Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 1,876 Bytes
ba36ebb
ae61123
ba36ebb
3a888f7
ba36ebb
 
 
 
 
 
 
 
 
 
 
 
 
ab6fd41
 
 
 
 
 
 
 
 
 
 
 
 
 
3a888f7
 
 
 
 
 
 
 
 
 
 
 
ba36ebb
 
 
 
 
ab6fd41
6b2725a
ab6fd41
 
 
3a888f7
 
 
 
ae61123
 
 
 
 
 
ba36ebb
ae61123
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
---
license: cc-by-nc-nd-4.0
dataset_info:
- config_name: corpus
  features:
  - name: _id
    dtype: string
  - name: title
    dtype: string
  - name: text
    dtype: string
  splits:
  - name: test
    num_bytes: 1009047
    num_examples: 2761
  download_size: 303399
  dataset_size: 1009047
- config_name: data
  features:
  - name: query-id
    dtype: string
  - name: corpus-id
    dtype: string
  - name: score
    dtype: int64
  splits:
  - name: test
    num_bytes: 98514
    num_examples: 2761
  download_size: 23445
  dataset_size: 98514
- config_name: queries
  features:
  - name: _id
    dtype: string
  - name: text
    dtype: string
  splits:
  - name: test
    num_bytes: 140191
    num_examples: 977
  download_size: 69828
  dataset_size: 140191
configs:
- config_name: corpus
  data_files:
  - split: test
    path: corpus/test-*
- config_name: data
  default: true
  data_files:
  - split: test
    path: data/test-*
- config_name: queries
  data_files:
  - split: test
    path: queries/test-*
task_categories:
- question-answering
language:
- en
size_categories:
- 1K<n<10K
---

### Data sources
- Industry Foundation Classes (IFC) published by buildingSmart International: https://ifc43-docs.standards.buildingsmart.org/
- Uniclass product tables published by NBS: https://www.thenbs.com/our-tools/uniclass

### License

- cc-by-nc-nd-4.0: https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

### How to cite
Research paper on the dataset development and validations: https://arxiv.org/abs/2411.12056 

**Note:** This dataset refers to ```retrieval-p2p``` task as introduced in the paper.

```
@article{shahinmoghadam2024benchmarking,
  title={Benchmarking pre-trained text embedding models in aligning built asset information},
  author={Shahinmoghadam, Mehrzad and Motamedi, Ali},
  journal={arXiv preprint arXiv:2411.12056},
  year={2024}
}
```