File size: 6,120 Bytes
3804a2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""ReadingBank is a benchmark dataset for reading order detection built with weak supervision from WORD documents, which contains 500K document images with a wide range of document types as well as the corresponding reading order information."""


from pathlib import Path
import pandas as pd
import datasets


_CITATION = """\
@misc{wang2021layoutreader,
      title={LayoutReader: Pre-training of Text and Layout for Reading Order Detection}, 
      author={Zilong Wang and Yiheng Xu and Lei Cui and Jingbo Shang and Furu Wei},
      year={2021},
      eprint={2108.11591},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
"""

_DESCRIPTION = """\
ReadingBank is a benchmark dataset for reading order detection built with weak supervision from WORD documents, which contains 500K document images with a wide range of document types as well as the corresponding reading order information.
"""

_HOMEPAGE = "https://github.com/doc-analysis/ReadingBank"

# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""

_URLS = {
    "dataset": "https://layoutlm.blob.core.windows.net/readingbank/dataset/ReadingBank.zip",
}

def parse_files(files):
    layout_text = {}

    for i in [1,2,3,4,6,7]:
        layout_text[f'm{i}'] = {}

    for file in files:
        stem = file.stem
        shard = stem.split('-')[-1]
        if 'text' in stem:
            layout_text[shard]['text']=file
        elif 'layout' in stem:
            layout_text[shard]['layout']=file
            
    return layout_text

def get_dataframe(files,split):
    df_list = []
    for shard in files.keys():
        df_list.append(pd.read_json(files[shard][split],lines=True))
    df = pd.concat(df_list)
    df.reset_index(inplace=True,drop=True)
    return df

class ReadingBank(datasets.GeneratorBasedBuilder):
    """ReadingBank is a benchmark dataset for reading order detection built with weak supervision from WORD documents, which contains 500K document images with a wide range of document types as well as the corresponding reading order information."""

    VERSION = datasets.Version("1.1.0")

    def _info(self):
        features = datasets.Features(
            {
                "src": datasets.Value("string"),
                "tgt": datasets.Value("string"),
                "bleu": datasets.Value("float"),
                "tgt_index": datasets.Sequence(datasets.Value("int16")),
                "original_filename": datasets.Value("string"),
                "filename": datasets.Value("string"),
                "page_idx": datasets.Value("int16"),
                "src_layout": datasets.Sequence(datasets.Sequence(datasets.Value("int16"))),
                "tgt_layout": datasets.Sequence(datasets.Sequence(datasets.Value("int16"))),
                # These are the features of your dataset like images, labels ...
            }
        )
        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=features,  # Here we define them above because they are different between the two configurations
            # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
            # specify them. They'll be used if as_supervised=True in builder.as_dataset.
            # supervised_keys=("sentence", "label"),
            # Homepage of the dataset for documentation
            homepage=_HOMEPAGE,
            # License for the dataset if available
            license=_LICENSE,
            # Citation for the dataset
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):

        urls = _URLS["dataset"]
        data_dir = dl_manager.download_and_extract(urls)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": parse_files(list(Path(f'{data_dir}/train/').glob('*'))),
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": parse_files(list(Path(f'{data_dir}/dev/').glob('*'))),
                    "split": "dev",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": parse_files(list(Path(f'{data_dir}/test/').glob('*'))),
                    "split": "test"
                },
            ),
        ]

    # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
    def _generate_examples(self, filepath, split):

        print('\nCreating dataframes.. please wait..')
        text_df = get_dataframe(filepath,'text')
        layout_df = get_dataframe(filepath,'layout')
        layout_df.rename(columns={'src':'src_layout',
                                  'tgt':'tgt_layout'},inplace=True)

        df = text_df.merge(layout_df,left_index=True,right_index=True)
        print('Dataframes created..\n')
        yield from enumerate(df.to_dict(orient='records'))