File size: 4,662 Bytes
46c6657
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0743003
 
 
 
 
 
 
 
 
 
46c6657
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
caedcc0
 
46c6657
 
caedcc0
46c6657
 
caedcc0
b694217
46c6657
caedcc0
46c6657
caedcc0
 
46c6657
 
 
 
 
 
 
 
 
 
5e93991
 
 
 
 
 
3a81cff
 
 
 
 
 
 
 
 
 
60fbc09
3a81cff
 
 
 
 
 
 
d3d5f9c
3a81cff
5e93991
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e72516
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
---
dataset_info:
  features:
  - name: audio_id
    dtype: int64
  - name: audio_name
    dtype: string
  - name: file_path
    dtype: string
  - name: speaker_type
    dtype: string
  - name: speaker_code
    dtype: string
  - name: speaker_gender
    dtype: string
  - name: education
    dtype: string
  - name: birth_state
    dtype: string
  - name: birth_country
    dtype: string
  - name: age
    dtype: int64
  - name: recording_year
    dtype: int64
  - name: audio_quality
    dtype: string
  - name: start_time
    dtype: float32
  - name: end_time
    dtype: float32
  - name: duration
    dtype: float32
  - name: normalized_text
    dtype: string
  - name: original_text
    dtype: string
  - name: audio
    dtype:
      audio:
        sampling_rate: 16000
  - name: racial_category
    dtype: string
  splits:
  - name: validation
    num_bytes: 1414790171.812
    num_examples: 9894
  - name: test
    num_bytes: 3801921623.48
    num_examples: 30968
  - name: train
    num_bytes: 36963919315.24
    num_examples: 276881
  download_size: 41830719092
  dataset_size: 42180631110.532
configs:
- config_name: default
  data_files:
  - split: validation
    path: data/validation-*
  - split: test
    path: data/test-*
  - split: train
    path: data/train-*
---


# MuPe Life Stories Dataset
A new publicly available dataset consisting of 289 life story interviews (365 hours), featuring a broad range of speakers varying in age, education, and regional accents.


## Metadata:
- **audio_id**: Sequential id for the interview;
- **audio_name**: Unique code for the interview;
- **file_path**: Wav audio file path;
- **speaker_type**: R is the interviewee, P/1 is interviewer 1, P/2 is interviewer 2 and so on;
- **speaker_code**: Unique code for the speaker;
- **speaker_gender**: Gender of the speaker;
- **education**:  Education level of the interviewee, filled only when speaker_type = 'R';
- **birth_state**: Birth state (region) of the interviewee, filled only when speaker_type = 'R';
- **birth_country**: Birth country of the speaker;
- **age**: Age of the interviewee, calculated with recording_year minus year of birth, filled only when speaker_type = 'R';
- **recording_year**: The year when the audio was recorded;
- **audio_quality**: Can be high or low;
- **start_time**: The start time in the original complete audio file;
- **end_time**: The end time in the original complete audio file;
- **duration**: The duration of the segment;
- **normalized_text**: Text normalized in lowercase and without punctuation marks;
- **original_text**: Text before normalization.
- **racial_category**: Racial category may be Black, White, Pardo (Mixed) and Asian. Few interviews have this information.

## Dataset
| Hugging Face |
| ------------ |
| [https://huggingface.co/datasets/nilc-nlp/CORAA-MUPE-ASR](https://huggingface.co/datasets/nilc-nlp/CORAA-MUPE-ASR) |

## Model
| Hugging Face |
| ------------ |
| [https://huggingface.co/nilc-nlp/distil-whisper-coraa-mupe-asr](https://huggingface.co/nilc-nlp/distil-whisper-coraa-mupe-asr) |


## Citation
Leal, S.E.; Candido Junior, A.; Marcacini, R.; Casanova, E.; Gonçalves, O.; Soares, A.; Lima, R.; Gris, L.; Aluísio, S.M. MuPe Life Stories Dataset: Spontaneous Speech in Brazilian Portuguese with a Case Study Evaluation on ASR Bias against Speakers Groups and Topic Modeling. Proceedings of the 31st International Conference on Computational Linguistics (COLING) (2025).

````
@inProceedings{Leal2025Coling,
author={Sidney Leal
   and Arnaldo Candido Jr.
   and Ricardo Marcacini
   and Edresson Casanova
   and Odilon Gonçalves
   and Anderson Soares
   and Rodrigo Lima
   and Lucas Gris
   and Sandra Alu{\'i}sio,
title={MuPe Life Stories Dataset: Spontaneous Speech in Brazilian Portuguese with a Case Study Evaluation on ASR Bias against Speakers Groups and Topic Modeling},
booktitle={Proceedings of the 31st International Conference on Computational Linguistics (COLING)},
year={2025}
}
````

## Sponsors / Funding

This work was carried out at the Center for Artificial Intelligence (C4AI-USP), with support by the São Paulo Research Foundation (FAPESP grant #2019/07665-4) and by the IBM Corporation. This project was also supported by the Ministry of Science, Technology and Innovation, with resources of Law No. 8.248, of October 23, 1991, within the scope of PPI-SOFTEX, coordinated by Softex and published Residence in TIC 13, DOU 01245.010222/2022-44. This work has been partially supported by Advanced Knowledge Center in Immersive Technologies (AKCIT/CEIA), with financial resources from the PPI IoT/Manufatura 4.0 / PPI HardwareBR of the MCTI, signed with EMBRAPII.