Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
|
@@ -1,33 +1,29 @@
|
|
|
|
|
| 1 |
---
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
- name: ade
|
| 9 |
-
dtype: string
|
| 10 |
-
- name: drug
|
| 11 |
-
dtype: string
|
| 12 |
-
splits:
|
| 13 |
-
- name: train
|
| 14 |
-
num_bytes: 686268
|
| 15 |
-
num_examples: 3458
|
| 16 |
-
- name: validation
|
| 17 |
-
num_bytes: 75829
|
| 18 |
-
num_examples: 385
|
| 19 |
-
- name: test
|
| 20 |
-
num_bytes: 85453
|
| 21 |
-
num_examples: 428
|
| 22 |
-
download_size: 469145
|
| 23 |
-
dataset_size: 847550
|
| 24 |
-
configs:
|
| 25 |
-
- config_name: default
|
| 26 |
-
data_files:
|
| 27 |
-
- split: train
|
| 28 |
-
path: data/train-*
|
| 29 |
-
- split: validation
|
| 30 |
-
path: data/validation-*
|
| 31 |
-
- split: test
|
| 32 |
-
path: data/test-*
|
| 33 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
---
|
| 3 |
+
language: en
|
| 4 |
+
tags:
|
| 5 |
+
- entity-extraction
|
| 6 |
+
- biomedical
|
| 7 |
+
- adverse-drug-events
|
| 8 |
+
- named-entity-recognition
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
---
|
| 10 |
+
|
| 11 |
+
# Dataset: Entity Extraction Adverse Drug Events with Validation Split
|
| 12 |
+
|
| 13 |
+
This dataset is a modified version of the `harpreetmann/entity_extraction_ade_v2` dataset that includes a validation split.
|
| 14 |
+
|
| 15 |
+
## Dataset Structure
|
| 16 |
+
|
| 17 |
+
The dataset contains:
|
| 18 |
+
- Training set: 3458 examples
|
| 19 |
+
- Validation set: 385 examples
|
| 20 |
+
- Test set: 428 examples
|
| 21 |
+
|
| 22 |
+
## Features
|
| 23 |
+
|
| 24 |
+
- text: A string containing medical text with adverse drug events
|
| 25 |
+
- relations: A list of dictionaries containing drug-ADE relationships
|
| 26 |
+
|
| 27 |
+
## Creation Process
|
| 28 |
+
|
| 29 |
+
The validation set was created by taking 10% of the original training data using sklearn's train_test_split function with random_state=42.
|