Update language-metric-data.py
Browse files- language-metric-data.py +18 -34
language-metric-data.py
CHANGED
@@ -22,7 +22,7 @@ import datasets
|
|
22 |
|
23 |
# _LICENSE = "Specify your license here."
|
24 |
|
25 |
-
class
|
26 |
VERSION = datasets.Version("1.0.0")
|
27 |
|
28 |
def _info(self):
|
@@ -32,24 +32,13 @@ class WholeDataset(datasets.GeneratorBasedBuilder):
|
|
32 |
"average_distances_matrix": datasets.Sequence(
|
33 |
datasets.Sequence(datasets.Value("float"))
|
34 |
),
|
35 |
-
# "distances_matrices": datasets.Sequence(
|
36 |
-
# datasets.Features({
|
37 |
-
# "dataset_name": datasets.Value("string"),
|
38 |
-
# "models": datasets.Sequence(
|
39 |
-
# datasets.Features({
|
40 |
-
# "model_name": datasets.Value("string"),
|
41 |
-
# "matrix": datasets.Sequence(
|
42 |
-
# datasets.Sequence(datasets.Value("float"))
|
43 |
-
# )
|
44 |
-
# })
|
45 |
-
# )
|
46 |
-
# })
|
47 |
-
# )
|
48 |
"distances_matrices": datasets.Sequence(
|
49 |
datasets.Features({
|
50 |
-
datasets.Value("string")
|
|
|
51 |
datasets.Features({
|
52 |
-
datasets.Value("string")
|
|
|
53 |
datasets.Sequence(datasets.Value("float"))
|
54 |
)
|
55 |
})
|
@@ -95,27 +84,22 @@ class WholeDataset(datasets.GeneratorBasedBuilder):
|
|
95 |
# Convert the nested dict structure into a list of dictionaries.
|
96 |
# Each outer key corresponds to a dataset name.
|
97 |
# Each inner dict is a mapping from model name to a NumPy matrix.
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
# })
|
111 |
-
# distances_matrices_list.append({
|
112 |
-
# "dataset_name": dataset_name,
|
113 |
-
# "models": models_list
|
114 |
-
# })
|
115 |
|
116 |
# Yield a single example containing the whole dataset.
|
117 |
yield 0, {
|
118 |
"languages_list": languages_list,
|
119 |
"average_distances_matrix": average_distances_matrix,
|
120 |
-
"distances_matrices":
|
121 |
}
|
|
|
22 |
|
23 |
# _LICENSE = "Specify your license here."
|
24 |
|
25 |
+
class DistancesDataset(datasets.GeneratorBasedBuilder):
|
26 |
VERSION = datasets.Version("1.0.0")
|
27 |
|
28 |
def _info(self):
|
|
|
32 |
"average_distances_matrix": datasets.Sequence(
|
33 |
datasets.Sequence(datasets.Value("float"))
|
34 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
"distances_matrices": datasets.Sequence(
|
36 |
datasets.Features({
|
37 |
+
"dataset_name": datasets.Value("string"),
|
38 |
+
"models": datasets.Sequence(
|
39 |
datasets.Features({
|
40 |
+
"model_name": datasets.Value("string"),
|
41 |
+
"matrix": datasets.Sequence(
|
42 |
datasets.Sequence(datasets.Value("float"))
|
43 |
)
|
44 |
})
|
|
|
84 |
# Convert the nested dict structure into a list of dictionaries.
|
85 |
# Each outer key corresponds to a dataset name.
|
86 |
# Each inner dict is a mapping from model name to a NumPy matrix.
|
87 |
+
distances_matrices_list = []
|
88 |
+
for dataset_name, models_dict in distances_matrices.items():
|
89 |
+
models_list = []
|
90 |
+
for model_name, matrix in models_dict.items():
|
91 |
+
models_list.append({
|
92 |
+
"model_name": model_name,
|
93 |
+
"matrix": matrix
|
94 |
+
})
|
95 |
+
distances_matrices_list.append({
|
96 |
+
"dataset_name": dataset_name,
|
97 |
+
"models": models_list
|
98 |
+
})
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
# Yield a single example containing the whole dataset.
|
101 |
yield 0, {
|
102 |
"languages_list": languages_list,
|
103 |
"average_distances_matrix": average_distances_matrix,
|
104 |
+
"distances_matrices": distances_matrices_list
|
105 |
}
|