|
|
import os |
|
|
import pyarrow.parquet as pq |
|
|
import datasets |
|
|
|
|
|
_CITATION = "" |
|
|
_DESCRIPTION = "Wyvern dataset with encoded image arrays and masks per 2400m tile." |
|
|
_HOMEPAGE = "" |
|
|
_LICENSE = "cc-by-4.0" |
|
|
|
|
|
class NestEOPrototype(datasets.GeneratorBasedBuilder): |
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
|
|
def _info(self): |
|
|
return datasets.DatasetInfo( |
|
|
description=_DESCRIPTION, |
|
|
citation=_CITATION, |
|
|
homepage=_HOMEPAGE, |
|
|
license=_LICENSE, |
|
|
features=datasets.Features({ |
|
|
"tile_id": datasets.Value("string"), |
|
|
"scene_id": datasets.Value("string"), |
|
|
"start_datetime": datasets.Value("timestamp[us]"), |
|
|
"end_datetime": datasets.Value("timestamp[us]"), |
|
|
"image": datasets.Value("binary"), |
|
|
"data_mask": datasets.Value("binary"), |
|
|
"pixel_quality_mask": datasets.Value("binary"), |
|
|
"shape": [datasets.Value("int32")], |
|
|
}), |
|
|
) |
|
|
|
|
|
def _split_generators(self, dl_manager): |
|
|
wyvern_path = os.path.join(dl_manager.manual_dir, "datasets_EO/Wyvern/grid_2400m") |
|
|
return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"folder_path": wyvern_path})] |
|
|
|
|
|
def _generate_examples(self, folder_path): |
|
|
idx = 0 |
|
|
for fname in sorted(os.listdir(folder_path)): |
|
|
if fname.endswith(".parquet"): |
|
|
table = pq.read_table(os.path.join(folder_path, fname)) |
|
|
df = table.to_pandas() |
|
|
for _, row in df.iterrows(): |
|
|
yield idx, { |
|
|
"tile_id": row["tile_id"], |
|
|
"scene_id": row["scene_id"], |
|
|
"start_datetime": row["start_datetime"], |
|
|
"end_datetime": row["end_datetime"], |
|
|
"image": row["image"], |
|
|
"data_mask": row["data_mask"], |
|
|
"pixel_quality_mask": row["pixel_quality_mask"], |
|
|
"shape": row["shape"], |
|
|
} |
|
|
idx += 1 |
|
|
|