nnilayy's picture
Add files using upload-large-folder tool
d33c251 verified
Metadata-Version: 2.2
Name: faiss-cpu
Version: 1.10.0
Summary: A library for efficient similarity search and clustering of dense vectors.
Author-email: Kota Yamaguchi <[email protected]>
License: MIT License
Project-URL: Repository, https://github.com/kyamagu/faiss-wheels
Keywords: faiss,similarity search,clustering,machine learning
Classifier: Development Status :: 4 - Beta
Classifier: Intended Audience :: Developers
Classifier: Intended Audience :: Science/Research
Classifier: License :: OSI Approved :: MIT License
Classifier: Operating System :: MacOS :: MacOS X
Classifier: Operating System :: Microsoft :: Windows
Classifier: Operating System :: POSIX
Classifier: Programming Language :: Python :: 3.9
Classifier: Programming Language :: Python :: 3.10
Classifier: Programming Language :: Python :: 3.11
Classifier: Programming Language :: Python :: 3.12
Classifier: Programming Language :: Python :: 3.13
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
Requires-Python: >=3.9
Description-Content-Type: text/markdown
License-File: LICENSE
Requires-Dist: numpy<3.0,>=1.25.0
Requires-Dist: packaging
# faiss-wheels
[![Build](https://github.com/kyamagu/faiss-wheels/actions/workflows/build.yml/badge.svg)](https://github.com/kyamagu/faiss-wheels/actions/workflows/build.yml)
[![PyPI](https://img.shields.io/pypi/v/faiss-cpu?label=faiss-cpu)](https://pypi.org/project/faiss-cpu/)
faiss python wheel packages.
- [faiss](https://github.com/facebookresearch/faiss)
## Overview
This repository provides scripts to build wheel packages for the
[faiss](https://github.com/facebookresearch/faiss) library.
- Builds CPU-only version with [cibuildwheel](https://github.com/pypa/cibuildwheel/).
- Bundles OpenBLAS in Linux/Windows
- Uses Accelerate framework in macOS
There is also a source package to customize the build process.
> **Note**
> GPU binary package is discontinued as of 1.7.3 release. Build a source package to support GPU features.
### Install
Install the CPU-only binary package by:
```bash
pip install faiss-cpu
```
Note that the package name is `faiss-cpu`.
## Supporting GPU or customized build configuration
The PyPI binary package does not support GPU.
To support GPU methods or use faiss with different build configuration, build a source package.
For building the source package, swig 3.0.12 or later needs to be available.
Also, there should be all the required prerequisites for building faiss itself, such as `nvcc` and CUDA toolkit.
## Building faiss
The source package assumes faiss is already built and installed in the system.
If not done so elsewhere, build and install the faiss library first.
The following example builds and installs faiss with GPU support and avx512 instruction set.
```bash
git clone https://github.com/facebookresearch/faiss.git
cd faiss
cmake . -B build -DFAISS_ENABLE_GPU=ON -DFAISS_ENABLE_PYTHON=OFF -DFAISS_OPT_LEVEL=avx512
cmake --build build --config Release -j
cmake --install build install
cd ..
```
See the official
[faiss installation instruction](https://github.com/facebookresearch/faiss/blob/master/INSTALL.md)
for more on how to build and install faiss.
### Building a source package
Once faiss is built and installed, build the source package.
The following builds and installs the faiss-cpu source package with GPU and AVX512.
```bash
export FAISS_ENABLE_GPU=ON FAISS_OPT_LEVEL=avx512
pip install --no-binary :all: faiss-cpu
```
There are a few environment variables that specifies build-time options.
- `FAISS_INSTALL_PREFIX`: Specifies the install location of faiss library, default to `/usr/local`.
- `FAISS_OPT_LEVEL`: Faiss SIMD optimization, one of `generic`, `avx2`, `avx512`. Note that AVX option is only available in x86_64 arch.
- `FAISS_ENABLE_GPU`: Setting this variable to `ON` builds GPU wrappers. Set this variable if faiss is built with GPU support.
- `CUDA_HOME`: Specifies CUDA install location for building GPU wrappers, default to `/usr/local/cuda`.
## Development
This repository is intended to support PyPI distribution for the official [faiss](https://github.com/facebookresearch/faiss) library.
The repository contains the CI workflow based on [cibuildwheel](https://github.com/pypa/cibuildwheel/).
Feel free to make a pull request to fix packaging problems.
Other relevant resources:
- [Packaging projects with GPU code](https://pypackaging-native.github.io/key-issues/gpus/)