Datasets:
Upload 3 files
Browse files- README.md +27 -1
- data.csv +0 -0
- waveform_noise.py +104 -0
README.md
CHANGED
@@ -1,3 +1,29 @@
|
|
1 |
---
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
tags:
|
5 |
+
- waveformnoiseV1
|
6 |
+
- tabular_classification
|
7 |
+
- binary_classification
|
8 |
+
- multiclass_classification
|
9 |
+
pretty_name: WaveformNoiseV1
|
10 |
+
size_categories:
|
11 |
+
- 1K<n<5K
|
12 |
+
task_categories: # Full list at https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Types.ts
|
13 |
+
- tabular-classification
|
14 |
+
configs:
|
15 |
+
- waveformnoiseV1
|
16 |
+
- waveformnoiseV1_0
|
17 |
+
- waveformnoiseV1_1
|
18 |
+
- waveformnoiseV1_2
|
19 |
---
|
20 |
+
# WaveformNoiseV1
|
21 |
+
The [WaveformNoiseV1 dataset](https://archive-beta.ics.uci.edu/dataset/107/waveform+database+generator+version+1) from the [UCI repository](https://archive-beta.ics.uci.edu/).
|
22 |
+
|
23 |
+
# Configurations and tasks
|
24 |
+
| **Configuration** | **Task** | **Description** |
|
25 |
+
|-----------------------|---------------------------|-------------------------|
|
26 |
+
| waveformnoiseV1 | Multiclass classification.| |
|
27 |
+
| waveformnoiseV1_0 | Binary classification. | Is the image of class 0? |
|
28 |
+
| waveformnoiseV1_1 | Binary classification. | Is the image of class 1? |
|
29 |
+
| waveformnoiseV1_2 | Binary classification. | Is the image of class 2? |
|
data.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
waveform_noise.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""WaveformNoiseV1 Dataset"""
|
2 |
+
|
3 |
+
from typing import List
|
4 |
+
from functools import partial
|
5 |
+
|
6 |
+
import datasets
|
7 |
+
|
8 |
+
import pandas
|
9 |
+
|
10 |
+
|
11 |
+
VERSION = datasets.Version("1.0.0")
|
12 |
+
|
13 |
+
_ENCODING_DICS = {}
|
14 |
+
|
15 |
+
DESCRIPTION = "WaveformNoiseV1 dataset."
|
16 |
+
_HOMEPAGE = "https://archive-beta.ics.uci.edu/dataset/78/page+blocks+classification"
|
17 |
+
_URLS = ("https://archive-beta.ics.uci.edu/dataset/78/page+blocks+classification")
|
18 |
+
_CITATION = """
|
19 |
+
@misc{misc_waveform_database_generator_(version_1)_107,
|
20 |
+
author = {Breiman,L. & Stone,C.J.},
|
21 |
+
title = {{Waveform Database Generator (Version 1)}},
|
22 |
+
year = {1988},
|
23 |
+
howpublished = {UCI Machine Learning Repository},
|
24 |
+
note = {{DOI}: \\url{10.24432/C5CS3C}}
|
25 |
+
}
|
26 |
+
"""
|
27 |
+
|
28 |
+
# Dataset info
|
29 |
+
urls_per_split = {
|
30 |
+
"train": "https://huggingface.co/datasets/mstz/waveformnoiseV1/raw/main/data.csv"
|
31 |
+
}
|
32 |
+
features_types_per_config = {
|
33 |
+
"waveformnoiseV1": {f"feature_{i}": datasets.Value("float64") for i in range(data.shape[1] - 1)},
|
34 |
+
"waveformnoiseV1_0": {f"feature_{i}": datasets.Value("float64") for i in range(data.shape[1] - 1)},
|
35 |
+
"waveformnoiseV1_1": {f"feature_{i}": datasets.Value("float64") for i in range(data.shape[1] - 1)},
|
36 |
+
"waveformnoiseV1_2": {f"feature_{i}": datasets.Value("float64") for i in range(data.shape[1] - 1)},
|
37 |
+
}
|
38 |
+
|
39 |
+
features_types_per_config["waveformnoiseV1"]["class"] = datasets.ClassLabel(num_classes=3)
|
40 |
+
features_types_per_config["waveformnoiseV1_0"]["class"] = datasets.ClassLabel(num_classes=2)
|
41 |
+
features_types_per_config["waveformnoiseV1_1"]["class"] = datasets.ClassLabel(num_classes=2)
|
42 |
+
features_types_per_config["waveformnoiseV1_2"]["class"] = datasets.ClassLabel(num_classes=2)
|
43 |
+
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
|
44 |
+
|
45 |
+
|
46 |
+
class WaveformNoiseV1Config(datasets.BuilderConfig):
|
47 |
+
def __init__(self, **kwargs):
|
48 |
+
super(WaveformNoiseV1Config, self).__init__(version=VERSION, **kwargs)
|
49 |
+
self.features = features_per_config[kwargs["name"]]
|
50 |
+
|
51 |
+
|
52 |
+
class WaveformNoiseV1(datasets.GeneratorBasedBuilder):
|
53 |
+
# dataset versions
|
54 |
+
DEFAULT_CONFIG = "waveformnoiseV1"
|
55 |
+
BUILDER_CONFIGS = [
|
56 |
+
WaveformNoiseV1Config(name="waveformnoiseV1", description="WaveformNoiseV1 for multiclass classification."),
|
57 |
+
WaveformNoiseV1Config(name="waveformnoiseV1_0", description="WaveformNoiseV1 for binary classification."),
|
58 |
+
WaveformNoiseV1Config(name="waveformnoiseV1_1", description="WaveformNoiseV1 for binary classification."),
|
59 |
+
WaveformNoiseV1Config(name="waveformnoiseV1_2", description="WaveformNoiseV1 for binary classification."),
|
60 |
+
|
61 |
+
]
|
62 |
+
|
63 |
+
|
64 |
+
def _info(self):
|
65 |
+
info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
|
66 |
+
features=features_per_config[self.config.name])
|
67 |
+
|
68 |
+
return info
|
69 |
+
|
70 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
71 |
+
downloads = dl_manager.download_and_extract(urls_per_split)
|
72 |
+
|
73 |
+
return [
|
74 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}),
|
75 |
+
]
|
76 |
+
|
77 |
+
def _generate_examples(self, filepath: str):
|
78 |
+
data = pandas.read_csv(filepath, header=None)
|
79 |
+
data.columns = [f"feature_{i}" for i in range(data.shape[1] - 1)] + ["class"]
|
80 |
+
data = self.preprocess(data)
|
81 |
+
|
82 |
+
for row_id, row in data.iterrows():
|
83 |
+
data_row = dict(row)
|
84 |
+
|
85 |
+
yield row_id, data_row
|
86 |
+
|
87 |
+
def preprocess(self, data: pandas.DataFrame) -> pandas.DataFrame:
|
88 |
+
if self.config.name == "waveformnoiseV1_0":
|
89 |
+
data["class"] = data["class"].apply(lambda x: 1 if x == 0 else 0)
|
90 |
+
elif self.config.name == "waveformnoiseV1_1":
|
91 |
+
data["class"] = data["class"].apply(lambda x: 1 if x == 1 else 0)
|
92 |
+
elif self.config.name == "waveformnoiseV1_2":
|
93 |
+
data["class"] = data["class"].apply(lambda x: 1 if x == 2 else 0)
|
94 |
+
|
95 |
+
for feature in _ENCODING_DICS:
|
96 |
+
encoding_function = partial(self.encode, feature)
|
97 |
+
data.loc[:, feature] = data[feature].apply(encoding_function)
|
98 |
+
|
99 |
+
return data[list(features_types_per_config[self.config.name].keys())]
|
100 |
+
|
101 |
+
def encode(self, feature, value):
|
102 |
+
if feature in _ENCODING_DICS:
|
103 |
+
return _ENCODING_DICS[feature][value]
|
104 |
+
raise ValueError(f"Unknown feature: {feature}")
|