shaipeerms commited on
Commit
e7fa81e
·
1 Parent(s): 71aece7

Add dataset README

Browse files
Files changed (1) hide show
  1. README.md +317 -3
README.md CHANGED
@@ -1,3 +1,317 @@
1
- ---
2
- license: cc-by-4.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [![Slack][slack-badge]][slack-invite]
2
+
3
+
4
+ [slack-badge]: https://img.shields.io/badge/slack-chat-green.svg?logo=slack
5
+ [slack-invite]: https://join.slack.com/t/chime-fey5388/shared_invite/zt-1oha0gedv-JEUr1mSztR7~iK9AxM4HOA
6
+
7
+ # Introduction
8
+ Welcome to the "NOTSOFAR-1: Distant Meeting Transcription with a Single Device" Challenge.
9
+
10
+ This repo contains the baseline system code for the NOTSOFAR-1 Challenge.
11
+
12
+ - For more information about NOTSOFAR, visit [CHiME's official challenge website](https://www.chimechallenge.org/current/task2/index)
13
+ - [Register](https://www.chimechallenge.org/current/task2/submission) to participate.
14
+ - [Baseline system description](https://www.chimechallenge.org/current/task2/baseline).
15
+ - Contact us: join the `chime-8-notsofar` channel on the [CHiME Slack](https://join.slack.com/t/chime-fey5388/shared_invite/zt-1oha0gedv-JEUr1mSztR7~iK9AxM4HOA), or open a [GitHub issue](https://github.com/microsoft/NOTSOFAR1-Challenge/issues).
16
+
17
+ ### 📊 Baseline Results on NOTSOFAR dev-set-1
18
+
19
+ Values are presented in `tcpWER / tcORC-WER (session count)` format.
20
+ <br>
21
+ As mentioned in the [official website](https://www.chimechallenge.org/current/task2/index#tracks),
22
+ systems are ranked based on the speaker-attributed
23
+ [tcpWER](https://github.com/fgnt/meeteval/blob/main/doc/tcpwer.md)
24
+ , while the speaker-agnostic [tcORC-WER](https://github.com/fgnt/meeteval) serves as a supplementary metric for analysis.
25
+ <br>
26
+ We include analysis based on a selection of hashtags from our [metadata](https://www.chimechallenge.org/current/task2/data#metadata), providing insights into how different conditions affect system performance.
27
+
28
+
29
+
30
+ | | Single-Channel | Multi-Channel |
31
+ |----------------------|-----------------------|-----------------------|
32
+ | All Sessions | **46.8** / 38.5 (177) | **32.4** / 26.7 (106) |
33
+ | #NaturalMeeting | 47.6 / 40.2 (30) | 32.3 / 26.2 (18) |
34
+ | #DebateOverlaps | 54.9 / 44.7 (39) | 38.0 / 31.4 (24) |
35
+ | #TurnsNoOverlap | 32.4 / 29.7 (10) | 21.2 / 18.8 (6) |
36
+ | #TransientNoise=high | 51.0 / 43.7 (10) | 33.6 / 29.1 (5) |
37
+ | #TalkNearWhiteboard | 55.4 / 43.9 (40) | 39.9 / 31.2 (22) |
38
+
39
+
40
+
41
+
42
+
43
+
44
+
45
+ # Project Setup
46
+ The following steps will guide you through setting up the project on your machine. <br>
47
+
48
+ ### Windows Users
49
+ This project is compatible with **Linux** environments. Windows users can refer to [Docker](#docker) or
50
+ [Devcontainer](#devcontainer) sections. <br>
51
+ Alternatively, install WSL2 by following the [WSL2 Installation Guide](https://learn.microsoft.com/en-us/windows/wsl/install), then install Ubuntu 20.04 from the [Microsoft Store](https://www.microsoft.com/en-us/p/ubuntu-2004-lts/9n6svws3rx71?activetab=pivot:overviewtab). <br>
52
+
53
+ ## Cloning the Repository
54
+
55
+ Clone the `NOTSOFAR1-Challenge` repository from GitHub. Open your terminal and run the following command:
56
+
57
+ ```bash
58
+ sudo apt-get install git
59
+ cd path/to/your/projects/directory
60
+ git clone https://github.com/microsoft/NOTSOFAR1-Challenge.git
61
+ ```
62
+
63
+
64
+ ## Setting up the environment
65
+
66
+ ### Conda
67
+
68
+ #### Step 1: Install Conda
69
+
70
+ Conda is a package manager that is used to install Python and other dependencies.<br>
71
+ To install Miniconda, which is a minimal version of Conda, run the following commands:
72
+
73
+ ```bash
74
+ miniconda_dir="$HOME/miniconda3"
75
+ script="Miniconda3-latest-Linux-$(uname -m).sh"
76
+ wget --tries=3 "https://repo.anaconda.com/miniconda/${script}"
77
+ bash "${script}" -b -p "${miniconda_dir}"
78
+ export PATH="${miniconda_dir}/bin:$PATH"
79
+ ````
80
+ *** You may change the `miniconda_dir` variable to install Miniconda in a different directory.
81
+
82
+
83
+ #### Step 2: Create a Conda Environment
84
+
85
+ Conda Environments are used to isolate Python dependencies. <br>
86
+ To set it up, run the following commands:
87
+
88
+ ```bash
89
+ source "/path/to/conda/dir/etc/profile.d/conda.sh"
90
+ conda create --name notsofar python=3.10 -y
91
+ conda activate notsofar
92
+ cd /path/to/NOTSOFAR1-Challenge
93
+ python -m pip install --upgrade pip
94
+ pip install --upgrade setuptools wheel Cython fasttext-wheel
95
+ pip install -r requirements.txt
96
+ conda install ffmpeg -c conda-forge -y
97
+ ```
98
+
99
+ ### PIP
100
+
101
+ #### Step 1: Install Python 3.10
102
+
103
+ Python 3.10 is required to run the project. To install it, run the following commands:
104
+
105
+ ```bash
106
+ sudo apt update && sudo apt upgrade
107
+ sudo add-apt-repository ppa:deadsnakes/ppa -y
108
+ sudo apt update
109
+ sudo apt install python3.10
110
+ ```
111
+
112
+ #### Step 2: Set Up the Python Virtual Environment
113
+
114
+ Python virtual environments are used to isolate Python dependencies. <br>
115
+ To set it up, run the following commands:
116
+
117
+ ```bash
118
+ sudo apt-get install python3.10-venv
119
+ python3.10 -m venv /path/to/virtualenvs/NOTSOFAR
120
+ source /path/to/virtualenvs/NOTSOFAR/bin/activate
121
+ ```
122
+
123
+ #### Step 3: Install Python Dependencies
124
+
125
+ Navigate to the cloned repository and install the required Python dependencies:
126
+
127
+ ```bash
128
+ cd /path/to/NOTSOFAR1-Challenge
129
+ python -m pip install --upgrade pip
130
+ pip install --upgrade setuptools wheel Cython fasttext-wheel
131
+ sudo apt-get install python3.10-dev ffmpeg build-essential
132
+ pip install -r requirements.txt
133
+ ```
134
+
135
+ ### Docker
136
+
137
+ Refer to the `Dockerfile` in the project's root for dependencies setup. To use Docker, ensure you have Docker installed on your system and configured to use Linux containers.
138
+
139
+ ### Devcontainer
140
+ With the provided `devcontainer.json` you can run and work on the project in a [devctonainer](https://containers.dev/) using, for example, the [Dev Containers VSCode Extension](https://code.visualstudio.com/docs/devcontainers/containers).
141
+
142
+
143
+ # Running evaluation - the inference pipeline
144
+ The following command will download the **entire dev-set** of the recorded meeting dataset and run the inference pipeline
145
+ according to selected configuration. The default is configured to `--config-name dev_set_1_mc_debug` for quick debugging,
146
+ running on a single session with the Whisper 'tiny' model.
147
+ ```bash
148
+ cd /path/to/NOTSOFAR1-Challenge
149
+ python run_inference.py
150
+ ```
151
+
152
+ To run on all multi-channel or single-channel dev-set sessions, use the following commands respectively:
153
+ ```bash
154
+ python run_inference.py --config-name full_dev_set_mc
155
+ python run_inference.py --config-name full_dev_set_sc
156
+ ```
157
+ The first time `run_inference.py` runs, it will automatically download these required models and datasets from blob storage:
158
+
159
+
160
+ 1. The development set of the meeting dataset (dev-set) will be stored in the `artifacts/meeting_data` directory.
161
+ 2. The CSS models required to run the inference pipeline will be stored in the `artifacts/css_models` directory.
162
+
163
+ Outputs will be written to the `artifacts/outputs` directory.
164
+
165
+
166
+
167
+ The `session_query` argument found in the yaml config file (e.g. `configs/inference/inference_v1.yaml`) offers more control over filtering meetings.
168
+ Note that to submit results on the dev-set, you must evaluate on the full set (`full_dev_set_mc` or `full_dev_set_sc`) and no filtering must be performed.
169
+
170
+
171
+ # Integrating your own models
172
+ The inference pipeline is modular, designed for easy research and extension.
173
+ Begin by exploring the following components:
174
+ - **Continuous Speech Separation (CSS)**: See `css_inference` in `css.py` . We provide a model pre-trained on NOTSOFAR's simulated training dataset, as well as inference and training code. For more information, refer to the [CSS section](#running-css-continuous-speech-separation-training).
175
+ - **Automatic Speech Recognition (ASR)**: See `asr_inference` in `asr.py`. The baseline implementation relies on [Whisper](https://github.com/openai/whisper).
176
+ - **Speaker Diarization**: See `diarization_inference` in `diarization.py`. The baseline implementation relies on the [NeMo toolkit](https://github.com/NVIDIA/NeMo).
177
+
178
+ ### Training datasets
179
+ For training and fine-tuning your models, NOTSOFAR offers the **simulated training set** and the training portion of the
180
+ **recorded meeting dataset**. Refer to the `download_simulated_subset` and `download_meeting_subset` functions in
181
+ [utils/azure_storage.py](https://github.com/microsoft/NOTSOFAR1-Challenge/blob/main/utils/azure_storage.py#L109),
182
+ or the [NOTSOFAR-1 Datasets](#notsofar-1-datasets---download-instructions) section.
183
+
184
+
185
+ # Running CSS (continuous speech separation) training
186
+
187
+ ## 1. Local training on a data sample for development and debugging
188
+ The following command will run CSS training on the 10-second simulated training data sample in `sample_data/css_train_set`.
189
+ ```bash
190
+ cd /path/to/NOTSOFAR1-Challenge
191
+ python run_training_css_local.py
192
+ ```
193
+
194
+ ## 2. Training on the full simulated training dataset
195
+
196
+ ### Step 1: Download the simulated training dataset
197
+ You can use the `download_simulated_subset` function in
198
+ [utils/azure_storage.py](https://github.com/microsoft/NOTSOFAR1-Challenge/blob/main/utils/azure_storage.py)
199
+ to download the training dataset from blob storage.
200
+ You have the option to download either the complete dataset, comprising almost 1000 hours, or a smaller, 200-hour subset.
201
+
202
+ Examples:
203
+ ```python
204
+ ver='v1.5' # this should point to the lateset and greatest version of the dataset.
205
+
206
+ # Option 1: Download the training and validation sets of the entire 1000-hour dataset.
207
+ train_set_path = download_simulated_subset(
208
+ version=ver, volume='1000hrs', subset_name='train', destination_dir=os.path.join(my_dir, 'train'))
209
+
210
+ val_set_path = download_simulated_subset(
211
+ version=ver, volume='1000hrs', subset_name='val', destination_dir=os.path.join(my_dir, 'val'))
212
+
213
+
214
+ # Option 2: Download the training and validation sets of the smaller 200-hour dataset.
215
+ train_set_path = download_simulated_subset(
216
+ version=ver, volume='200hrs', subset_name='train', destination_dir=os.path.join(my_dir, 'train'))
217
+
218
+ val_set_path = download_simulated_subset(
219
+ version=ver, volume='200hrs', subset_name='val', destination_dir=os.path.join(my_dir, 'val'))
220
+ ```
221
+
222
+ ### Step 2: Run CSS training
223
+ Once you have downloaded the training dataset, you can run CSS training on it using the `run_training_css` function in `css/training/train.py`.
224
+ The `main` function in `run_training_css.py` provides an entry point with `conf`, `data_root_in`, and `data_root_out` arguments that you can use to configure the run.
225
+
226
+ It is important to note that the setup and provisioning of a compute cloud environment for running this training process is the responsibility of the user. Our code is designed to support **PyTorch's Distributed Data Parallel (DDP)** framework. This means you can leverage multiple GPUs across several nodes efficiently.
227
+
228
+ ### Step 3: Customizing the CSS model
229
+ To add a new CSS model, you need to do the following:
230
+ 1. Have your model implement the same interface as our baseline CSS model class `ConformerCssWrapper` which is located
231
+ in `css/training/conformer_wrapper.py`. Note that in addition to the `forward` method, it must also implement the
232
+ `separate`, `stft`, and `istft` methods. The latter three methods will be used in the inference pipeline and to
233
+ calculate the loss when training.
234
+ 2. Create a configuration dataclass for your model. Add it as a member of the `TrainCfg` dataclass in
235
+ `css/training/train.py`.
236
+ 3. Add your model to the `get_model` function in `css/training/train.py`.
237
+
238
+
239
+
240
+ # NOTSOFAR-1 Datasets - Download Instructions
241
+ This section is for those specifically interested in downloading the NOTSOFAR datasets.<br>
242
+ The NOTSOFAR-1 Challenge provides two datasets: a recorded meeting dataset and a simulated training dataset. <br>
243
+ The datasets are stored in Azure Blob Storage, to download them, you will need to setup [AzCopy](https://learn.microsoft.com/en-us/azure/storage/common/storage-use-azcopy-v10#download-azcopy).
244
+
245
+ You can use either the python utilities in `utils/azure_storage.py` or the `AzCopy` command to download the datasets as described below.
246
+
247
+
248
+
249
+ ### Meeting Dataset for Benchmarking and Training
250
+
251
+ The NOTSOFAR-1 Recorded Meeting Dataset is a collection of 315 meetings, each averaging 6 minutes, recorded across 30 conference rooms with 4-8 attendees, featuring a total of 35 unique speakers. This dataset captures a broad spectrum of real-world acoustic conditions and conversational dynamics.
252
+
253
+ ### Download
254
+
255
+ To download the dataset, you can call the python function `download_meeting_subset` within `utils/azure_storage.py`.
256
+
257
+ Alternatively, using AzCopy CLI, set these arguments and run the following command:
258
+
259
+ - `subset_name`: name of split to download (`dev_set` / `eval_set` / `train_set`).
260
+ - `version`: version to download (`240103g` / etc.). Use the latest version.
261
+ - `datasets_path` - path to the directory where you want to download the benchmarking dataset (destination directory must exist). <br>
262
+
263
+ Train, dev, and eval sets for the NOTSOFAR challenge are released in stages.
264
+ See release timeline on the [NOTSOFAR page](https://www.chimechallenge.org/current/task2/index#dates).
265
+ See doc in `download_meeting_subset` function in
266
+ [utils/azure_storage.py](https://github.com/microsoft/NOTSOFAR1-Challenge/blob/main/utils/azure_storage.py#L109)
267
+ for latest available versions.
268
+
269
+ ```bash
270
+ azcopy copy https://notsofarsa.blob.core.windows.net/benchmark-datasets/<subset_name>/<version>/MTG <datasets_path>/benchmark --recursive
271
+ ```
272
+
273
+ Example:
274
+ ```bash
275
+ azcopy copy https://notsofarsa.blob.core.windows.net/benchmark-datasets/dev_set/240415.2_dev/MTG . --recursive
276
+ ````
277
+
278
+
279
+ ### Simulated Training Dataset
280
+
281
+ The NOTSOFAR-1 Training Dataset is a 1000-hour simulated training dataset, synthesized with enhanced authenticity for real-world generalization, incorporating 15,000 real acoustic transfer functions.
282
+
283
+ ### Download
284
+
285
+
286
+ To download the dataset, you can call the python function `download_simulated_subset` within `utils/azure_storage.py`.
287
+ Alternatively, using AzCopy CLI, set these arguments and run the following command:
288
+
289
+ - `version`: version of the train data to download (`v1.1` / `v1.2` / `v1.3` / `1.4` / `1.5` / etc.).
290
+ See doc in `download_simulated_subset` function in `utils/azure_storage.py` for latest available versions.
291
+ - `volume` - volume of the train data to download (`200hrs` / `1000hrs`)
292
+ - `subset_name`: train data type to download (`train` / `val`)
293
+ - `datasets_path` - path to the directory where you want to download the simulated dataset (destination directory must exist). <br>
294
+
295
+
296
+ ```bash
297
+ azcopy copy https://notsofarsa.blob.core.windows.net/css-datasets/<version>/<volume>/<subset_name> <datasets_path>/benchmark --recursive
298
+ ```
299
+
300
+ Example:
301
+ ```bash
302
+ azcopy copy https://notsofarsa.blob.core.windows.net/css-datasets/v1.5/200hrs/train . --recursive
303
+ ```
304
+
305
+
306
+ ## Data License
307
+ This public data is currently licensed for use exclusively in the NOTSOFAR challenge event.
308
+ We appreciate your understanding that it is not yet available for academic or commercial use.
309
+ However, we are actively working towards expanding its availability for these purposes.
310
+ We anticipate a forthcoming announcement that will enable broader and more impactful use of this data. Stay tuned for updates.
311
+ Thank you for your interest and patience.
312
+
313
+
314
+ # 🤝 Contribute
315
+
316
+ Please refer to our [contributing guide](CONTRIBUTING.md) for more information on how to contribute!
317
+