Upload PAIR.py
Browse files
PAIR.py
CHANGED
@@ -49,19 +49,24 @@ _URLS = {
|
|
49 |
|
50 |
|
51 |
# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
|
52 |
-
|
|
|
|
|
53 |
|
54 |
class PAIRDataset(datasets.GeneratorBasedBuilder):
|
55 |
"""PAIRDataset."""
|
56 |
-
|
|
|
|
|
|
|
|
|
57 |
def _info(self):
|
58 |
"""_info."""
|
59 |
return datasets.DatasetInfo(
|
60 |
description="My custom dataset.",
|
61 |
features=datasets.Features(
|
62 |
{
|
63 |
-
|
64 |
-
"names": datasets.Value("string"),
|
65 |
"sequence": datasets.Value("string"),
|
66 |
"pid": datasets.Value("string"),
|
67 |
}
|
@@ -109,12 +114,13 @@ class PAIRDataset(datasets.GeneratorBasedBuilder):
|
|
109 |
data = json.load(f)
|
110 |
counter = 0
|
111 |
for idx, annotation_type in enumerate(data.keys()):
|
|
|
112 |
# Parse your line into the appropriate fields
|
113 |
samples = data[annotation_type]
|
114 |
for idx_2, elem in enumerate(samples):
|
115 |
# example = parse_line_to_example(line)
|
116 |
if elem["content"] != [None]:
|
117 |
-
unique_id = f"{elem['pid']}_{
|
118 |
content = elem["content"][0]
|
119 |
# print(literal_eval(content), "done")
|
120 |
yield unique_id, {
|
@@ -126,97 +132,4 @@ class PAIRDataset(datasets.GeneratorBasedBuilder):
|
|
126 |
|
127 |
|
128 |
#"annotation_type": annotation_type,
|
129 |
-
#"annotation": content,
|
130 |
-
# class PAIRDataset(datasets.GeneratorBasedBuilder):
|
131 |
-
# """TODO: Short description of my dataset."""
|
132 |
-
#
|
133 |
-
# VERSION = datasets.Version("1.1.0")
|
134 |
-
#
|
135 |
-
# # This is an example of a dataset with multiple configurations.
|
136 |
-
# # If you don't want/need to define several sub-sets in your dataset,
|
137 |
-
# # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
|
138 |
-
#
|
139 |
-
# # If you need to make complex sub-parts in the datasets with configurable options
|
140 |
-
# # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
|
141 |
-
# # BUILDER_CONFIG_CLASS = MyBuilderConfig
|
142 |
-
#
|
143 |
-
# # You will be able to load one or the other configurations in the following list with
|
144 |
-
# # data = datasets.load_dataset('my_dataset', 'first_domain')
|
145 |
-
# # data = datasets.load_dataset('my_dataset', 'second_domain')
|
146 |
-
# BUILDER_CONFIGS = [
|
147 |
-
# datasets.BuilderConfig(name="first_domain", version=VERSION, description="This part of my dataset covers a first domain"),
|
148 |
-
# ]
|
149 |
-
#
|
150 |
-
# DEFAULT_CONFIG_NAME = "first_domain" # It's not mandatory to have a default configuration. Just use one if it make sense.
|
151 |
-
#
|
152 |
-
# def _info(self):
|
153 |
-
# # TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
|
154 |
-
# if self.config.name == "first_domain": # This is the name of the configuration selected in BUILDER_CONFIGS above
|
155 |
-
# features = datasets.Features(
|
156 |
-
# {
|
157 |
-
# "sentence": datasets.Value("string"),
|
158 |
-
# "option1": datasets.Value("string"),
|
159 |
-
# "answer": datasets.Value("string")
|
160 |
-
# # These are the features of your dataset like images, labels ...
|
161 |
-
# }
|
162 |
-
# )
|
163 |
-
#
|
164 |
-
# return datasets.DatasetInfo(
|
165 |
-
# # This is the description that will appear on the datasets page.
|
166 |
-
# description=_DESCRIPTION,
|
167 |
-
# # This defines the different columns of the dataset and their types
|
168 |
-
# features=features, # Here we define them above because they are different between the two configurations
|
169 |
-
# # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
|
170 |
-
# # specify them. They'll be used if as_supervised=True in builder.as_dataset.
|
171 |
-
# # supervised_keys=("sentence", "label"),
|
172 |
-
# # Homepage of the dataset for documentation
|
173 |
-
# homepage=_HOMEPAGE,
|
174 |
-
# # License for the dataset if available
|
175 |
-
# license=_LICENSE,
|
176 |
-
# # Citation for the dataset
|
177 |
-
# citation=_CITATION,
|
178 |
-
# )
|
179 |
-
#
|
180 |
-
# def _split_generators(self, dl_manager):
|
181 |
-
# # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
|
182 |
-
# # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
|
183 |
-
#
|
184 |
-
# # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
|
185 |
-
# # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
|
186 |
-
# # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
|
187 |
-
# # urls = _URLS[self.config.name]
|
188 |
-
# #data_dir = dl_manager.download_and_extract(urls)
|
189 |
-
# return [
|
190 |
-
# # datasets.SplitGenerator(
|
191 |
-
# # name=datasets.Split.TRAIN,
|
192 |
-
# # # These kwargs will be passed to _generate_examples
|
193 |
-
# ### gen_kwargs={
|
194 |
-
# # "filepath": os.path.join(data_dir, "train.json"),
|
195 |
-
# # "split": "train",
|
196 |
-
# # },
|
197 |
-
# # ),
|
198 |
-
# datasets.SplitGenerator(
|
199 |
-
# name=datasets.Split.TEST,
|
200 |
-
# # These kwargs will be passed to _generate_examples
|
201 |
-
# gen_kwargs={
|
202 |
-
# "filepath": "test.json", #os.path.join(data_dir, "test.json"),
|
203 |
-
# "split": "test"
|
204 |
-
# },
|
205 |
-
# ),
|
206 |
-
# ]
|
207 |
-
#
|
208 |
-
# # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
209 |
-
# def _generate_examples(self, filepath, split):
|
210 |
-
# # TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
|
211 |
-
# # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
|
212 |
-
# with open(filepath, encoding="utf-8") as f:
|
213 |
-
# for key, row in enumerate(f):
|
214 |
-
# data = json.loads(row)
|
215 |
-
# if data['content'] != [None]:
|
216 |
-
# yield key, {
|
217 |
-
# "sequence": data["seq"],
|
218 |
-
# "pid": data["pid"],
|
219 |
-
# #"content": "" if split == "test" else data["answer"],
|
220 |
-
# "content": data['content'][0],
|
221 |
-
# }
|
222 |
|
|
|
49 |
|
50 |
|
51 |
# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
|
52 |
+
annotation2type = {"names": datasets.Value("string"),
|
53 |
+
"EC": datasets.Sequence(datasets.Value("string")),
|
54 |
+
}
|
55 |
|
56 |
class PAIRDataset(datasets.GeneratorBasedBuilder):
|
57 |
"""PAIRDataset."""
|
58 |
+
def __init__(self, *args, annotation_type=None, **kwargs):
|
59 |
+
super().__init__(*args, **kwargs)
|
60 |
+
self.annotation_type = annotation_type # Save the custom argument for later use
|
61 |
+
print(self.annotation_type)
|
62 |
+
exit()
|
63 |
def _info(self):
|
64 |
"""_info."""
|
65 |
return datasets.DatasetInfo(
|
66 |
description="My custom dataset.",
|
67 |
features=datasets.Features(
|
68 |
{
|
69 |
+
self.annotation_type: annotation2type[self.annotation_type],
|
|
|
70 |
"sequence": datasets.Value("string"),
|
71 |
"pid": datasets.Value("string"),
|
72 |
}
|
|
|
114 |
data = json.load(f)
|
115 |
counter = 0
|
116 |
for idx, annotation_type in enumerate(data.keys()):
|
117 |
+
if annotation_type != self.annotation_type: continue
|
118 |
# Parse your line into the appropriate fields
|
119 |
samples = data[annotation_type]
|
120 |
for idx_2, elem in enumerate(samples):
|
121 |
# example = parse_line_to_example(line)
|
122 |
if elem["content"] != [None]:
|
123 |
+
unique_id = f"{elem['pid']}_{idx}"
|
124 |
content = elem["content"][0]
|
125 |
# print(literal_eval(content), "done")
|
126 |
yield unique_id, {
|
|
|
132 |
|
133 |
|
134 |
#"annotation_type": annotation_type,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
|