tensor &);
|
| 19 |
+
using ptr_schema = schema*;
|
| 20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
| 21 |
+
static constexpr const char* name = "aten::_nested_get_values";
|
| 22 |
+
static constexpr const char* overload_name = "";
|
| 23 |
+
static constexpr const char* schema_str = "_nested_get_values(Tensor(a) self) -> Tensor(a)";
|
| 24 |
+
static at::Tensor call(const at::Tensor & self);
|
| 25 |
+
static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self);
|
| 26 |
+
};
|
| 27 |
+
|
| 28 |
+
}} // namespace at::_ops
|
lib/python3.10/site-packages/torch/include/ATen/ops/_nested_view_from_buffer_cpu_dispatch.h
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#pragma once
|
| 2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
| 3 |
+
|
| 4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
| 5 |
+
|
| 6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
| 7 |
+
#include <c10/core/MemoryFormat.h>
|
| 8 |
+
#include <c10/core/Scalar.h>
|
| 9 |
+
#include <ATen/core/Reduction.h>
|
| 10 |
+
|
| 11 |
+
// Forward declarations of any types needed in the operator signatures.
|
| 12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
| 13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
| 14 |
+
#include <ATen/core/ATen_fwd.h>
|
| 15 |
+
|
| 16 |
+
namespace at {
|
| 17 |
+
|
| 18 |
+
namespace cpu {
|
| 19 |
+
|
| 20 |
+
TORCH_API at::Tensor _nested_view_from_buffer(const at::Tensor & self, const at::Tensor & nested_size, const at::Tensor & nested_strides, const at::Tensor & offsets);
|
| 21 |
+
|
| 22 |
+
} // namespace cpu
|
| 23 |
+
} // namespace at
|
lib/python3.10/site-packages/torch/include/ATen/ops/_nnpack_spatial_convolution.h
ADDED
|
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#pragma once
|
| 2 |
+
|
| 3 |
+
// @generated by torchgen/gen.py from Function.h
|
| 4 |
+
|
| 5 |
+
#include <ATen/Context.h>
|
| 6 |
+
#include <ATen/DeviceGuard.h>
|
| 7 |
+
#include <ATen/TensorUtils.h>
|
| 8 |
+
#include <ATen/TracerMode.h>
|
| 9 |
+
#include <ATen/core/Generator.h>
|
| 10 |
+
#include <ATen/core/Reduction.h>
|
| 11 |
+
#include <ATen/core/Tensor.h>
|
| 12 |
+
#include <c10/core/Scalar.h>
|
| 13 |
+
#include <c10/core/Storage.h>
|
| 14 |
+
#include <c10/core/TensorOptions.h>
|
| 15 |
+
#include <c10/util/Deprecated.h>
|
| 16 |
+
#include <optional>
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
#include <ATen/ops/_nnpack_spatial_convolution_ops.h>
|
| 21 |
+
|
| 22 |
+
namespace at {
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
// aten::_nnpack_spatial_convolution(Tensor input, Tensor weight, Tensor? bias, SymInt[2] padding, SymInt[2] stride=1) -> Tensor
|
| 26 |
+
inline at::Tensor _nnpack_spatial_convolution(const at::Tensor & input, const at::Tensor & weight, const ::std::optional<at::Tensor> & bias, at::IntArrayRef padding, at::IntArrayRef stride=1) {
|
| 27 |
+
return at::_ops::_nnpack_spatial_convolution::call(input, weight, bias, c10::fromIntArrayRefSlow(padding), c10::fromIntArrayRefSlow(stride));
|
| 28 |
+
}
|
| 29 |
+
namespace symint {
|
| 30 |
+
template <typename T, typename = std::enable_if_t<std::is_same_v<T, int64_t>>>
|
| 31 |
+
at::Tensor _nnpack_spatial_convolution(const at::Tensor & input, const at::Tensor & weight, const ::std::optional<at::Tensor> & bias, at::IntArrayRef padding, at::IntArrayRef stride=1) {
|
| 32 |
+
return at::_ops::_nnpack_spatial_convolution::call(input, weight, bias, c10::fromIntArrayRefSlow(padding), c10::fromIntArrayRefSlow(stride));
|
| 33 |
+
}
|
| 34 |
+
}
|
| 35 |
+
|
| 36 |
+
// aten::_nnpack_spatial_convolution(Tensor input, Tensor weight, Tensor? bias, SymInt[2] padding, SymInt[2] stride=1) -> Tensor
|
| 37 |
+
inline at::Tensor _nnpack_spatial_convolution_symint(const at::Tensor & input, const at::Tensor & weight, const ::std::optional<at::Tensor> & bias, c10::SymIntArrayRef padding, c10::SymIntArrayRef stride=c10::SymInt(1)) {
|
| 38 |
+
return at::_ops::_nnpack_spatial_convolution::call(input, weight, bias, padding, stride);
|
| 39 |
+
}
|
| 40 |
+
namespace symint {
|
| 41 |
+
template <typename T, typename = std::enable_if_t<std::is_same_v<T, c10::SymInt>>>
|
| 42 |
+
at::Tensor _nnpack_spatial_convolution(const at::Tensor & input, const at::Tensor & weight, const ::std::optional<at::Tensor> & bias, c10::SymIntArrayRef padding, c10::SymIntArrayRef stride=c10::SymInt(1)) {
|
| 43 |
+
return at::_ops::_nnpack_spatial_convolution::call(input, weight, bias, padding, stride);
|
| 44 |
+
}
|
| 45 |
+
}
|
| 46 |
+
|
| 47 |
+
// aten::_nnpack_spatial_convolution.out(Tensor input, Tensor weight, Tensor? bias, SymInt[2] padding, SymInt[2] stride=1, *, Tensor(a!) out) -> Tensor(a!)
|
| 48 |
+
inline at::Tensor & _nnpack_spatial_convolution_out(at::Tensor & out, const at::Tensor & input, const at::Tensor & weight, const ::std::optional<at::Tensor> & bias, at::IntArrayRef padding, at::IntArrayRef stride=1) {
|
| 49 |
+
return at::_ops::_nnpack_spatial_convolution_out::call(input, weight, bias, c10::fromIntArrayRefSlow(padding), c10::fromIntArrayRefSlow(stride), out);
|
| 50 |
+
}
|
| 51 |
+
namespace symint {
|
| 52 |
+
template <typename T, typename = std::enable_if_t<std::is_same_v<T, int64_t>>>
|
| 53 |
+
at::Tensor & _nnpack_spatial_convolution_out(at::Tensor & out, const at::Tensor & input, const at::Tensor & weight, const ::std::optional<at::Tensor> & bias, at::IntArrayRef padding, at::IntArrayRef stride=1) {
|
| 54 |
+
return at::_ops::_nnpack_spatial_convolution_out::call(input, weight, bias, c10::fromIntArrayRefSlow(padding), c10::fromIntArrayRefSlow(stride), out);
|
| 55 |
+
}
|
| 56 |
+
}
|
| 57 |
+
|
| 58 |
+
// aten::_nnpack_spatial_convolution.out(Tensor input, Tensor weight, Tensor? bias, SymInt[2] padding, SymInt[2] stride=1, *, Tensor(a!) out) -> Tensor(a!)
|
| 59 |
+
inline at::Tensor & _nnpack_spatial_convolution_outf(const at::Tensor & input, const at::Tensor & weight, const ::std::optional<at::Tensor> & bias, at::IntArrayRef padding, at::IntArrayRef stride, at::Tensor & out) {
|
| 60 |
+
return at::_ops::_nnpack_spatial_convolution_out::call(input, weight, bias, c10::fromIntArrayRefSlow(padding), c10::fromIntArrayRefSlow(stride), out);
|
| 61 |
+
}
|
| 62 |
+
namespace symint {
|
| 63 |
+
template <typename T, typename = std::enable_if_t<std::is_same_v<T, int64_t>>>
|
| 64 |
+
at::Tensor & _nnpack_spatial_convolution_outf(const at::Tensor & input, const at::Tensor & weight, const ::std::optional<at::Tensor> & bias, at::IntArrayRef padding, at::IntArrayRef stride, at::Tensor & out) {
|
| 65 |
+
return at::_ops::_nnpack_spatial_convolution_out::call(input, weight, bias, c10::fromIntArrayRefSlow(padding), c10::fromIntArrayRefSlow(stride), out);
|
| 66 |
+
}
|
| 67 |
+
}
|
| 68 |
+
|
| 69 |
+
// aten::_nnpack_spatial_convolution.out(Tensor input, Tensor weight, Tensor? bias, SymInt[2] padding, SymInt[2] stride=1, *, Tensor(a!) out) -> Tensor(a!)
|
| 70 |
+
inline at::Tensor & _nnpack_spatial_convolution_symint_out(at::Tensor & out, const at::Tensor & input, const at::Tensor & weight, const ::std::optional<at::Tensor> & bias, c10::SymIntArrayRef padding, c10::SymIntArrayRef stride=c10::SymInt(1)) {
|
| 71 |
+
return at::_ops::_nnpack_spatial_convolution_out::call(input, weight, bias, padding, stride, out);
|
| 72 |
+
}
|
| 73 |
+
namespace symint {
|
| 74 |
+
template <typename T, typename = std::enable_if_t<std::is_same_v<T, c10::SymInt>>>
|
| 75 |
+
at::Tensor & _nnpack_spatial_convolution_out(at::Tensor & out, const at::Tensor & input, const at::Tensor & weight, const ::std::optional<at::Tensor> & bias, c10::SymIntArrayRef padding, c10::SymIntArrayRef stride=c10::SymInt(1)) {
|
| 76 |
+
return at::_ops::_nnpack_spatial_convolution_out::call(input, weight, bias, padding, stride, out);
|
| 77 |
+
}
|
| 78 |
+
}
|
| 79 |
+
|
| 80 |
+
// aten::_nnpack_spatial_convolution.out(Tensor input, Tensor weight, Tensor? bias, SymInt[2] padding, SymInt[2] stride=1, *, Tensor(a!) out) -> Tensor(a!)
|
| 81 |
+
inline at::Tensor & _nnpack_spatial_convolution_symint_outf(const at::Tensor & input, const at::Tensor & weight, const ::std::optional<at::Tensor> & bias, c10::SymIntArrayRef padding, c10::SymIntArrayRef stride, at::Tensor & out) {
|
| 82 |
+
return at::_ops::_nnpack_spatial_convolution_out::call(input, weight, bias, padding, stride, out);
|
| 83 |
+
}
|
| 84 |
+
namespace symint {
|
| 85 |
+
template <typename T, typename = std::enable_if_t<std::is_same_v<T, c10::SymInt>>>
|
| 86 |
+
at::Tensor & _nnpack_spatial_convolution_outf(const at::Tensor & input, const at::Tensor & weight, const ::std::optional<at::Tensor> & bias, c10::SymIntArrayRef padding, c10::SymIntArrayRef stride, at::Tensor & out) {
|
| 87 |
+
return at::_ops::_nnpack_spatial_convolution_out::call(input, weight, bias, padding, stride, out);
|
| 88 |
+
}
|
| 89 |
+
}
|
| 90 |
+
|
| 91 |
+
}
|
lib/python3.10/site-packages/torch/include/ATen/ops/_pad_circular_native.h
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#pragma once
|
| 2 |
+
|
| 3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
| 4 |
+
|
| 5 |
+
#include <c10/core/Scalar.h>
|
| 6 |
+
#include <c10/core/Storage.h>
|
| 7 |
+
#include <c10/core/TensorOptions.h>
|
| 8 |
+
#include <c10/util/Deprecated.h>
|
| 9 |
+
#include <optional>
|
| 10 |
+
#include <c10/core/QScheme.h>
|
| 11 |
+
#include <ATen/core/Reduction.h>
|
| 12 |
+
#include <ATen/core/Tensor.h>
|
| 13 |
+
#include <tuple>
|
| 14 |
+
#include <vector>
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
namespace at {
|
| 18 |
+
namespace native {
|
| 19 |
+
TORCH_API at::Tensor _pad_circular_symint(const at::Tensor & self, c10::SymIntArrayRef pad);
|
| 20 |
+
} // namespace native
|
| 21 |
+
} // namespace at
|
lib/python3.10/site-packages/torch/include/ATen/ops/_prelu_kernel_cuda_dispatch.h
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#pragma once
|
| 2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
| 3 |
+
|
| 4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
| 5 |
+
|
| 6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
| 7 |
+
#include <c10/core/MemoryFormat.h>
|
| 8 |
+
#include <c10/core/Scalar.h>
|
| 9 |
+
#include <ATen/core/Reduction.h>
|
| 10 |
+
|
| 11 |
+
// Forward declarations of any types needed in the operator signatures.
|
| 12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
| 13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
| 14 |
+
#include <ATen/core/ATen_fwd.h>
|
| 15 |
+
|
| 16 |
+
namespace at {
|
| 17 |
+
|
| 18 |
+
namespace cuda {
|
| 19 |
+
|
| 20 |
+
TORCH_API at::Tensor _prelu_kernel(const at::Tensor & self, const at::Tensor & weight);
|
| 21 |
+
|
| 22 |
+
} // namespace cuda
|
| 23 |
+
} // namespace at
|
lib/python3.10/site-packages/torch/include/ATen/ops/_print_ops.h
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#pragma once
|
| 2 |
+
|
| 3 |
+
// @generated by torchgen/gen.py from Operator.h
|
| 4 |
+
|
| 5 |
+
#include <tuple>
|
| 6 |
+
#include <vector>
|
| 7 |
+
|
| 8 |
+
// Forward declarations of any types needed in the operator signatures.
|
| 9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
| 10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
| 11 |
+
#include <ATen/core/ATen_fwd.h>
|
| 12 |
+
|
| 13 |
+
namespace at {
|
| 14 |
+
namespace _ops {
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
struct TORCH_API _print {
|
| 18 |
+
using schema = void (c10::string_view);
|
| 19 |
+
using ptr_schema = schema*;
|
| 20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
| 21 |
+
static constexpr const char* name = "aten::_print";
|
| 22 |
+
static constexpr const char* overload_name = "";
|
| 23 |
+
static constexpr const char* schema_str = "_print(str s) -> ()";
|
| 24 |
+
static void call(c10::string_view s);
|
| 25 |
+
static void redispatch(c10::DispatchKeySet dispatchKeySet, c10::string_view s);
|
| 26 |
+
};
|
| 27 |
+
|
| 28 |
+
}} // namespace at::_ops
|
lib/python3.10/site-packages/torch/include/ATen/ops/_scaled_dot_product_attention_math_ops.h
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#pragma once
|
| 2 |
+
|
| 3 |
+
// @generated by torchgen/gen.py from Operator.h
|
| 4 |
+
|
| 5 |
+
#include <tuple>
|
| 6 |
+
#include <vector>
|
| 7 |
+
|
| 8 |
+
// Forward declarations of any types needed in the operator signatures.
|
| 9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
| 10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
| 11 |
+
#include <ATen/core/ATen_fwd.h>
|
| 12 |
+
|
| 13 |
+
namespace at {
|
| 14 |
+
namespace _ops {
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
struct TORCH_API _scaled_dot_product_attention_math {
|
| 18 |
+
using schema = ::std::tuple<at::Tensor,at::Tensor> (const at::Tensor &, const at::Tensor &, const at::Tensor &, const ::std::optional<at::Tensor> &, double, bool, const ::std::optional<at::Tensor> &, ::std::optional<double>, bool);
|
| 19 |
+
using ptr_schema = schema*;
|
| 20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
| 21 |
+
static constexpr const char* name = "aten::_scaled_dot_product_attention_math";
|
| 22 |
+
static constexpr const char* overload_name = "";
|
| 23 |
+
static constexpr const char* schema_str = "_scaled_dot_product_attention_math(Tensor query, Tensor key, Tensor value, Tensor? attn_mask=None, float dropout_p=0.0, bool is_causal=False, Tensor? dropout_mask=None, *, float? scale=None, bool enable_gqa=False) -> (Tensor, Tensor)";
|
| 24 |
+
static ::std::tuple<at::Tensor,at::Tensor> call(const at::Tensor & query, const at::Tensor & key, const at::Tensor & value, const ::std::optional<at::Tensor> & attn_mask, double dropout_p, bool is_causal, const ::std::optional<at::Tensor> & dropout_mask, ::std::optional<double> scale, bool enable_gqa);
|
| 25 |
+
static ::std::tuple<at::Tensor,at::Tensor> redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & query, const at::Tensor & key, const at::Tensor & value, const ::std::optional<at::Tensor> & attn_mask, double dropout_p, bool is_causal, const ::std::optional<at::Tensor> & dropout_mask, ::std::optional<double> scale, bool enable_gqa);
|
| 26 |
+
};
|
| 27 |
+
|
| 28 |
+
}} // namespace at::_ops
|
lib/python3.10/site-packages/torch/include/ATen/ops/_scaled_dot_product_flash_attention_ops.h
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#pragma once
|
| 2 |
+
|
| 3 |
+
// @generated by torchgen/gen.py from Operator.h
|
| 4 |
+
|
| 5 |
+
#include <tuple>
|
| 6 |
+
#include <vector>
|
| 7 |
+
|
| 8 |
+
// Forward declarations of any types needed in the operator signatures.
|
| 9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
| 10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
| 11 |
+
#include <ATen/core/ATen_fwd.h>
|
| 12 |
+
|
| 13 |
+
namespace at {
|
| 14 |
+
namespace _ops {
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
struct TORCH_API _scaled_dot_product_flash_attention {
|
| 18 |
+
using schema = ::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor,c10::SymInt,c10::SymInt,at::Tensor,at::Tensor,at::Tensor> (const at::Tensor &, const at::Tensor &, const at::Tensor &, double, bool, bool, ::std::optional<double>);
|
| 19 |
+
using ptr_schema = schema*;
|
| 20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
| 21 |
+
static constexpr const char* name = "aten::_scaled_dot_product_flash_attention";
|
| 22 |
+
static constexpr const char* overload_name = "";
|
| 23 |
+
static constexpr const char* schema_str = "_scaled_dot_product_flash_attention(Tensor query, Tensor key, Tensor value, float dropout_p=0.0, bool is_causal=False, bool return_debug_mask=False, *, float? scale=None) -> (Tensor output, Tensor logsumexp, Tensor cum_seq_q, Tensor cum_seq_k, SymInt max_q, SymInt max_k, Tensor philox_seed, Tensor philox_offset, Tensor debug_attn_mask)";
|
| 24 |
+
static ::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor,c10::SymInt,c10::SymInt,at::Tensor,at::Tensor,at::Tensor> call(const at::Tensor & query, const at::Tensor & key, const at::Tensor & value, double dropout_p, bool is_causal, bool return_debug_mask, ::std::optional<double> scale);
|
| 25 |
+
static ::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor,c10::SymInt,c10::SymInt,at::Tensor,at::Tensor,at::Tensor> redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & query, const at::Tensor & key, const at::Tensor & value, double dropout_p, bool is_causal, bool return_debug_mask, ::std::optional<double> scale);
|
| 26 |
+
};
|
| 27 |
+
|
| 28 |
+
}} // namespace at::_ops
|
lib/python3.10/site-packages/torch/include/ATen/ops/_sparse_log_softmax_ops.h
ADDED
|
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#pragma once
|
| 2 |
+
|
| 3 |
+
// @generated by torchgen/gen.py from Operator.h
|
| 4 |
+
|
| 5 |
+
#include <tuple>
|
| 6 |
+
#include <vector>
|
| 7 |
+
|
| 8 |
+
// Forward declarations of any types needed in the operator signatures.
|
| 9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
| 10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
| 11 |
+
#include <ATen/core/ATen_fwd.h>
|
| 12 |
+
|
| 13 |
+
namespace at {
|
| 14 |
+
namespace _ops {
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
struct TORCH_API _sparse_log_softmax_int {
|
| 18 |
+
using schema = at::Tensor (const at::Tensor &, int64_t, ::std::optional<at::ScalarType>);
|
| 19 |
+
using ptr_schema = schema*;
|
| 20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
| 21 |
+
static constexpr const char* name = "aten::_sparse_log_softmax";
|
| 22 |
+
static constexpr const char* overload_name = "int";
|
| 23 |
+
static constexpr const char* schema_str = "_sparse_log_softmax.int(Tensor self, int dim, ScalarType? dtype=None) -> Tensor";
|
| 24 |
+
static at::Tensor call(const at::Tensor & self, int64_t dim, ::std::optional<at::ScalarType> dtype);
|
| 25 |
+
static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, int64_t dim, ::std::optional<at::ScalarType> dtype);
|
| 26 |
+
};
|
| 27 |
+
|
| 28 |
+
struct TORCH_API _sparse_log_softmax_Dimname {
|
| 29 |
+
using schema = at::Tensor (const at::Tensor &, at::Dimname, ::std::optional<at::ScalarType>);
|
| 30 |
+
using ptr_schema = schema*;
|
| 31 |
+
// See Note [static constexpr char* members for windows NVCC]
|
| 32 |
+
static constexpr const char* name = "aten::_sparse_log_softmax";
|
| 33 |
+
static constexpr const char* overload_name = "Dimname";
|
| 34 |
+
static constexpr const char* schema_str = "_sparse_log_softmax.Dimname(Tensor self, Dimname dim, *, ScalarType? dtype=None) -> Tensor";
|
| 35 |
+
static at::Tensor call(const at::Tensor & self, at::Dimname dim, ::std::optional<at::ScalarType> dtype);
|
| 36 |
+
static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, at::Dimname dim, ::std::optional<at::ScalarType> dtype);
|
| 37 |
+
};
|
| 38 |
+
|
| 39 |
+
struct TORCH_API _sparse_log_softmax {
|
| 40 |
+
using schema = at::Tensor (const at::Tensor &, int64_t, bool);
|
| 41 |
+
using ptr_schema = schema*;
|
| 42 |
+
// See Note [static constexpr char* members for windows NVCC]
|
| 43 |
+
static constexpr const char* name = "aten::_sparse_log_softmax";
|
| 44 |
+
static constexpr const char* overload_name = "";
|
| 45 |
+
static constexpr const char* schema_str = "_sparse_log_softmax(Tensor self, int dim, bool half_to_float) -> Tensor";
|
| 46 |
+
static at::Tensor call(const at::Tensor & self, int64_t dim, bool half_to_float);
|
| 47 |
+
static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, int64_t dim, bool half_to_float);
|
| 48 |
+
};
|
| 49 |
+
|
| 50 |
+
struct TORCH_API _sparse_log_softmax_out {
|
| 51 |
+
using schema = at::Tensor & (const at::Tensor &, int64_t, bool, at::Tensor &);
|
| 52 |
+
using ptr_schema = schema*;
|
| 53 |
+
// See Note [static constexpr char* members for windows NVCC]
|
| 54 |
+
static constexpr const char* name = "aten::_sparse_log_softmax";
|
| 55 |
+
static constexpr const char* overload_name = "out";
|
| 56 |
+
static constexpr const char* schema_str = "_sparse_log_softmax.out(Tensor self, int dim, bool half_to_float, *, Tensor(a!) out) -> Tensor(a!)";
|
| 57 |
+
static at::Tensor & call(const at::Tensor & self, int64_t dim, bool half_to_float, at::Tensor & out);
|
| 58 |
+
static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, int64_t dim, bool half_to_float, at::Tensor & out);
|
| 59 |
+
};
|
| 60 |
+
|
| 61 |
+
}} // namespace at::_ops
|
lib/python3.10/site-packages/torch/include/ATen/ops/_test_ambiguous_defaults_ops.h
ADDED
|
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#pragma once
|
| 2 |
+
|
| 3 |
+
// @generated by torchgen/gen.py from Operator.h
|
| 4 |
+
|
| 5 |
+
#include <tuple>
|
| 6 |
+
#include <vector>
|
| 7 |
+
|
| 8 |
+
// Forward declarations of any types needed in the operator signatures.
|
| 9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
| 10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
| 11 |
+
#include <ATen/core/ATen_fwd.h>
|
| 12 |
+
|
| 13 |
+
namespace at {
|
| 14 |
+
namespace _ops {
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
struct TORCH_API _test_ambiguous_defaults_a {
|
| 18 |
+
using schema = at::Tensor (const at::Tensor &, int64_t, int64_t);
|
| 19 |
+
using ptr_schema = schema*;
|
| 20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
| 21 |
+
static constexpr const char* name = "aten::_test_ambiguous_defaults";
|
| 22 |
+
static constexpr const char* overload_name = "a";
|
| 23 |
+
static constexpr const char* schema_str = "_test_ambiguous_defaults.a(Tensor dummy, int a=1, int b=1) -> Tensor";
|
| 24 |
+
static at::Tensor call(const at::Tensor & dummy, int64_t a, int64_t b);
|
| 25 |
+
static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & dummy, int64_t a, int64_t b);
|
| 26 |
+
};
|
| 27 |
+
|
| 28 |
+
struct TORCH_API _test_ambiguous_defaults_b {
|
| 29 |
+
using schema = at::Tensor (const at::Tensor &, int64_t, c10::string_view);
|
| 30 |
+
using ptr_schema = schema*;
|
| 31 |
+
// See Note [static constexpr char* members for windows NVCC]
|
| 32 |
+
static constexpr const char* name = "aten::_test_ambiguous_defaults";
|
| 33 |
+
static constexpr const char* overload_name = "b";
|
| 34 |
+
static constexpr const char* schema_str = "_test_ambiguous_defaults.b(Tensor dummy, int a=2, str b=\"2\") -> Tensor";
|
| 35 |
+
static at::Tensor call(const at::Tensor & dummy, int64_t a, c10::string_view b);
|
| 36 |
+
static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & dummy, int64_t a, c10::string_view b);
|
| 37 |
+
};
|
| 38 |
+
|
| 39 |
+
}} // namespace at::_ops
|
lib/python3.10/site-packages/torch/include/ATen/ops/_upsample_nearest_exact1d_backward_native.h
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#pragma once
|
| 2 |
+
|
| 3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
| 4 |
+
|
| 5 |
+
#include <c10/core/Scalar.h>
|
| 6 |
+
#include <c10/core/Storage.h>
|
| 7 |
+
#include <c10/core/TensorOptions.h>
|
| 8 |
+
#include <c10/util/Deprecated.h>
|
| 9 |
+
#include <optional>
|
| 10 |
+
#include <c10/core/QScheme.h>
|
| 11 |
+
#include <ATen/core/Reduction.h>
|
| 12 |
+
#include <ATen/core/Tensor.h>
|
| 13 |
+
#include <tuple>
|
| 14 |
+
#include <vector>
|
| 15 |
+
#include <ATen/ops/_upsample_nearest_exact1d_backward_meta.h>
|
| 16 |
+
|
| 17 |
+
namespace at {
|
| 18 |
+
namespace native {
|
| 19 |
+
struct TORCH_API structured__upsample_nearest_exact1d_backward_out_cpu : public at::meta::structured__upsample_nearest_exact1d_backward {
|
| 20 |
+
void impl(const at::Tensor & grad_output, at::ArrayRef<int64_t> output_size, at::ArrayRef<int64_t> input_size, ::std::optional<double> scales, const at::Tensor & grad_input);
|
| 21 |
+
};
|
| 22 |
+
struct TORCH_API structured__upsample_nearest_exact1d_backward_out_cuda : public at::meta::structured__upsample_nearest_exact1d_backward {
|
| 23 |
+
void impl(const at::Tensor & grad_output, at::ArrayRef<int64_t> output_size, at::ArrayRef<int64_t> input_size, ::std::optional<double> scales, const at::Tensor & grad_input);
|
| 24 |
+
};
|
| 25 |
+
} // namespace native
|
| 26 |
+
} // namespace at
|
lib/python3.10/site-packages/torch/include/ATen/ops/addbmm_meta_dispatch.h
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#pragma once
|
| 2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
| 3 |
+
|
| 4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
| 5 |
+
|
| 6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
| 7 |
+
#include <c10/core/MemoryFormat.h>
|
| 8 |
+
#include <c10/core/Scalar.h>
|
| 9 |
+
#include <ATen/core/Reduction.h>
|
| 10 |
+
|
| 11 |
+
// Forward declarations of any types needed in the operator signatures.
|
| 12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
| 13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
| 14 |
+
#include <ATen/core/ATen_fwd.h>
|
| 15 |
+
|
| 16 |
+
namespace at {
|
| 17 |
+
|
| 18 |
+
namespace meta {
|
| 19 |
+
|
| 20 |
+
TORCH_API at::Tensor & addbmm_(at::Tensor & self, const at::Tensor & batch1, const at::Tensor & batch2, const at::Scalar & beta=1, const at::Scalar & alpha=1);
|
| 21 |
+
|
| 22 |
+
} // namespace meta
|
| 23 |
+
} // namespace at
|
lib/python3.10/site-packages/torch/include/ATen/ops/addcmul_meta_dispatch.h
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#pragma once
|
| 2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
| 3 |
+
|
| 4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
| 5 |
+
|
| 6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
| 7 |
+
#include <c10/core/MemoryFormat.h>
|
| 8 |
+
#include <c10/core/Scalar.h>
|
| 9 |
+
#include <ATen/core/Reduction.h>
|
| 10 |
+
|
| 11 |
+
// Forward declarations of any types needed in the operator signatures.
|
| 12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
| 13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
| 14 |
+
#include <ATen/core/ATen_fwd.h>
|
| 15 |
+
|
| 16 |
+
namespace at {
|
| 17 |
+
|
| 18 |
+
namespace meta {
|
| 19 |
+
|
| 20 |
+
TORCH_API at::Tensor addcmul(const at::Tensor & self, const at::Tensor & tensor1, const at::Tensor & tensor2, const at::Scalar & value=1);
|
| 21 |
+
TORCH_API at::Tensor & addcmul_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & tensor1, const at::Tensor & tensor2, const at::Scalar & value=1);
|
| 22 |
+
TORCH_API at::Tensor & addcmul_outf(const at::Tensor & self, const at::Tensor & tensor1, const at::Tensor & tensor2, const at::Scalar & value, at::Tensor & out);
|
| 23 |
+
TORCH_API at::Tensor & addcmul_(at::Tensor & self, const at::Tensor & tensor1, const at::Tensor & tensor2, const at::Scalar & value=1);
|
| 24 |
+
|
| 25 |
+
} // namespace meta
|
| 26 |
+
} // namespace at
|
lib/python3.10/site-packages/torch/include/ATen/ops/all_native.h
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#pragma once
|
| 2 |
+
|
| 3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
| 4 |
+
|
| 5 |
+
#include <c10/core/Scalar.h>
|
| 6 |
+
#include <c10/core/Storage.h>
|
| 7 |
+
#include <c10/core/TensorOptions.h>
|
| 8 |
+
#include <c10/util/Deprecated.h>
|
| 9 |
+
#include <optional>
|
| 10 |
+
#include <c10/core/QScheme.h>
|
| 11 |
+
#include <ATen/core/Reduction.h>
|
| 12 |
+
#include <ATen/core/Tensor.h>
|
| 13 |
+
#include <tuple>
|
| 14 |
+
#include <vector>
|
| 15 |
+
#include <ATen/ops/all_meta.h>
|
| 16 |
+
|
| 17 |
+
namespace at {
|
| 18 |
+
namespace native {
|
| 19 |
+
struct TORCH_API structured_all_out : public at::meta::structured_all_dim {
|
| 20 |
+
void impl(const at::Tensor & self, int64_t dim, bool keepdim, const at::Tensor & out);
|
| 21 |
+
};
|
| 22 |
+
TORCH_API at::Tensor NestedTensor_all(const at::Tensor & self, int64_t dim, bool keepdim=false);
|
| 23 |
+
TORCH_API at::Tensor all_dims_default(const at::Tensor & self, at::OptionalIntArrayRef dim=::std::nullopt, bool keepdim=false);
|
| 24 |
+
TORCH_API at::Tensor & all_dims_out_default(const at::Tensor & self, at::OptionalIntArrayRef dim, bool keepdim, at::Tensor & out);
|
| 25 |
+
struct TORCH_API structured_all_dims_out : public at::meta::structured_all_dims {
|
| 26 |
+
void impl(const at::Tensor & self, at::OptionalIntArrayRef dim, bool keepdim, const at::Tensor & out);
|
| 27 |
+
};
|
| 28 |
+
TORCH_API at::Tensor all(const at::Tensor & self, at::Dimname dim, bool keepdim=false);
|
| 29 |
+
TORCH_API at::Tensor & all_out(const at::Tensor & self, at::Dimname dim, bool keepdim, at::Tensor & out);
|
| 30 |
+
struct TORCH_API structured_all_all_out : public at::meta::structured_all {
|
| 31 |
+
void impl(const at::Tensor & self, const at::Tensor & out);
|
| 32 |
+
};
|
| 33 |
+
} // namespace native
|
| 34 |
+
} // namespace at
|
lib/python3.10/site-packages/torch/include/ATen/ops/batch_norm_backward.h
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#pragma once
|
| 2 |
+
|
| 3 |
+
// @generated by torchgen/gen.py from Function.h
|
| 4 |
+
|
| 5 |
+
#include <ATen/Context.h>
|
| 6 |
+
#include <ATen/DeviceGuard.h>
|
| 7 |
+
#include <ATen/TensorUtils.h>
|
| 8 |
+
#include <ATen/TracerMode.h>
|
| 9 |
+
#include <ATen/core/Generator.h>
|
| 10 |
+
#include <ATen/core/Reduction.h>
|
| 11 |
+
#include <ATen/core/Tensor.h>
|
| 12 |
+
#include <c10/core/Scalar.h>
|
| 13 |
+
#include <c10/core/Storage.h>
|
| 14 |
+
#include <c10/core/TensorOptions.h>
|
| 15 |
+
#include <c10/util/Deprecated.h>
|
| 16 |
+
#include <optional>
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
#include <ATen/ops/batch_norm_backward_ops.h>
|
| 21 |
+
|
| 22 |
+
namespace at {
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
// aten::batch_norm_backward(Tensor grad_out, Tensor input, Tensor weight, Tensor? running_mean, Tensor? running_var, Tensor? save_mean, Tensor? save_var, bool update, float eps, bool[3] output_mask, Tensor reserve) -> (Tensor, Tensor, Tensor)
|
| 26 |
+
inline ::std::tuple<at::Tensor,at::Tensor,at::Tensor> batch_norm_backward(const at::Tensor & grad_out, const at::Tensor & input, const at::Tensor & weight, const ::std::optional<at::Tensor> & running_mean, const ::std::optional<at::Tensor> & running_var, const ::std::optional<at::Tensor> & save_mean, const ::std::optional<at::Tensor> & save_var, bool update, double eps, ::std::array<bool,3> output_mask, const at::Tensor & reserve) {
|
| 27 |
+
return at::_ops::batch_norm_backward::call(grad_out, input, weight, running_mean, running_var, save_mean, save_var, update, eps, output_mask, reserve);
|
| 28 |
+
}
|
| 29 |
+
|
| 30 |
+
}
|
lib/python3.10/site-packages/torch/include/ATen/ops/binary_cross_entropy_with_logits_ops.h
ADDED
|
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#pragma once
|
| 2 |
+
|
| 3 |
+
// @generated by torchgen/gen.py from Operator.h
|
| 4 |
+
|
| 5 |
+
#include <tuple>
|
| 6 |
+
#include <vector>
|
| 7 |
+
|
| 8 |
+
// Forward declarations of any types needed in the operator signatures.
|
| 9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
| 10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
| 11 |
+
#include <ATen/core/ATen_fwd.h>
|
| 12 |
+
|
| 13 |
+
namespace at {
|
| 14 |
+
namespace _ops {
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
struct TORCH_API binary_cross_entropy_with_logits {
|
| 18 |
+
using schema = at::Tensor (const at::Tensor &, const at::Tensor &, const ::std::optional<at::Tensor> &, const ::std::optional<at::Tensor> &, int64_t);
|
| 19 |
+
using ptr_schema = schema*;
|
| 20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
| 21 |
+
static constexpr const char* name = "aten::binary_cross_entropy_with_logits";
|
| 22 |
+
static constexpr const char* overload_name = "";
|
| 23 |
+
static constexpr const char* schema_str = "binary_cross_entropy_with_logits(Tensor self, Tensor target, Tensor? weight=None, Tensor? pos_weight=None, int reduction=Mean) -> Tensor";
|
| 24 |
+
static at::Tensor call(const at::Tensor & self, const at::Tensor & target, const ::std::optional<at::Tensor> & weight, const ::std::optional<at::Tensor> & pos_weight, int64_t reduction);
|
| 25 |
+
static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Tensor & target, const ::std::optional<at::Tensor> & weight, const ::std::optional<at::Tensor> & pos_weight, int64_t reduction);
|
| 26 |
+
};
|
| 27 |
+
|
| 28 |
+
struct TORCH_API binary_cross_entropy_with_logits_out {
|
| 29 |
+
using schema = at::Tensor & (const at::Tensor &, const at::Tensor &, const ::std::optional<at::Tensor> &, const ::std::optional<at::Tensor> &, int64_t, at::Tensor &);
|
| 30 |
+
using ptr_schema = schema*;
|
| 31 |
+
// See Note [static constexpr char* members for windows NVCC]
|
| 32 |
+
static constexpr const char* name = "aten::binary_cross_entropy_with_logits";
|
| 33 |
+
static constexpr const char* overload_name = "out";
|
| 34 |
+
static constexpr const char* schema_str = "binary_cross_entropy_with_logits.out(Tensor self, Tensor target, Tensor? weight=None, Tensor? pos_weight=None, int reduction=Mean, *, Tensor(a!) out) -> Tensor(a!)";
|
| 35 |
+
static at::Tensor & call(const at::Tensor & self, const at::Tensor & target, const ::std::optional<at::Tensor> & weight, const ::std::optional<at::Tensor> & pos_weight, int64_t reduction, at::Tensor & out);
|
| 36 |
+
static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Tensor & target, const ::std::optional<at::Tensor> & weight, const ::std::optional<at::Tensor> & pos_weight, int64_t reduction, at::Tensor & out);
|
| 37 |
+
};
|
| 38 |
+
|
| 39 |
+
}} // namespace at::_ops
|
lib/python3.10/site-packages/torch/include/ATen/ops/conv_tbc_backward.h
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#pragma once
|
| 2 |
+
|
| 3 |
+
// @generated by torchgen/gen.py from Function.h
|
| 4 |
+
|
| 5 |
+
#include <ATen/Context.h>
|
| 6 |
+
#include <ATen/DeviceGuard.h>
|
| 7 |
+
#include <ATen/TensorUtils.h>
|
| 8 |
+
#include <ATen/TracerMode.h>
|
| 9 |
+
#include <ATen/core/Generator.h>
|
| 10 |
+
#include <ATen/core/Reduction.h>
|
| 11 |
+
#include <ATen/core/Tensor.h>
|
| 12 |
+
#include <c10/core/Scalar.h>
|
| 13 |
+
#include <c10/core/Storage.h>
|
| 14 |
+
#include <c10/core/TensorOptions.h>
|
| 15 |
+
#include <c10/util/Deprecated.h>
|
| 16 |
+
#include <optional>
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
#include <ATen/ops/conv_tbc_backward_ops.h>
|
| 21 |
+
|
| 22 |
+
namespace at {
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
// aten::conv_tbc_backward(Tensor self, Tensor input, Tensor weight, Tensor bias, int pad) -> (Tensor, Tensor, Tensor)
|
| 26 |
+
inline ::std::tuple<at::Tensor,at::Tensor,at::Tensor> conv_tbc_backward(const at::Tensor & self, const at::Tensor & input, const at::Tensor & weight, const at::Tensor & bias, int64_t pad) {
|
| 27 |
+
return at::_ops::conv_tbc_backward::call(self, input, weight, bias, pad);
|
| 28 |
+
}
|
| 29 |
+
|
| 30 |
+
}
|
lib/python3.10/site-packages/torch/include/ATen/ops/detach_copy_compositeexplicitautograd_dispatch.h
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#pragma once
|
| 2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
| 3 |
+
|
| 4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
| 5 |
+
|
| 6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
| 7 |
+
#include <c10/core/MemoryFormat.h>
|
| 8 |
+
#include <c10/core/Scalar.h>
|
| 9 |
+
#include <ATen/core/Reduction.h>
|
| 10 |
+
|
| 11 |
+
// Forward declarations of any types needed in the operator signatures.
|
| 12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
| 13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
| 14 |
+
#include <ATen/core/ATen_fwd.h>
|
| 15 |
+
|
| 16 |
+
namespace at {
|
| 17 |
+
|
| 18 |
+
namespace compositeexplicitautograd {
|
| 19 |
+
|
| 20 |
+
TORCH_API at::Tensor & detach_copy_out(at::Tensor & out, const at::Tensor & self);
|
| 21 |
+
TORCH_API at::Tensor & detach_copy_outf(const at::Tensor & self, at::Tensor & out);
|
| 22 |
+
|
| 23 |
+
} // namespace compositeexplicitautograd
|
| 24 |
+
} // namespace at
|
lib/python3.10/site-packages/torch/include/ATen/ops/diagonal_compositeexplicitautograd_dispatch.h
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#pragma once
|
| 2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
| 3 |
+
|
| 4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
| 5 |
+
|
| 6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
| 7 |
+
#include <c10/core/MemoryFormat.h>
|
| 8 |
+
#include <c10/core/Scalar.h>
|
| 9 |
+
#include <ATen/core/Reduction.h>
|
| 10 |
+
|
| 11 |
+
// Forward declarations of any types needed in the operator signatures.
|
| 12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
| 13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
| 14 |
+
#include <ATen/core/ATen_fwd.h>
|
| 15 |
+
|
| 16 |
+
namespace at {
|
| 17 |
+
|
| 18 |
+
namespace compositeexplicitautograd {
|
| 19 |
+
|
| 20 |
+
TORCH_API at::Tensor diagonal(const at::Tensor & self, int64_t offset=0, int64_t dim1=0, int64_t dim2=1);
|
| 21 |
+
|
| 22 |
+
} // namespace compositeexplicitautograd
|
| 23 |
+
} // namespace at
|
lib/python3.10/site-packages/torch/include/ATen/ops/digamma_native.h
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#pragma once
|
| 2 |
+
|
| 3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
| 4 |
+
|
| 5 |
+
#include <c10/core/Scalar.h>
|
| 6 |
+
#include <c10/core/Storage.h>
|
| 7 |
+
#include <c10/core/TensorOptions.h>
|
| 8 |
+
#include <c10/util/Deprecated.h>
|
| 9 |
+
#include <optional>
|
| 10 |
+
#include <c10/core/QScheme.h>
|
| 11 |
+
#include <ATen/core/Reduction.h>
|
| 12 |
+
#include <ATen/core/Tensor.h>
|
| 13 |
+
#include <tuple>
|
| 14 |
+
#include <vector>
|
| 15 |
+
#include <ATen/ops/digamma_meta.h>
|
| 16 |
+
|
| 17 |
+
namespace at {
|
| 18 |
+
namespace native {
|
| 19 |
+
struct TORCH_API structured_digamma_out : public at::meta::structured_digamma {
|
| 20 |
+
void impl(const at::Tensor & self, const at::Tensor & out);
|
| 21 |
+
};
|
| 22 |
+
} // namespace native
|
| 23 |
+
} // namespace at
|
lib/python3.10/site-packages/torch/include/ATen/ops/div_ops.h
ADDED
|
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#pragma once
|
| 2 |
+
|
| 3 |
+
// @generated by torchgen/gen.py from Operator.h
|
| 4 |
+
|
| 5 |
+
#include <tuple>
|
| 6 |
+
#include <vector>
|
| 7 |
+
|
| 8 |
+
// Forward declarations of any types needed in the operator signatures.
|
| 9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
| 10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
| 11 |
+
#include <ATen/core/ATen_fwd.h>
|
| 12 |
+
|
| 13 |
+
namespace at {
|
| 14 |
+
namespace _ops {
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
struct TORCH_API div_Tensor {
|
| 18 |
+
using schema = at::Tensor (const at::Tensor &, const at::Tensor &);
|
| 19 |
+
using ptr_schema = schema*;
|
| 20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
| 21 |
+
static constexpr const char* name = "aten::div";
|
| 22 |
+
static constexpr const char* overload_name = "Tensor";
|
| 23 |
+
static constexpr const char* schema_str = "div.Tensor(Tensor self, Tensor other) -> Tensor";
|
| 24 |
+
static at::Tensor call(const at::Tensor & self, const at::Tensor & other);
|
| 25 |
+
static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Tensor & other);
|
| 26 |
+
};
|
| 27 |
+
|
| 28 |
+
struct TORCH_API div__Tensor {
|
| 29 |
+
using schema = at::Tensor & (at::Tensor &, const at::Tensor &);
|
| 30 |
+
using ptr_schema = schema*;
|
| 31 |
+
// See Note [static constexpr char* members for windows NVCC]
|
| 32 |
+
static constexpr const char* name = "aten::div_";
|
| 33 |
+
static constexpr const char* overload_name = "Tensor";
|
| 34 |
+
static constexpr const char* schema_str = "div_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)";
|
| 35 |
+
static at::Tensor & call(at::Tensor & self, const at::Tensor & other);
|
| 36 |
+
static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, at::Tensor & self, const at::Tensor & other);
|
| 37 |
+
};
|
| 38 |
+
|
| 39 |
+
struct TORCH_API div_out {
|
| 40 |
+
using schema = at::Tensor & (const at::Tensor &, const at::Tensor &, at::Tensor &);
|
| 41 |
+
using ptr_schema = schema*;
|
| 42 |
+
// See Note [static constexpr char* members for windows NVCC]
|
| 43 |
+
static constexpr const char* name = "aten::div";
|
| 44 |
+
static constexpr const char* overload_name = "out";
|
| 45 |
+
static constexpr const char* schema_str = "div.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)";
|
| 46 |
+
static at::Tensor & call(const at::Tensor & self, const at::Tensor & other, at::Tensor & out);
|
| 47 |
+
static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Tensor & other, at::Tensor & out);
|
| 48 |
+
};
|
| 49 |
+
|
| 50 |
+
struct TORCH_API div_Tensor_mode {
|
| 51 |
+
using schema = at::Tensor (const at::Tensor &, const at::Tensor &, ::std::optional<c10::string_view>);
|
| 52 |
+
using ptr_schema = schema*;
|
| 53 |
+
// See Note [static constexpr char* members for windows NVCC]
|
| 54 |
+
static constexpr const char* name = "aten::div";
|
| 55 |
+
static constexpr const char* overload_name = "Tensor_mode";
|
| 56 |
+
static constexpr const char* schema_str = "div.Tensor_mode(Tensor self, Tensor other, *, str? rounding_mode) -> Tensor";
|
| 57 |
+
static at::Tensor call(const at::Tensor & self, const at::Tensor & other, ::std::optional<c10::string_view> rounding_mode);
|
| 58 |
+
static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Tensor & other, ::std::optional<c10::string_view> rounding_mode);
|
| 59 |
+
};
|
| 60 |
+
|
| 61 |
+
struct TORCH_API div__Tensor_mode {
|
| 62 |
+
using schema = at::Tensor & (at::Tensor &, const at::Tensor &, ::std::optional<c10::string_view>);
|
| 63 |
+
using ptr_schema = schema*;
|
| 64 |
+
// See Note [static constexpr char* members for windows NVCC]
|
| 65 |
+
static constexpr const char* name = "aten::div_";
|
| 66 |
+
static constexpr const char* overload_name = "Tensor_mode";
|
| 67 |
+
static constexpr const char* schema_str = "div_.Tensor_mode(Tensor(a!) self, Tensor other, *, str? rounding_mode) -> Tensor(a!)";
|
| 68 |
+
static at::Tensor & call(at::Tensor & self, const at::Tensor & other, ::std::optional<c10::string_view> rounding_mode);
|
| 69 |
+
static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, at::Tensor & self, const at::Tensor & other, ::std::optional<c10::string_view> rounding_mode);
|
| 70 |
+
};
|
| 71 |
+
|
| 72 |
+
struct TORCH_API div_out_mode {
|
| 73 |
+
using schema = at::Tensor & (const at::Tensor &, const at::Tensor &, ::std::optional<c10::string_view>, at::Tensor &);
|
| 74 |
+
using ptr_schema = schema*;
|
| 75 |
+
// See Note [static constexpr char* members for windows NVCC]
|
| 76 |
+
static constexpr const char* name = "aten::div";
|
| 77 |
+
static constexpr const char* overload_name = "out_mode";
|
| 78 |
+
static constexpr const char* schema_str = "div.out_mode(Tensor self, Tensor other, *, str? rounding_mode, Tensor(a!) out) -> Tensor(a!)";
|
| 79 |
+
static at::Tensor & call(const at::Tensor & self, const at::Tensor & other, ::std::optional<c10::string_view> rounding_mode, at::Tensor & out);
|
| 80 |
+
static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Tensor & other, ::std::optional<c10::string_view> rounding_mode, at::Tensor & out);
|
| 81 |
+
};
|
| 82 |
+
|
| 83 |
+
struct TORCH_API div_Scalar {
|
| 84 |
+
using schema = at::Tensor (const at::Tensor &, const at::Scalar &);
|
| 85 |
+
using ptr_schema = schema*;
|
| 86 |
+
// See Note [static constexpr char* members for windows NVCC]
|
| 87 |
+
static constexpr const char* name = "aten::div";
|
| 88 |
+
static constexpr const char* overload_name = "Scalar";
|
| 89 |
+
static constexpr const char* schema_str = "div.Scalar(Tensor self, Scalar other) -> Tensor";
|
| 90 |
+
static at::Tensor call(const at::Tensor & self, const at::Scalar & other);
|
| 91 |
+
static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Scalar & other);
|
| 92 |
+
};
|
| 93 |
+
|
| 94 |
+
struct TORCH_API div__Scalar {
|
| 95 |
+
using schema = at::Tensor & (at::Tensor &, const at::Scalar &);
|
| 96 |
+
using ptr_schema = schema*;
|
| 97 |
+
// See Note [static constexpr char* members for windows NVCC]
|
| 98 |
+
static constexpr const char* name = "aten::div_";
|
| 99 |
+
static constexpr const char* overload_name = "Scalar";
|
| 100 |
+
static constexpr const char* schema_str = "div_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)";
|
| 101 |
+
static at::Tensor & call(at::Tensor & self, const at::Scalar & other);
|
| 102 |
+
static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, at::Tensor & self, const at::Scalar & other);
|
| 103 |
+
};
|
| 104 |
+
|
| 105 |
+
struct TORCH_API div_Scalar_mode {
|
| 106 |
+
using schema = at::Tensor (const at::Tensor &, const at::Scalar &, ::std::optional<c10::string_view>);
|
| 107 |
+
using ptr_schema = schema*;
|
| 108 |
+
// See Note [static constexpr char* members for windows NVCC]
|
| 109 |
+
static constexpr const char* name = "aten::div";
|
| 110 |
+
static constexpr const char* overload_name = "Scalar_mode";
|
| 111 |
+
static constexpr const char* schema_str = "div.Scalar_mode(Tensor self, Scalar other, *, str? rounding_mode) -> Tensor";
|
| 112 |
+
static at::Tensor call(const at::Tensor & self, const at::Scalar & other, ::std::optional<c10::string_view> rounding_mode);
|
| 113 |
+
static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Scalar & other, ::std::optional<c10::string_view> rounding_mode);
|
| 114 |
+
};
|
| 115 |
+
|
| 116 |
+
struct TORCH_API div__Scalar_mode {
|
| 117 |
+
using schema = at::Tensor & (at::Tensor &, const at::Scalar &, ::std::optional<c10::string_view>);
|
| 118 |
+
using ptr_schema = schema*;
|
| 119 |
+
// See Note [static constexpr char* members for windows NVCC]
|
| 120 |
+
static constexpr const char* name = "aten::div_";
|
| 121 |
+
static constexpr const char* overload_name = "Scalar_mode";
|
| 122 |
+
static constexpr const char* schema_str = "div_.Scalar_mode(Tensor(a!) self, Scalar other, *, str? rounding_mode) -> Tensor(a!)";
|
| 123 |
+
static at::Tensor & call(at::Tensor & self, const at::Scalar & other, ::std::optional<c10::string_view> rounding_mode);
|
| 124 |
+
static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, at::Tensor & self, const at::Scalar & other, ::std::optional<c10::string_view> rounding_mode);
|
| 125 |
+
};
|
| 126 |
+
|
| 127 |
+
struct TORCH_API div_Scalar_out {
|
| 128 |
+
using schema = at::Tensor & (const at::Tensor &, const at::Scalar &, at::Tensor &);
|
| 129 |
+
using ptr_schema = schema*;
|
| 130 |
+
// See Note [static constexpr char* members for windows NVCC]
|
| 131 |
+
static constexpr const char* name = "aten::div";
|
| 132 |
+
static constexpr const char* overload_name = "Scalar_out";
|
| 133 |
+
static constexpr const char* schema_str = "div.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!)";
|
| 134 |
+
static at::Tensor & call(const at::Tensor & self, const at::Scalar & other, at::Tensor & out);
|
| 135 |
+
static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Scalar & other, at::Tensor & out);
|
| 136 |
+
};
|
| 137 |
+
|
| 138 |
+
struct TORCH_API div_Scalar_mode_out {
|
| 139 |
+
using schema = at::Tensor & (const at::Tensor &, const at::Scalar &, ::std::optional<c10::string_view>, at::Tensor &);
|
| 140 |
+
using ptr_schema = schema*;
|
| 141 |
+
// See Note [static constexpr char* members for windows NVCC]
|
| 142 |
+
static constexpr const char* name = "aten::div";
|
| 143 |
+
static constexpr const char* overload_name = "Scalar_mode_out";
|
| 144 |
+
static constexpr const char* schema_str = "div.Scalar_mode_out(Tensor self, Scalar other, *, str? rounding_mode, Tensor(a!) out) -> Tensor(a!)";
|
| 145 |
+
static at::Tensor & call(const at::Tensor & self, const at::Scalar & other, ::std::optional<c10::string_view> rounding_mode, at::Tensor & out);
|
| 146 |
+
static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Scalar & other, ::std::optional<c10::string_view> rounding_mode, at::Tensor & out);
|
| 147 |
+
};
|
| 148 |
+
|
| 149 |
+
}} // namespace at::_ops
|
lib/python3.10/site-packages/torch/include/ATen/ops/embedding_sparse_backward_ops.h
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#pragma once
|
| 2 |
+
|
| 3 |
+
// @generated by torchgen/gen.py from Operator.h
|
| 4 |
+
|
| 5 |
+
#include <tuple>
|
| 6 |
+
#include <vector>
|
| 7 |
+
|
| 8 |
+
// Forward declarations of any types needed in the operator signatures.
|
| 9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
| 10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
| 11 |
+
#include <ATen/core/ATen_fwd.h>
|
| 12 |
+
|
| 13 |
+
namespace at {
|
| 14 |
+
namespace _ops {
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
struct TORCH_API embedding_sparse_backward {
|
| 18 |
+
using schema = at::Tensor (const at::Tensor &, const at::Tensor &, int64_t, int64_t, bool);
|
| 19 |
+
using ptr_schema = schema*;
|
| 20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
| 21 |
+
static constexpr const char* name = "aten::embedding_sparse_backward";
|
| 22 |
+
static constexpr const char* overload_name = "";
|
| 23 |
+
static constexpr const char* schema_str = "embedding_sparse_backward(Tensor grad, Tensor indices, int num_weights, int padding_idx, bool scale_grad_by_freq) -> Tensor";
|
| 24 |
+
static at::Tensor call(const at::Tensor & grad, const at::Tensor & indices, int64_t num_weights, int64_t padding_idx, bool scale_grad_by_freq);
|
| 25 |
+
static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & grad, const at::Tensor & indices, int64_t num_weights, int64_t padding_idx, bool scale_grad_by_freq);
|
| 26 |
+
};
|
| 27 |
+
|
| 28 |
+
}} // namespace at::_ops
|
lib/python3.10/site-packages/torch/include/ATen/ops/exp2_cpu_dispatch.h
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#pragma once
|
| 2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
| 3 |
+
|
| 4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
| 5 |
+
|
| 6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
| 7 |
+
#include <c10/core/MemoryFormat.h>
|
| 8 |
+
#include <c10/core/Scalar.h>
|
| 9 |
+
#include <ATen/core/Reduction.h>
|
| 10 |
+
|
| 11 |
+
// Forward declarations of any types needed in the operator signatures.
|
| 12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
| 13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
| 14 |
+
#include <ATen/core/ATen_fwd.h>
|
| 15 |
+
|
| 16 |
+
namespace at {
|
| 17 |
+
|
| 18 |
+
namespace cpu {
|
| 19 |
+
|
| 20 |
+
TORCH_API at::Tensor exp2(const at::Tensor & self);
|
| 21 |
+
TORCH_API at::Tensor & exp2_out(at::Tensor & out, const at::Tensor & self);
|
| 22 |
+
TORCH_API at::Tensor & exp2_outf(const at::Tensor & self, at::Tensor & out);
|
| 23 |
+
TORCH_API at::Tensor & exp2_(at::Tensor & self);
|
| 24 |
+
|
| 25 |
+
} // namespace cpu
|
| 26 |
+
} // namespace at
|
lib/python3.10/site-packages/torch/include/ATen/ops/fft_hfft_native.h
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#pragma once
|
| 2 |
+
|
| 3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
| 4 |
+
|
| 5 |
+
#include <c10/core/Scalar.h>
|
| 6 |
+
#include <c10/core/Storage.h>
|
| 7 |
+
#include <c10/core/TensorOptions.h>
|
| 8 |
+
#include <c10/util/Deprecated.h>
|
| 9 |
+
#include <optional>
|
| 10 |
+
#include <c10/core/QScheme.h>
|
| 11 |
+
#include <ATen/core/Reduction.h>
|
| 12 |
+
#include <ATen/core/Tensor.h>
|
| 13 |
+
#include <tuple>
|
| 14 |
+
#include <vector>
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
namespace at {
|
| 18 |
+
namespace native {
|
| 19 |
+
TORCH_API at::Tensor fft_hfft_symint(const at::Tensor & self, ::std::optional<c10::SymInt> n=::std::nullopt, int64_t dim=-1, ::std::optional<c10::string_view> norm=::std::nullopt);
|
| 20 |
+
TORCH_API at::Tensor & fft_hfft_symint_out(const at::Tensor & self, ::std::optional<c10::SymInt> n, int64_t dim, ::std::optional<c10::string_view> norm, at::Tensor & out);
|
| 21 |
+
} // namespace native
|
| 22 |
+
} // namespace at
|
lib/python3.10/site-packages/torch/include/ATen/ops/fft_irfft2.h
ADDED
|
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#pragma once
|
| 2 |
+
|
| 3 |
+
// @generated by torchgen/gen.py from Function.h
|
| 4 |
+
|
| 5 |
+
#include <ATen/Context.h>
|
| 6 |
+
#include <ATen/DeviceGuard.h>
|
| 7 |
+
#include <ATen/TensorUtils.h>
|
| 8 |
+
#include <ATen/TracerMode.h>
|
| 9 |
+
#include <ATen/core/Generator.h>
|
| 10 |
+
#include <ATen/core/Reduction.h>
|
| 11 |
+
#include <ATen/core/Tensor.h>
|
| 12 |
+
#include <c10/core/Scalar.h>
|
| 13 |
+
#include <c10/core/Storage.h>
|
| 14 |
+
#include <c10/core/TensorOptions.h>
|
| 15 |
+
#include <c10/util/Deprecated.h>
|
| 16 |
+
#include <optional>
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
#include <ATen/ops/fft_irfft2_ops.h>
|
| 21 |
+
|
| 22 |
+
namespace at {
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
// aten::fft_irfft2(Tensor self, SymInt[1]? s=None, int[1] dim=[-2,-1], str? norm=None) -> Tensor
|
| 26 |
+
inline at::Tensor fft_irfft2(const at::Tensor & self, at::OptionalIntArrayRef s=::std::nullopt, at::IntArrayRef dim={-2,-1}, ::std::optional<c10::string_view> norm=::std::nullopt) {
|
| 27 |
+
return at::_ops::fft_irfft2::call(self, s.has_value() ? ::std::make_optional(c10::fromIntArrayRefSlow(*s)) : ::std::nullopt, dim, norm);
|
| 28 |
+
}
|
| 29 |
+
namespace symint {
|
| 30 |
+
template <typename T, typename = std::enable_if_t<std::is_same_v<T, int64_t>>>
|
| 31 |
+
at::Tensor fft_irfft2(const at::Tensor & self, at::OptionalIntArrayRef s=::std::nullopt, at::IntArrayRef dim={-2,-1}, ::std::optional<c10::string_view> norm=::std::nullopt) {
|
| 32 |
+
return at::_ops::fft_irfft2::call(self, s.has_value() ? ::std::make_optional(c10::fromIntArrayRefSlow(*s)) : ::std::nullopt, dim, norm);
|
| 33 |
+
}
|
| 34 |
+
}
|
| 35 |
+
|
| 36 |
+
// aten::fft_irfft2(Tensor self, SymInt[1]? s=None, int[1] dim=[-2,-1], str? norm=None) -> Tensor
|
| 37 |
+
inline at::Tensor fft_irfft2_symint(const at::Tensor & self, at::OptionalSymIntArrayRef s=::std::nullopt, at::IntArrayRef dim={-2,-1}, ::std::optional<c10::string_view> norm=::std::nullopt) {
|
| 38 |
+
return at::_ops::fft_irfft2::call(self, s, dim, norm);
|
| 39 |
+
}
|
| 40 |
+
namespace symint {
|
| 41 |
+
template <typename T, typename = std::enable_if_t<std::is_same_v<T, c10::SymInt>>>
|
| 42 |
+
at::Tensor fft_irfft2(const at::Tensor & self, at::OptionalSymIntArrayRef s=::std::nullopt, at::IntArrayRef dim={-2,-1}, ::std::optional<c10::string_view> norm=::std::nullopt) {
|
| 43 |
+
return at::_ops::fft_irfft2::call(self, s, dim, norm);
|
| 44 |
+
}
|
| 45 |
+
}
|
| 46 |
+
|
| 47 |
+
// aten::fft_irfft2.out(Tensor self, SymInt[1]? s=None, int[1] dim=[-2,-1], str? norm=None, *, Tensor(a!) out) -> Tensor(a!)
|
| 48 |
+
inline at::Tensor & fft_irfft2_out(at::Tensor & out, const at::Tensor & self, at::OptionalIntArrayRef s=::std::nullopt, at::IntArrayRef dim={-2,-1}, ::std::optional<c10::string_view> norm=::std::nullopt) {
|
| 49 |
+
return at::_ops::fft_irfft2_out::call(self, s.has_value() ? ::std::make_optional(c10::fromIntArrayRefSlow(*s)) : ::std::nullopt, dim, norm, out);
|
| 50 |
+
}
|
| 51 |
+
namespace symint {
|
| 52 |
+
template <typename T, typename = std::enable_if_t<std::is_same_v<T, int64_t>>>
|
| 53 |
+
at::Tensor & fft_irfft2_out(at::Tensor & out, const at::Tensor & self, at::OptionalIntArrayRef s=::std::nullopt, at::IntArrayRef dim={-2,-1}, ::std::optional<c10::string_view> norm=::std::nullopt) {
|
| 54 |
+
return at::_ops::fft_irfft2_out::call(self, s.has_value() ? ::std::make_optional(c10::fromIntArrayRefSlow(*s)) : ::std::nullopt, dim, norm, out);
|
| 55 |
+
}
|
| 56 |
+
}
|
| 57 |
+
|
| 58 |
+
// aten::fft_irfft2.out(Tensor self, SymInt[1]? s=None, int[1] dim=[-2,-1], str? norm=None, *, Tensor(a!) out) -> Tensor(a!)
|
| 59 |
+
inline at::Tensor & fft_irfft2_outf(const at::Tensor & self, at::OptionalIntArrayRef s, at::IntArrayRef dim, ::std::optional<c10::string_view> norm, at::Tensor & out) {
|
| 60 |
+
return at::_ops::fft_irfft2_out::call(self, s.has_value() ? ::std::make_optional(c10::fromIntArrayRefSlow(*s)) : ::std::nullopt, dim, norm, out);
|
| 61 |
+
}
|
| 62 |
+
namespace symint {
|
| 63 |
+
template <typename T, typename = std::enable_if_t<std::is_same_v<T, int64_t>>>
|
| 64 |
+
at::Tensor & fft_irfft2_outf(const at::Tensor & self, at::OptionalIntArrayRef s, at::IntArrayRef dim, ::std::optional<c10::string_view> norm, at::Tensor & out) {
|
| 65 |
+
return at::_ops::fft_irfft2_out::call(self, s.has_value() ? ::std::make_optional(c10::fromIntArrayRefSlow(*s)) : ::std::nullopt, dim, norm, out);
|
| 66 |
+
}
|
| 67 |
+
}
|
| 68 |
+
|
| 69 |
+
// aten::fft_irfft2.out(Tensor self, SymInt[1]? s=None, int[1] dim=[-2,-1], str? norm=None, *, Tensor(a!) out) -> Tensor(a!)
|
| 70 |
+
inline at::Tensor & fft_irfft2_symint_out(at::Tensor & out, const at::Tensor & self, at::OptionalSymIntArrayRef s=::std::nullopt, at::IntArrayRef dim={-2,-1}, ::std::optional<c10::string_view> norm=::std::nullopt) {
|
| 71 |
+
return at::_ops::fft_irfft2_out::call(self, s, dim, norm, out);
|
| 72 |
+
}
|
| 73 |
+
namespace symint {
|
| 74 |
+
template <typename T, typename = std::enable_if_t<std::is_same_v<T, c10::SymInt>>>
|
| 75 |
+
at::Tensor & fft_irfft2_out(at::Tensor & out, const at::Tensor & self, at::OptionalSymIntArrayRef s=::std::nullopt, at::IntArrayRef dim={-2,-1}, ::std::optional<c10::string_view> norm=::std::nullopt) {
|
| 76 |
+
return at::_ops::fft_irfft2_out::call(self, s, dim, norm, out);
|
| 77 |
+
}
|
| 78 |
+
}
|
| 79 |
+
|
| 80 |
+
// aten::fft_irfft2.out(Tensor self, SymInt[1]? s=None, int[1] dim=[-2,-1], str? norm=None, *, Tensor(a!) out) -> Tensor(a!)
|
| 81 |
+
inline at::Tensor & fft_irfft2_symint_outf(const at::Tensor & self, at::OptionalSymIntArrayRef s, at::IntArrayRef dim, ::std::optional<c10::string_view> norm, at::Tensor & out) {
|
| 82 |
+
return at::_ops::fft_irfft2_out::call(self, s, dim, norm, out);
|
| 83 |
+
}
|
| 84 |
+
namespace symint {
|
| 85 |
+
template <typename T, typename = std::enable_if_t<std::is_same_v<T, c10::SymInt>>>
|
| 86 |
+
at::Tensor & fft_irfft2_outf(const at::Tensor & self, at::OptionalSymIntArrayRef s, at::IntArrayRef dim, ::std::optional<c10::string_view> norm, at::Tensor & out) {
|
| 87 |
+
return at::_ops::fft_irfft2_out::call(self, s, dim, norm, out);
|
| 88 |
+
}
|
| 89 |
+
}
|
| 90 |
+
|
| 91 |
+
}
|
lib/python3.10/site-packages/torch/include/ATen/ops/gelu_backward_ops.h
ADDED
|
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#pragma once
|
| 2 |
+
|
| 3 |
+
// @generated by torchgen/gen.py from Operator.h
|
| 4 |
+
|
| 5 |
+
#include <tuple>
|
| 6 |
+
#include <vector>
|
| 7 |
+
|
| 8 |
+
// Forward declarations of any types needed in the operator signatures.
|
| 9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
| 10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
| 11 |
+
#include <ATen/core/ATen_fwd.h>
|
| 12 |
+
|
| 13 |
+
namespace at {
|
| 14 |
+
namespace _ops {
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
struct TORCH_API gelu_backward_grad_input {
|
| 18 |
+
using schema = at::Tensor & (const at::Tensor &, const at::Tensor &, c10::string_view, at::Tensor &);
|
| 19 |
+
using ptr_schema = schema*;
|
| 20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
| 21 |
+
static constexpr const char* name = "aten::gelu_backward";
|
| 22 |
+
static constexpr const char* overload_name = "grad_input";
|
| 23 |
+
static constexpr const char* schema_str = "gelu_backward.grad_input(Tensor grad_output, Tensor self, *, str approximate='none', Tensor(a!) grad_input) -> Tensor(a!)";
|
| 24 |
+
static at::Tensor & call(const at::Tensor & grad_output, const at::Tensor & self, c10::string_view approximate, at::Tensor & grad_input);
|
| 25 |
+
static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & grad_output, const at::Tensor & self, c10::string_view approximate, at::Tensor & grad_input);
|
| 26 |
+
};
|
| 27 |
+
|
| 28 |
+
struct TORCH_API gelu_backward {
|
| 29 |
+
using schema = at::Tensor (const at::Tensor &, const at::Tensor &, c10::string_view);
|
| 30 |
+
using ptr_schema = schema*;
|
| 31 |
+
// See Note [static constexpr char* members for windows NVCC]
|
| 32 |
+
static constexpr const char* name = "aten::gelu_backward";
|
| 33 |
+
static constexpr const char* overload_name = "";
|
| 34 |
+
static constexpr const char* schema_str = "gelu_backward(Tensor grad_output, Tensor self, *, str approximate='none') -> Tensor";
|
| 35 |
+
static at::Tensor call(const at::Tensor & grad_output, const at::Tensor & self, c10::string_view approximate);
|
| 36 |
+
static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & grad_output, const at::Tensor & self, c10::string_view approximate);
|
| 37 |
+
};
|
| 38 |
+
|
| 39 |
+
}} // namespace at::_ops
|
lib/python3.10/site-packages/torch/include/ATen/ops/hardshrink_backward_ops.h
ADDED
|
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#pragma once
|
| 2 |
+
|
| 3 |
+
// @generated by torchgen/gen.py from Operator.h
|
| 4 |
+
|
| 5 |
+
#include <tuple>
|
| 6 |
+
#include <vector>
|
| 7 |
+
|
| 8 |
+
// Forward declarations of any types needed in the operator signatures.
|
| 9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
| 10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
| 11 |
+
#include <ATen/core/ATen_fwd.h>
|
| 12 |
+
|
| 13 |
+
namespace at {
|
| 14 |
+
namespace _ops {
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
struct TORCH_API hardshrink_backward_grad_input {
|
| 18 |
+
using schema = at::Tensor & (const at::Tensor &, const at::Tensor &, const at::Scalar &, at::Tensor &);
|
| 19 |
+
using ptr_schema = schema*;
|
| 20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
| 21 |
+
static constexpr const char* name = "aten::hardshrink_backward";
|
| 22 |
+
static constexpr const char* overload_name = "grad_input";
|
| 23 |
+
static constexpr const char* schema_str = "hardshrink_backward.grad_input(Tensor grad_out, Tensor self, Scalar lambd, *, Tensor(a!) grad_input) -> Tensor(a!)";
|
| 24 |
+
static at::Tensor & call(const at::Tensor & grad_out, const at::Tensor & self, const at::Scalar & lambd, at::Tensor & grad_input);
|
| 25 |
+
static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & grad_out, const at::Tensor & self, const at::Scalar & lambd, at::Tensor & grad_input);
|
| 26 |
+
};
|
| 27 |
+
|
| 28 |
+
struct TORCH_API hardshrink_backward {
|
| 29 |
+
using schema = at::Tensor (const at::Tensor &, const at::Tensor &, const at::Scalar &);
|
| 30 |
+
using ptr_schema = schema*;
|
| 31 |
+
// See Note [static constexpr char* members for windows NVCC]
|
| 32 |
+
static constexpr const char* name = "aten::hardshrink_backward";
|
| 33 |
+
static constexpr const char* overload_name = "";
|
| 34 |
+
static constexpr const char* schema_str = "hardshrink_backward(Tensor grad_out, Tensor self, Scalar lambd) -> Tensor";
|
| 35 |
+
static at::Tensor call(const at::Tensor & grad_out, const at::Tensor & self, const at::Scalar & lambd);
|
| 36 |
+
static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & grad_out, const at::Tensor & self, const at::Scalar & lambd);
|
| 37 |
+
};
|
| 38 |
+
|
| 39 |
+
}} // namespace at::_ops
|
lib/python3.10/site-packages/torch/include/ATen/ops/is_coalesced.h
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#pragma once
|
| 2 |
+
|
| 3 |
+
// @generated by torchgen/gen.py from Function.h
|
| 4 |
+
|
| 5 |
+
#include <ATen/Context.h>
|
| 6 |
+
#include <ATen/DeviceGuard.h>
|
| 7 |
+
#include <ATen/TensorUtils.h>
|
| 8 |
+
#include <ATen/TracerMode.h>
|
| 9 |
+
#include <ATen/core/Generator.h>
|
| 10 |
+
#include <ATen/core/Reduction.h>
|
| 11 |
+
#include <ATen/core/Tensor.h>
|
| 12 |
+
#include <c10/core/Scalar.h>
|
| 13 |
+
#include <c10/core/Storage.h>
|
| 14 |
+
#include <c10/core/TensorOptions.h>
|
| 15 |
+
#include <c10/util/Deprecated.h>
|
| 16 |
+
#include <optional>
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
#include <ATen/ops/is_coalesced_ops.h>
|
| 21 |
+
|
| 22 |
+
namespace at {
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
}
|
lib/python3.10/site-packages/torch/include/ATen/ops/is_same_size_compositeexplicitautograd_dispatch.h
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#pragma once
|
| 2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
| 3 |
+
|
| 4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
| 5 |
+
|
| 6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
| 7 |
+
#include <c10/core/MemoryFormat.h>
|
| 8 |
+
#include <c10/core/Scalar.h>
|
| 9 |
+
#include <ATen/core/Reduction.h>
|
| 10 |
+
|
| 11 |
+
// Forward declarations of any types needed in the operator signatures.
|
| 12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
| 13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
| 14 |
+
#include <ATen/core/ATen_fwd.h>
|
| 15 |
+
|
| 16 |
+
namespace at {
|
| 17 |
+
|
| 18 |
+
namespace compositeexplicitautograd {
|
| 19 |
+
|
| 20 |
+
TORCH_API bool is_same_size(const at::Tensor & self, const at::Tensor & other);
|
| 21 |
+
|
| 22 |
+
} // namespace compositeexplicitautograd
|
| 23 |
+
} // namespace at
|
lib/python3.10/site-packages/torch/include/ATen/ops/isfinite_compositeimplicitautograd_dispatch.h
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#pragma once
|
| 2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
| 3 |
+
|
| 4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
| 5 |
+
|
| 6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
| 7 |
+
#include <c10/core/MemoryFormat.h>
|
| 8 |
+
#include <c10/core/Scalar.h>
|
| 9 |
+
#include <ATen/core/Reduction.h>
|
| 10 |
+
|
| 11 |
+
// Forward declarations of any types needed in the operator signatures.
|
| 12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
| 13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
| 14 |
+
#include <ATen/core/ATen_fwd.h>
|
| 15 |
+
|
| 16 |
+
namespace at {
|
| 17 |
+
|
| 18 |
+
namespace compositeimplicitautograd {
|
| 19 |
+
|
| 20 |
+
TORCH_API at::Tensor isfinite(const at::Tensor & self);
|
| 21 |
+
|
| 22 |
+
} // namespace compositeimplicitautograd
|
| 23 |
+
} // namespace at
|
lib/python3.10/site-packages/torch/include/ATen/ops/isneginf_cuda_dispatch.h
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#pragma once
|
| 2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
| 3 |
+
|
| 4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
| 5 |
+
|
| 6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
| 7 |
+
#include <c10/core/MemoryFormat.h>
|
| 8 |
+
#include <c10/core/Scalar.h>
|
| 9 |
+
#include <ATen/core/Reduction.h>
|
| 10 |
+
|
| 11 |
+
// Forward declarations of any types needed in the operator signatures.
|
| 12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
| 13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
| 14 |
+
#include <ATen/core/ATen_fwd.h>
|
| 15 |
+
|
| 16 |
+
namespace at {
|
| 17 |
+
|
| 18 |
+
namespace cuda {
|
| 19 |
+
|
| 20 |
+
TORCH_API at::Tensor isneginf(const at::Tensor & self);
|
| 21 |
+
TORCH_API at::Tensor & isneginf_out(at::Tensor & out, const at::Tensor & self);
|
| 22 |
+
TORCH_API at::Tensor & isneginf_outf(const at::Tensor & self, at::Tensor & out);
|
| 23 |
+
|
| 24 |
+
} // namespace cuda
|
| 25 |
+
} // namespace at
|
lib/python3.10/site-packages/torch/include/ATen/ops/isposinf_meta_dispatch.h
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#pragma once
|
| 2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
| 3 |
+
|
| 4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
| 5 |
+
|
| 6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
| 7 |
+
#include <c10/core/MemoryFormat.h>
|
| 8 |
+
#include <c10/core/Scalar.h>
|
| 9 |
+
#include <ATen/core/Reduction.h>
|
| 10 |
+
|
| 11 |
+
// Forward declarations of any types needed in the operator signatures.
|
| 12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
| 13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
| 14 |
+
#include <ATen/core/ATen_fwd.h>
|
| 15 |
+
|
| 16 |
+
namespace at {
|
| 17 |
+
|
| 18 |
+
namespace meta {
|
| 19 |
+
|
| 20 |
+
TORCH_API at::Tensor isposinf(const at::Tensor & self);
|
| 21 |
+
TORCH_API at::Tensor & isposinf_out(at::Tensor & out, const at::Tensor & self);
|
| 22 |
+
TORCH_API at::Tensor & isposinf_outf(const at::Tensor & self, at::Tensor & out);
|
| 23 |
+
|
| 24 |
+
} // namespace meta
|
| 25 |
+
} // namespace at
|
lib/python3.10/site-packages/torch/include/ATen/ops/layer_norm_native.h
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#pragma once
|
| 2 |
+
|
| 3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
| 4 |
+
|
| 5 |
+
#include <c10/core/Scalar.h>
|
| 6 |
+
#include <c10/core/Storage.h>
|
| 7 |
+
#include <c10/core/TensorOptions.h>
|
| 8 |
+
#include <c10/util/Deprecated.h>
|
| 9 |
+
#include <optional>
|
| 10 |
+
#include <c10/core/QScheme.h>
|
| 11 |
+
#include <ATen/core/Reduction.h>
|
| 12 |
+
#include <ATen/core/Tensor.h>
|
| 13 |
+
#include <tuple>
|
| 14 |
+
#include <vector>
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
namespace at {
|
| 18 |
+
namespace native {
|
| 19 |
+
TORCH_API at::Tensor layer_norm_symint(const at::Tensor & input, c10::SymIntArrayRef normalized_shape, const ::std::optional<at::Tensor> & weight={}, const ::std::optional<at::Tensor> & bias={}, double eps=1e-05, bool cudnn_enable=true);
|
| 20 |
+
} // namespace native
|
| 21 |
+
} // namespace at
|