Commit
·
81dd197
1
Parent(s):
143c57b
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,59 @@
|
|
1 |
---
|
2 |
license: cc-by-nc-nd-4.0
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: cc-by-nc-nd-4.0
|
3 |
---
|
4 |
+
|
5 |
+
# Code-Mixed-Offensive-Language-Identification
|
6 |
+
This is a dataset for the offensive language detection task. It contains 100k code mixed data. The languages are Bangla-English-Hindi.
|
7 |
+
|
8 |
+
### Dataset Generation:
|
9 |
+
|
10 |
+
Initially, the labelling schema of OLID[^1] and SOLID[^2] serves as the seed data, from which we randomly select 100,000 data instances. The labels in this dataset are categorized as Non-Offensive and Offensive for the purpose of our task. We meticulously ensure an equal number of instances for both Non-Offensive and Offensive labels. To synthesize the Code-mixed dataset, we employ two distinct methodologies: the *Random Code-mixing Algorithm* by Krishnan et al. (2021)[^3] and *r-CM* by Santy et al. (2021)[^4].
|
11 |
+
|
12 |
+
### Class Distribution:
|
13 |
+
|
14 |
+
#### For train.csv:
|
15 |
+
|
16 |
+
| Label | Count | Percentage |
|
17 |
+
|-------|-------|------------|
|
18 |
+
| NOT | 40018 | 66.70% |
|
19 |
+
| OFF | 19982 | 33.30% |
|
20 |
+
|
21 |
+
#### For dev.csv:
|
22 |
+
|
23 |
+
| Label | Count | Percentage |
|
24 |
+
|-------|-------|------------|
|
25 |
+
| NOT | 13339 | 66.70% |
|
26 |
+
| OFF | 6661 | 33.30% |
|
27 |
+
|
28 |
+
#### For test.csv:
|
29 |
+
|
30 |
+
| Label | Count | Percentage |
|
31 |
+
|-------|-------|------------|
|
32 |
+
| NOT | 13340 | 66.70% |
|
33 |
+
| OFF | 6660 | 33.30% |
|
34 |
+
|
35 |
+
### Cite our Paper:
|
36 |
+
|
37 |
+
If you utilize this dataset, please cite our paper.
|
38 |
+
|
39 |
+
```bibtex
|
40 |
+
@article{raihan2023mixed,
|
41 |
+
title={Mixed-Distil-BERT: Code-mixed Language Modeling for Bangla, English, and Hindi},
|
42 |
+
author={Raihan, Md Nishat and Goswami, Dhiman and Mahmud, Antara},
|
43 |
+
journal={arXiv preprint arXiv:2309.10272},
|
44 |
+
year={2023}
|
45 |
+
}
|
46 |
+
```
|
47 |
+
|
48 |
+
### References
|
49 |
+
|
50 |
+
[^1]: Zampieri, M., Malmasi, S., Nakov, P., Rosenthal, S., Farra, N., & Kumar, R. (2019). SemEval-2019 Task 6: Identifying and Categorizing Offensive Language in Social Media (OffensEval). In Proceedings of the 13th International Workshop on Semantic Evaluation (pp. 75–86). [https://aclanthology.org/S19-2010](https://aclanthology.org/S19-2010)
|
51 |
+
|
52 |
+
[^2]: Rosenthal, S., Atanasova, P., Karadzhov, G., Zampieri, M., & Nakov, P. (2021). SOLID: A Large-Scale Semi-Supervised Dataset for Offensive Language Identification. In Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021 (pp. 915–928). [https://aclanthology.org/2021.findings-acl.80](https://aclanthology.org/2021.findings-acl.80)
|
53 |
+
|
54 |
+
[^3]: Krishnan, J., Anastasopoulos, A., Purohit, H., & Rangwala, H. (2021). Multilingual code-switching for zero-shot cross-lingual intent prediction and slot filling. arXiv preprint arXiv:2103.07792.
|
55 |
+
|
56 |
+
[^4]: Santy, S., Srinivasan, A., & Choudhury, M. (2021). BERTologiCoMix: How does code-mixing interact with multilingual BERT? In Proceedings of the Second Workshop on Domain Adaptation for NLP (pp. 111–121).
|
57 |
+
|
58 |
+
---
|
59 |
+
|