cmi / Beat-Transformer /code /spectrogram_dataset.py
nicolaus625's picture
Add files using upload-large-folder tool
659e74f verified
import os
import time
import madmom
import torch
import librosa
import numpy as np
from torch.utils.data import Dataset
from scipy.ndimage import maximum_filter1d
from tqdm import tqdm
from matplotlib import pyplot as plt
import librosa.display
from scipy.interpolate import interp1d
from scipy.signal import argrelmax
class dataset_processing(Dataset):
def __init__(self, full_data,
full_annotation,
audio_files,
mode='train',
fold=0,
fps=44100/1024,
sample_size = 512,
num_folds=8,
mask_value=-1,
test_only = []
):
self.fold = fold
self.num_folds = num_folds
self.fps = fps
self.mode = mode
self.sample_size = sample_size
self.MASK_VALUE = mask_value
self.data = []
self.beats = []
self.downbeats = []
self.tempi = []
self.root = []
if self.mode == 'train':
self.dataset_name = []
self.train_clip(full_data, full_annotation, test_only=test_only)
elif self.mode == 'validation' or self.mode == 'test':
self.dataset_name = []
self.audio_files = []
self.val_and_test_clip(full_data, full_annotation, audio_files, test_only=test_only)
full_data = None
full_annotation = None
def train_clip(self, full_data, full_annotation, num_tempo_bins=300, test_only=[]):
for fold_idx in tqdm(range(self.num_folds)):
if (fold_idx != self.fold) and (fold_idx != (self.fold+1)%self.num_folds):
for key in full_data:
if key == test_only:
continue
#print(f'processing {key} under fold {fold_idx}')
for song_idx in range(len(full_data[key][fold_idx])):
song = full_data[key][fold_idx][song_idx] #(t, 5, mel)
annotation = full_annotation[key][fold_idx][song_idx]
try:
#print(annotation, annotation.shape)
if len(annotation.shape) == 2:
beat = madmom.utils.quantize_events(annotation[:, 0], fps=self.fps, length=len(song))
else:
beat = madmom.utils.quantize_events(annotation[:], fps=self.fps, length=len(song))
beat = np.maximum(beat, maximum_filter1d(beat, size=3) * 0.5)
beat = np.maximum(beat, maximum_filter1d(beat, size=3) * 0.5)
except:
beat = np.ones(len(song), dtype='float32') * self.MASK_VALUE
print(f'beat load error at {key} dataset, skip it')
try:
downbeat = annotation[annotation[:, 1] == 1][:, 0]
downbeat = madmom.utils.quantize_events(downbeat, fps=self.fps, length=len(song))
downbeat = np.maximum(downbeat, maximum_filter1d(downbeat, size=3) * 0.5)
downbeat = np.maximum(downbeat, maximum_filter1d(downbeat, size=3) * 0.5)
except:
downbeat = np.ones(len(song), dtype='float32') * self.MASK_VALUE
if not ((key == 'smc') or (key == 'musicnet')):
print(f'downbeat load error at {key} dataset, skip it')
try:
#tempo = self.infer_tempo(annotation[:, 0])
#tempo = np.array([int(np.round(tempo))])
tempo = np.zeros(num_tempo_bins, dtype='float32')
if len(annotation.shape) == 2:
tempo[int(np.round(self.infer_tempo(annotation[:, 0])))] = 1
else:
tempo[int(np.round(self.infer_tempo(annotation[:])))] = 1
tempo = np.maximum(tempo, maximum_filter1d(tempo, size=3) * 0.5)
tempo = np.maximum(tempo, maximum_filter1d(tempo, size=3) * 0.5)
tempo = tempo/sum(tempo)
#tempo += np.maximum(tempo, maximum_filter1d(tempo, size=3) * 0.25)
except:
#tempo = np.array([self.MASK_VALUE])
tempo = np.ones(num_tempo_bins, dtype='float32') * self.MASK_VALUE
if self.sample_size is None:
self.dataset_name.append(key)
self.data.append(song)
self.beats.append(beat)
self.downbeats.append(downbeat)
self.tempi.append(tempo)
else:
if len(song) <= self.sample_size:
self.dataset_name.append(key)
self.data.append(song)
self.beats.append(beat)
self.downbeats.append(downbeat)
self.tempi.append(tempo)
else:
for i in range(0, len(song)-self.sample_size+1, self.sample_size):
self.dataset_name.append(key)
self.data.append(song[i: i+self.sample_size])
self.beats.append(beat[i: i+self.sample_size])
self.downbeats.append(downbeat[i: i+self.sample_size])
self.tempi.append(tempo)
if i + self.sample_size < len(song):
self.dataset_name.append(key)
self.data.append(song[len(song)-self.sample_size:])
self.beats.append(beat[len(song)-self.sample_size:])
self.downbeats.append(downbeat[len(song)-self.sample_size:])
self.tempi.append(tempo)
#print(len(self.data), len(self.beats), len(self.downbeats))
def val_and_test_clip(self, full_data, full_annotation, audio_files, num_tempo_bins=300, test_only=[]):
if self.mode == 'validation':
fold_idx = (self.fold+1)%self.num_folds
elif self.mode == 'test':
fold_idx = self.fold
for key in tqdm(full_data, total=len(full_data)):
#print(f'processing {key}')
if ((self.mode == 'validation') and (key in test_only)):
continue
for song_idx in range(len(full_data[key][fold_idx])):
song = full_data[key][fold_idx][song_idx]
annotation = full_annotation[key][fold_idx][song_idx]
audio_file = audio_files[key][fold_idx][song_idx]
try:
if len(annotation.shape) == 2:
beat = madmom.utils.quantize_events(annotation[:, 0], fps=self.fps, length=len(song))
else:
beat = madmom.utils.quantize_events(annotation[:], fps=self.fps, length=len(song))
beat = np.maximum(beat, maximum_filter1d(beat, size=3) * 0.5)
beat = np.maximum(beat, maximum_filter1d(beat, size=3) * 0.5)
except:
beat = np.ones(len(song), dtype='float32') * self.MASK_VALUE
print(f'beat load error at {key} dataset, skip it')
try:
downbeat = annotation[annotation[:, 1] == 1][:, 0]
downbeat = madmom.utils.quantize_events(downbeat, fps=self.fps, length=len(song))
downbeat = np.maximum(downbeat, maximum_filter1d(downbeat, size=3) * 0.5)
downbeat = np.maximum(downbeat, maximum_filter1d(downbeat, size=3) * 0.5)
except:
downbeat = np.ones(len(song), dtype='float32') * self.MASK_VALUE
if not ((key == 'smc') or (key == 'musicnet')):
print(f'downbeat load error at {key} dataset, skip it')
try:
#tempo = self.infer_tempo(annotation[:, 0])
#tempo = np.array([int(np.round(tempo))])
tempo = np.zeros(num_tempo_bins, dtype='float32')
if len(annotation.shape) == 2:
tempo[int(np.round(self.infer_tempo(annotation[:, 0])))] = 1
else:
tempo[int(np.round(self.infer_tempo(annotation[:])))] = 1
tempo = np.maximum(tempo, maximum_filter1d(tempo, size=3) * 0.5)
tempo = np.maximum(tempo, maximum_filter1d(tempo, size=3) * 0.5)
tempo = tempo/sum(tempo)
except:
#tempo = np.array([self.MASK_VALUE])
tempo = np.ones(num_tempo_bins, dtype='float32') * self.MASK_VALUE
if self.sample_size is None:
self.dataset_name.append(key)
self.root.append(audio_file)
self.data.append(song)
self.beats.append(beat)
self.downbeats.append(downbeat)
self.tempi.append(tempo)
else:
eval_sample_size = int(44100/1024 * 420)
if len(song) <= eval_sample_size:
self.dataset_name.append(key)
self.root.append(audio_file)
self.data.append(song)
self.beats.append(beat)
self.downbeats.append(downbeat)
self.tempi.append(tempo)
else:
for i in range(0, len(song)-eval_sample_size+1, eval_sample_size):
self.dataset_name.append(key)
self.root.append(audio_file)
self.data.append(song[i: i+eval_sample_size])
self.beats.append(beat[i: i+eval_sample_size])
self.downbeats.append(downbeat[i: i+eval_sample_size])
self.tempi.append(tempo)
if i + eval_sample_size < len(song):
self.dataset_name.append(key)
self.root.append(audio_file)
self.data.append(song[len(song)-eval_sample_size:])
self.beats.append(beat[len(song)-eval_sample_size:])
self.downbeats.append(downbeat[len(song)-eval_sample_size:])
self.tempi.append(tempo)
def infer_tempo(self, beats, hist_smooth=4, no_tempo=-1):
ibis = np.diff(beats) * self.fps
bins = np.bincount(np.round(ibis).astype(int))
# if no beats are present, there is no tempo
if not bins.any():
return no_tempo
# smooth histogram bins
if hist_smooth > 0:
bins = madmom.audio.signal.smooth(bins, hist_smooth)
#print(bins)
intervals = np.arange(len(bins))
# create interpolation function
interpolation_fn = interp1d(intervals, bins, 'quadratic')
# generate new intervals with 1000x the resolution
intervals = np.arange(intervals[0], intervals[-1], 0.001)
tempi = 60.0 * self.fps / intervals
# apply quadratic interpolation
bins = interpolation_fn(intervals)
peaks = argrelmax(bins, mode='wrap')[0]
if len(peaks) == 0:
# no peaks, no tempo
return no_tempo
else:
# report only the strongest tempo
sorted_peaks = peaks[np.argsort(bins[peaks])[::-1]]
return tempi[sorted_peaks][0]
def __len__(self):
return len(self.data)
def __getitem__(self, index):
"""x = np.sum(self.data[index], axis=1).transpose(1, 0) #(dmodel, T)
x = librosa.power_to_db(x, ref=np.max)
x = x.T[np.newaxis, :, :]
x = np.repeat(x, 5, axis=0)
return self.dataset_name[index], x, self.beats[index], self.downbeats[index], self.tempi[index]"""
x = np.transpose(self.data[index],( 1, 2, 0)) #5, dmodel, T
#x = x + .25 * np.sum(x, axis=0, keepdims=True)
#x = [librosa.power_to_db(x[i], ref=np.max) for i in range(x.shape[0])]
np.random.seed()
if self.mode == 'train':
p = np.random.rand()
if p < .5: #50% time use 5 subspectrograms
pass
else:
idx_sum = np.random.choice(len(x), size=2, replace=False)
x = [x[i] for i in range(len(x)) if i not in idx_sum] + [x[idx_sum[0]] + x[idx_sum[1]]]
q = np.random.rand()
if q < .6: #30% time use 4 subspectrograms
pass
else:
idx_sum = np.random.choice(len(x), size=2, replace=False)
x = [x[i] for i in range(len(x)) if i not in idx_sum] + [x[idx_sum[0]] + x[idx_sum[1]]]
r = np.random.rand()
if r < .5: #10% time use 3 subspectrograms
pass
else: #10% time use 2 subspectrograms
idx_sum = np.random.choice(len(x), size=2, replace=False)
x = [x[i] for i in range(len(x)) if i not in idx_sum] + [x[idx_sum[0]] + x[idx_sum[1]]]
x = [librosa.power_to_db(x[i], ref=np.max) for i in range(len(x))]
x = np.transpose(np.array(x), (0, 2, 1)) #T, instr, dmodel
if self.mode == 'test':
return self.dataset_name[index], x, self.beats[index], self.downbeats[index], self.tempi[index], self.root[index]
else:
return self.dataset_name[index], x, self.beats[index], self.downbeats[index], self.tempi[index]
class audioDataset(object):
def __init__(self, data_to_load=['ballroom', 'carnetic', 'gtzan', 'hainsworth', 'smc', 'harmonix'],
test_only_data = ['hainsworth'],
data_path="/data1/zhaojw/dataset/linear_spectrogram_data.npz",
annotation_path="/data1/zhaojw/dataset/beat_annotation.npz",
fps=44100/1024,
SEED = 0,
num_folds=8,
mask_value = -1,
sample_size = 512
):
self.fps = fps
self.sample_size = sample_size
self.mask_value = mask_value
self.num_folds = num_folds
self.test_only_data = test_only_data
# load_linear_spectr = np.load(data_path, allow_pickle=True)
load_annotation = np.load(annotation_path, allow_pickle=True)
self.full_data = {}
self.full_annotation = {}
self.audio_files = {}
for key in load_annotation:
if key in data_to_load:
time1 = time.time()
print(f'loading {key} dataset ...')
# data = load_linear_spectr[key]
annotation = load_annotation[key]
# assert(len(data) == len(annotation))
with open(f'./data/audio_lists/{key}.txt', 'r') as f:
audio_root = f.readlines()
audio_root = [item.replace('\n', '') for item in audio_root]
assert(len(annotation) == len(audio_root))
print(f'finish loading {key} with shape {annotation.shape}, using {time.time()-time1}s.')
#fold split
self.full_data[key] = {}
self.full_annotation[key] = {}
self.audio_files[key] = {}
if key in self.test_only_data:
FOLD_SIZE = len(annotation) // num_folds
np.random.seed(SEED)
np.random.shuffle(data)
np.random.seed(SEED)
np.random.shuffle(annotation)
np.random.seed(SEED)
np.random.shuffle(audio_root)
for i in range(num_folds):
self.full_data[key][i] = audio_root[:]
self.full_annotation[key][i] = annotation[:]
self.audio_files[key][i] = audio_root[:]
else:
FOLD_SIZE = len(annotation) // num_folds
np.random.seed(SEED)
np.random.shuffle(data)
np.random.seed(SEED)
np.random.shuffle(annotation)
np.random.seed(SEED)
np.random.shuffle(audio_root)
for i in range(num_folds-1):
self.full_data[key][i] = data[i*FOLD_SIZE: (i+1)*FOLD_SIZE]
self.full_annotation[key][i] = annotation[i*FOLD_SIZE: (i+1)*FOLD_SIZE]
self.audio_files[key][i] = audio_root[i*FOLD_SIZE: (i+1)*FOLD_SIZE]
self.full_data[key][num_folds-1] = data[(num_folds-1)*FOLD_SIZE: len(data)]
self.full_annotation[key][num_folds-1] = annotation[(num_folds-1)*FOLD_SIZE: len(annotation)]
self.audio_files[key][num_folds-1] = audio_root[(num_folds-1)*FOLD_SIZE: len(audio_root)]
data = None
annotation = None
def get_fold(self, fold=0):
print('processing train_set')
train_set = dataset_processing(full_data=self.full_data,
full_annotation=self.full_annotation,
audio_files=None,
mode='train',
fps=self.fps,
fold=fold,
sample_size = self.sample_size,
num_folds=self.num_folds,
mask_value=self.mask_value,
test_only=self.test_only_data
)
print('processing val_set')
val_set = dataset_processing(full_data=self.full_data,
full_annotation=self.full_annotation,
audio_files=self.audio_files,
mode='validation',
fps=self.fps,
fold=fold,
sample_size=self.sample_size,
num_folds=self.num_folds,
mask_value=self.mask_value,
test_only=self.test_only_data
)
print('processing test_set')
test_set = dataset_processing(full_data=self.full_data,
full_annotation=self.full_annotation,
audio_files=self.audio_files,
mode='test',
fps=self.fps,
fold=fold,
sample_size=self.sample_size,
num_folds=self.num_folds,
mask_value=self.mask_value,
test_only=self.test_only_data
)
return train_set, val_set, test_set
if __name__ == '__main__':
from torch.utils.data import DataLoader
#data_to_load=['ballroom', 'carnetic', 'gtzan', 'hainsworth', 'smc', 'harmonix']
dataset = audioDataset(data_to_load=['ballroom', 'carnetic', 'gtzan', 'hainsworth', 'smc'],
test_only_data = ['gtzan'],
# data_path = "./data/demix_spectrogram_data.npz",
annotation_path = "/work/fast_data_yinghao/Beat-Transformer/data/full_beat_annotation.npz",
fps = 44100/1024,
sample_size = None,
num_folds = 8)
# Fold Splitting
train_set, val_set, test_set = dataset.get_fold(fold=0)
#train_loader = DataLoader(train_set, batch_size=1, shuffle=True)
#val_loader = DataLoader(val_set, batch_size=1, shuffle=False)
test_loader = DataLoader(test_set, batch_size=1, shuffle=False)
#for i, (key, data, beat, downbeat, tempo) in enumerate(val_data):
for i, (key, data, beat, downbeat, tempo, root) in enumerate(test_loader):
print('key:', key)
print('data:', data.shape)
print('beat:', beat.shape)
#print('beat:', torch.nonzero(beat))
print('downbeat:', downbeat.shape)
print('tempo:', tempo.shape)
print('audio_root:', root)
#print('downbeat:', torch.nonzero(downbeat))
break