Datasets:
File size: 6,570 Bytes
519abf3 7d0d741 2d6749c 7d0d741 2d6749c 7d0d741 cbbec78 f87b2e8 cbbec78 7d0d741 519abf3 df603bf 8500864 f87b2e8 df603bf 8500864 43cc6f2 f87b2e8 43cc6f2 f87b2e8 43cc6f2 e9db844 43cc6f2 df603bf f87b2e8 df603bf f87b2e8 df603bf 0241746 f87b2e8 d33f73d f87b2e8 43cc6f2 0241746 f87b2e8 43cc6f2 df603bf f87b2e8 43cc6f2 0241746 43cc6f2 d33f73d 43cc6f2 d33f73d df603bf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
---
datasets:
- nesteo-prototype
language:
- en
size_categories:
- 10M<n<100M
multilinguality: monolingual
tags:
- ai4eo
- earth-observation
- remote-sensing
- multimodal
- grids
license: cc-by-4.0
task_categories:
- image-segmentation
- image-classification
pretty_name: NestEO Prototype
# dataset_info:
# - config_name: default
# features:
# - name: view:sun_elevation
# dtype: float64
# - name: json_path
# dtype: object
# - name: satl:altitude
# dtype: float64
# - name: datetime
# dtype: object
# - name: satl:product_name
# dtype: object
# - name: platform
# dtype: object
# - name: proj:epsg
# dtype: object
# - name: view:azimuth
# dtype: float64
# - name: grid:code
# dtype: object
# - name: providers
# dtype: object
# - name: proj:shape
# dtype: object
# - name: license
# dtype: object
# - name: scene_id
# dtype: object
# - name: proj:transform
# dtype: object
# - name: view:sun_azimuth
# dtype: float64
# - name: satl:altitude_units
# dtype: object
# - name: view:off_nadir
# dtype: float64
# - name: gsd
# dtype: float64
# configs:
# - config_name: default
# data_files: metadata_current/scene_parameters/newsat*.parquet
configs:
- config_name: grids_selected_1200m # appears in the drop-down
default: true # <- this is what the viewer shows first
data_files:
- split: train
path: "grids/grids_selected/selected_1200m_grid.parquet"
# <!-- - config_name: legacy_full_grid # keep the old file available
# data_files:
# - split: train
# path: "old_folder/old_grid.parquet" # adjust to real path -->
---
# NestEO: Modular and Hierarchical EO Dataset Framework
NestEO is a hierarchical, resolution-aligned, UTM-based nested grid dataset framework supporting general-purpose, multi-scale multimodal Earth Observation workflows. Built from diverse EO sources and enriched with metadata for landcover, climate zones, and population, it enables scalable, representative and progressive sampling for AI4EO.
**Grid Levels**: 120000m, 12000m, 2400m, 1200m, 600m, 300m, 150m
**Grid Metadata**: ESA WorldCover proportions, GHSL, Köppen Climate
**Current Sample Datasets**: Wyvren Hyperspectral, Satellogic Newsat, Sentinel-2, Sentinel-1, Sentinel-3
**Zones**: UTM 1N–60N, 1S–60S and Polar North/South
**Formats**: Parquet, GeoParquet, Zarr (planned)
**License**: CC-BY-4.0
**More Info**: See [paper](link), [GitHub](https://github.com/mbzuai-oryx/NestEO).
## Directory Structure Scaffold
```text
NestEO/
├── grids/ # UTM-aligned hierarchical grid Parquet files
├── metadata_current/ # Precomputed proportions: landcover, planned (climate, region, biomes, ghsl)
├── datasets_EO/ # Clipped EO imagery tiles (Newsat, Sentinels, planned(Landsat, HLS, MODIS, etc.))
├── datasets_AUX/ # Auxiliary datasets planned(DEM, landcover, OSM)
├── embeddings/ # Precomputed model embeddings planned (e.g., DINOv2, SigLIP, SAM, SAM2)
├── index_structure/ # tile-to-super-tile, Source-to-tile and tile-ID index maps
└── versions/ # Information about snapshots for version control
```
## Dataset Structure
- Each tile includes a unique `tile_id`, and spatial geometry.
- Grouped by zone directories: `grid_2400m/grid_37N_2400.parquet`
## Code
Github code provides the grid creation logic, ESA Worldcover proportion calculations, notebooks for processing sample datasets, and fetching/merging grids with datasets
**How to Use**
* Install from Github and create your own Nested grid structure
* Load a grid from grids/ (e.g., grid_1200m.parquet).
* Join with metadata (e.g., metadata_lc.parquet) on tile_id.
* Apply spatial or semantic filtering (e.g., only urban, with specific dates).
* Select and load paired EO imagery and sources from folders.
**Current Status**
This is a prototype release of the NestEO dataset framework, showcasing the core design principles, including hierarchical UTM-aligned grids, modular directory layout, structured GeoParquet-based metadata, and compatibility with scalable Earth Observation (EO) data ingestion. This release includes a limited set of EO source tiles and metadata layers meant to demonstrate framework usability, alignment strategies, and pipeline extensibility. Metadata-driven filtering, source-pairing, and tile-to-super-tile indexing are fully implemented.
**Limitations**
- This version provides a demonstration of the framework vision. Only few selected EO modalities (e.g., Sentinel-2, Sentinel-3, Satellogic, Wyvren) are currently included at sample scale.
- Further EO content layers (imagery, land cover, auxillary layers etc.) to be added in later updates for NestEOv1.
- Cross-modal pairings, auxiliary layers (e.g., DEM, OSM), and full-resolution coverage across grid levels are under active development.
- Not all grid levels are currently populated with imagery; some grid layers are provided primarily to support alignment, pairing and demonstration purposes.
### Roadmap and Ongoing Work
A comprehensive **v1 release** is under development. This upcoming version will include:
- **12+ EO modalities** (optical, SAR, hyperspectral, atmospheric, thermal)
- **Over 250,000 geospatially distributed tiles** across multiple grid levels
- **Paired imagery samples** at selected locations, across grid levels, supporting multimodal learning
- **Expanded metadata layers** including ESA WorldCover, Copernicus DEM, Köppen-Geiger zones, and GHSL-derived population classes
- **Precomputed model embeddings** (e.g., DINOv2, SigLIP, SAM2) at tile-level granularity
- **Full compatibility** with cloud-based filtering, lazy loading, and Hugging Face Datasets
All v1 expansions will preserve the **NestEO prototype structure** and align with **FAIR dataset development practices**. The prototype release remains stable as a referential snapshot of the NestEO design framework, while v1 will extend data completeness, modeling readiness and potential foundation model development.
**Contributing**
We welcome contributions on:
* Region-specific or resolution-specific imagery
* Auxiliary or annotation layers
* Grid-level metadata enrichment
* Benchmarks and model evaluations
## Citation
TBD – upon official release. |