horychtom commited on
Commit
f72586c
·
1 Parent(s): 849612e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +13 -28
README.md CHANGED
@@ -19,11 +19,12 @@ configs:
19
  # Dataset Card for Media-Bias-Identification-Benchmark
20
 
21
  ## Table of Contents
22
- - [Dataset Card for Meida-Bias-Identification-Benchmark](#dataset-card-for-mbib)
23
  - [Table of Contents](#table-of-contents)
24
  - [Dataset Description](#dataset-description)
25
  - [Dataset Summary](#dataset-summary)
26
  - [Tasks and Information](#tasks-and-information)
 
27
  - [Languages](#languages)
28
  - [Dataset Structure](#dataset-structure)
29
  - [Data Instances](#data-instances)
@@ -47,38 +48,22 @@ configs:
47
 
48
  TODO
49
 
50
- ### Tasks and Information
51
-
52
-
53
- <table>
54
- <tr><td>Dataset</td><td>Source</td><td>Sub-domain</td><td>Task Type</td><td>Classes</td><tr>
55
- <tr><td>ECtHR (Task A)</td><td> <a href="https://aclanthology.org/P19-1424/">Chalkidis et al. (2019)</a> </td><td>ECHR</td><td>Multi-label classification</td><td>10+1</td></tr>
56
- <tr><td>ECtHR (Task B)</td><td> <a href="https://aclanthology.org/2021.naacl-main.22/">Chalkidis et al. (2021a)</a> </td><td>ECHR</td><td>Multi-label classification </td><td>10+1</td></tr>
57
- <tr><td>SCOTUS</td><td> <a href="http://scdb.wustl.edu">Spaeth et al. (2020)</a></td><td>US Law</td><td>Multi-class classification</td><td>14</td></tr>
58
- <tr><td>EUR-LEX</td><td> <a href="https://arxiv.org/abs/2109.00904">Chalkidis et al. (2021b)</a></td><td>EU Law</td><td>Multi-label classification</td><td>100</td></tr>
59
- <tr><td>LEDGAR</td><td> <a href="https://aclanthology.org/2020.lrec-1.155/">Tuggener et al. (2020)</a></td><td>Contracts</td><td>Multi-class classification</td><td>100</td></tr>
60
- <tr><td>UNFAIR-ToS</td><td><a href="https://arxiv.org/abs/1805.01217"> Lippi et al. (2019)</a></td><td>Contracts</td><td>Multi-label classification</td><td>8+1</td></tr>
61
- <tr><td>CaseHOLD</td><td><a href="https://arxiv.org/abs/2104.08671">Zheng et al. (2021)</a></td><td>US Law</td><td>Multiple choice QA</td><td>n/a</td></tr>
62
- </table>
63
 
64
 
 
65
 
66
- Baseline
67
 
68
  <table>
69
- <tr><td><b>Dataset</b></td><td><b>ECtHR A</b></td><td><b>ECtHR B</b></td><td><b>SCOTUS</b></td><td><b>EUR-LEX</b></td><td><b>LEDGAR</b></td><td><b>UNFAIR-ToS</b></td><td><b>CaseHOLD</b></td></tr>
70
- <tr><td><b>Model</b></td><td>μ-F1 / m-F1 </td><td>μ-F1 / m-F1 </td><td>μ-F1 / m-F1 </td><td>μ-F1 / m-F1 </td><td>μ-F1 / m-F1 </td><td>μ-F1 / m-F1</td><td>μ-F1 / m-F1 </td></tr>
71
- <tr><td>TFIDF+SVM</td><td> 64.7 / 51.7 </td><td>74.6 / 65.1 </td><td> <b>78.2</b> / <b>69.5</b> </td><td>71.3 / 51.4 </td><td>87.2 / 82.4 </td><td>95.4 / 78.8</td><td>n/a </td></tr>
72
- <tr><td colspan="8" style='text-align:center'><b>Medium-sized Models (L=12, H=768, A=12)</b></td></tr>
73
- <td>BERT</td> <td> 71.2 / 63.6 </td> <td> 79.7 / 73.4 </td> <td> 68.3 / 58.3 </td> <td> 71.4 / 57.2 </td> <td> 87.6 / 81.8 </td> <td> 95.6 / 81.3 </td> <td> 70.8 </td> </tr>
74
- <td>RoBERTa</td> <td> 69.2 / 59.0 </td> <td> 77.3 / 68.9 </td> <td> 71.6 / 62.0 </td> <td> 71.9 / <b>57.9</b> </td> <td> 87.9 / 82.3 </td> <td> 95.2 / 79.2 </td> <td> 71.4 </td> </tr>
75
- <td>DeBERTa</td> <td> 70.0 / 60.8 </td> <td> 78.8 / 71.0 </td> <td> 71.1 / 62.7 </td> <td> <b>72.1</b> / 57.4 </td> <td> 88.2 / 83.1 </td> <td> 95.5 / 80.3 </td> <td> 72.6 </td> </tr>
76
- <td>Longformer</td> <td> 69.9 / 64.7 </td> <td> 79.4 / 71.7 </td> <td> 72.9 / 64.0 </td> <td> 71.6 / 57.7 </td> <td> 88.2 / 83.0 </td> <td> 95.5 / 80.9 </td> <td> 71.9 </td> </tr>
77
- <td>BigBird</td> <td> 70.0 / 62.9 </td> <td> 78.8 / 70.9 </td> <td> 72.8 / 62.0 </td> <td> 71.5 / 56.8 </td> <td> 87.8 / 82.6 </td> <td> 95.7 / 81.3 </td> <td> 70.8 </td> </tr>
78
- <td>Legal-BERT</td> <td> 70.0 / 64.0 </td> <td> <b>80.4</b> / <b>74.7</b> </td> <td> 76.4 / 66.5 </td> <td> <b>72.1</b> / 57.4 </td> <td> 88.2 / 83.0 </td> <td> <b>96.0</b> / <b>83.0</b> </td> <td> 75.3 </td> </tr>
79
- <td>CaseLaw-BERT</td> <td> 69.8 / 62.9 </td> <td> 78.8 / 70.3 </td> <td> 76.6 / 65.9 </td> <td> 70.7 / 56.6 </td> <td> 88.3 / 83.0 </td> <td> <b>96.0</b> / 82.3 </td> <td> <b>75.4</b> </td> </tr>
80
- <tr><td colspan="8" style='text-align:center'><b>Large-sized Models (L=24, H=1024, A=18)</b></td></tr>
81
- <tr><td>RoBERTa</td> <td> <b>73.8</b> / <b>67.6</b> </td> <td> 79.8 / 71.6 </td> <td> 75.5 / 66.3 </td> <td> 67.9 / 50.3 </td> <td> <b>88.6</b> / <b>83.6</b> </td> <td> 95.8 / 81.6 </td> <td> 74.4 </td> </tr>
82
  </table>
83
 
84
 
 
19
  # Dataset Card for Media-Bias-Identification-Benchmark
20
 
21
  ## Table of Contents
22
+ - [Dataset Card for Media-Bias-Identification-Benchmark](#dataset-card-for-mbib)
23
  - [Table of Contents](#table-of-contents)
24
  - [Dataset Description](#dataset-description)
25
  - [Dataset Summary](#dataset-summary)
26
  - [Tasks and Information](#tasks-and-information)
27
+ - [Baseline](#baseline)
28
  - [Languages](#languages)
29
  - [Dataset Structure](#dataset-structure)
30
  - [Data Instances](#data-instances)
 
48
 
49
  TODO
50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51
 
52
 
53
+ ### Baseline
54
 
 
55
 
56
  <table>
57
+ <tr><td><b>Task</b></td><td><b>Model</b></td><td><b>Micro F1</b></td><td><b>Macro F1</b></td></tr>
58
+
59
+ <td>cognitive-bias</td> <td> ConvBERT/ConvBERT</td> <td>0.7126</td> <td> 0.7664</td></tr>
60
+ <td>fake-news</td> <td>Bart/RoBERTa-T</td> <td>0.6811</td> <td> 0.7533</td> </tr>
61
+ <td>gender-bias</td> <td> RoBERTa-T/ELECTRA</td> <td>0.8334</td> <td>0.8211</td> </tr>
62
+ <td>hate-speech</td> <td>RoBERTA-T/Bart</td> <td>0.8897</td> <td> 0.7310</td> </tr>
63
+ <td>linguistic-bias</td> <td> ConvBERT/Bart </td> <td> 0.7044 </td> <td> 0.4995 </td> </tr>
64
+ <td>political-bias</td> <td> ConvBERT/ConvBERT </td> <td> 0.7041 </td> <td> 0.7110 </td> </tr>
65
+ <td>racial-bias</td> <td> ConvBERT/ELECTRA </td> <td> 0.8772 </td> <td> 0.6170 </td> </tr>
66
+ <td>text-leve-bias</td> <td> ConvBERT/ConvBERT </td> <td> 0.7697</td> <td> 0.7532 </td> </tr>
 
 
 
67
  </table>
68
 
69