nahiar commited on
Commit
a33be93
·
verified ·
1 Parent(s): ce724d1

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +130 -3
README.md CHANGED
@@ -1,3 +1,130 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ task_categories:
4
+ - tabular-classification
5
+ language:
6
+ - en
7
+ tags:
8
+ - social-media
9
+ - fraud-detection
10
+ - instagram
11
+ - fake-accounts
12
+ - cybersecurity
13
+ - machine-learning
14
+ - binary-classification
15
+ size_categories:
16
+ - 1K<n<10K
17
+ ---
18
+
19
+ # Instagram Fake Profile Detection Dataset
20
+
21
+ ## Dataset Summary
22
+
23
+ This dataset contains **5,000 Instagram profiles** labeled as either fake or real, designed for binary classification tasks in social media fraud detection. The dataset provides comprehensive profile features that can be used to train machine learning models to automatically identify fake Instagram accounts.
24
+
25
+ ## Dataset Details
26
+
27
+ - **Total Samples**: 5,000 profiles
28
+ - **Classes**: Binary (0 = Real, 1 = Fake)
29
+ - **Class Distribution**: Perfectly balanced (2,500 fake, 2,500 real)
30
+ - **Features**: 11 profile characteristics + 1 target label
31
+ - **Format**: CSV file
32
+
33
+ ## Features Description
34
+
35
+ | Feature | Type | Description | Range |
36
+ |---------|------|-------------|-------|
37
+ | `profile pic` | Binary | Whether profile has a picture (1) or not (0) | 0-1 |
38
+ | `nums/length username` | Float | Ratio of numbers to total characters in username | 0.0-0.92 |
39
+ | `fullname words` | Integer | Number of words in the full name | 0-12 |
40
+ | `nums/length fullname` | Float | Ratio of numbers to total characters in full name | 0.0-1.0 |
41
+ | `name==username` | Binary | Whether full name equals username (1) or not (0) | 0-1 |
42
+ | `description length` | Integer | Character count of profile description/bio | 0-150 |
43
+ | `external URL` | Binary | Whether profile contains external URL (1) or not (0) | 0-1 |
44
+ | `private` | Binary | Whether account is private (1) or public (0) | 0-1 |
45
+ | `#posts` | Integer | Total number of posts | 0-7,389 |
46
+ | `#followers` | Integer | Number of followers | 0-15.3M |
47
+ | `#follows` | Integer | Number of accounts being followed | 0-7,500 |
48
+ | `fake` | Binary | **Target variable** - Fake (1) or Real (0) | 0-1 |
49
+
50
+ ## Key Statistics
51
+
52
+ - **Profile Pictures**: 60% of profiles have profile pictures
53
+ - **Username Patterns**: Average 17% numeric characters in usernames
54
+ - **Descriptions**: Average 21 characters in bio descriptions
55
+ - **Privacy**: 23% of accounts are private
56
+ - **Activity**: Average 103 posts per profile
57
+ - **Social Metrics**:
58
+ - Average followers: ~51K (highly variable)
59
+ - Average following: ~481 accounts
60
+
61
+ ## Use Cases
62
+
63
+ This dataset is ideal for:
64
+
65
+ - **Binary Classification**: Train models to detect fake Instagram profiles
66
+ - **Feature Engineering**: Analyze which profile characteristics best distinguish fake accounts
67
+ - **Social Media Research**: Study patterns in fraudulent social media behavior
68
+ - **Anomaly Detection**: Develop unsupervised methods for identifying suspicious profiles
69
+ - **Educational Projects**: Learn machine learning classification techniques
70
+
71
+ ## Quick Start
72
+
73
+ ```python
74
+ import pandas as pd
75
+ from sklearn.model_selection import train_test_split
76
+ from sklearn.ensemble import RandomForestClassifier
77
+ from sklearn.metrics import classification_report
78
+
79
+ # Load dataset
80
+ df = pd.read_csv('Instagram_fake_profile_dataset.csv')
81
+
82
+ # Prepare features and target
83
+ X = df.drop('fake', axis=1)
84
+ y = df['fake']
85
+
86
+ # Split data
87
+ X_train, X_test, y_train, y_test = train_test_split(
88
+ X, y, test_size=0.2, random_state=42, stratify=y
89
+ )
90
+
91
+ # Train model
92
+ model = RandomForestClassifier(n_estimators=100, random_state=42)
93
+ model.fit(X_train, y_train)
94
+
95
+ # Evaluate
96
+ y_pred = model.predict(X_test)
97
+ print(classification_report(y_test, y_pred))
98
+ ```
99
+
100
+ ## Suggested Models
101
+
102
+ - **Traditional ML**: Random Forest, SVM, Gradient Boosting, Logistic Regression
103
+ - **Deep Learning**: Neural Networks for feature interaction modeling
104
+ - **Ensemble Methods**: Combining multiple algorithms for improved performance
105
+ - **Unsupervised**: Isolation Forest, One-Class SVM for anomaly detection
106
+
107
+ ## Data Quality
108
+
109
+ - ✅ **Balanced Dataset**: Equal representation prevents class bias
110
+ - ✅ **Complete Data**: No missing values
111
+ - ✅ **Realistic Ranges**: All features show realistic distributions
112
+ - ✅ **Privacy Compliant**: Only behavioral features, no personal information
113
+
114
+ ## Research Opportunities
115
+
116
+ 1. Which profile features are most predictive of fake accounts?
117
+ 2. How do fake profiles differ in posting behavior vs. real users?
118
+ 3. Can feature interactions improve detection accuracy?
119
+ 4. What behavioral patterns emerge in fraudulent accounts?
120
+
121
+ ## Citation
122
+
123
+ ```bibtex
124
+ @dataset{instagram_fake_profiles_2024,
125
+ title={Instagram Fake Profile Detection Dataset},
126
+ year={2025},
127
+ publisher={Hugging Face},
128
+ url={https://huggingface.co/datasets/nahiar/instagram-bot-detection}
129
+ }
130
+ ```