Update README.md
Browse files
README.md
CHANGED
@@ -34,12 +34,6 @@ dataset = load_dataset(path="mauricett/lichess_sf",
|
|
34 |
<br>
|
35 |
|
36 |
### 2. Data Format
|
37 |
-
After loading the dataset, you can check how the samples look like:
|
38 |
-
```py
|
39 |
-
example = next(iter(dataset))
|
40 |
-
print(example)
|
41 |
-
```
|
42 |
-
|
43 |
A single sample from the dataset contains one complete chess game as a dictionary. The dictionary keys are as follows:
|
44 |
|
45 |
1. `example['fens']` --- A list of FENs in a slightly stripped format, missing the halfmove clock and fullmove number (see [definitions on wiki](https://en.wikipedia.org/wiki/Forsyth%E2%80%93Edwards_Notation#Definition)). The starting positions have been excluded (no player made a move yet).
|
@@ -98,39 +92,6 @@ dataset = dataset.shuffle(seed=42)
|
|
98 |
dataset = dataset.map(preprocess, fn_kwargs={'tokenizer': tokenizer,
|
99 |
'score_fn': score_fn})
|
100 |
```
|
101 |
-
|
102 |
-
In this example, we're passing two additional arguments to the preprocess function in dataset.map(). You can use the following mock examples for inspiration:
|
103 |
-
```py
|
104 |
-
# A mock tokenizer and functions for demonstration.
|
105 |
-
class Tokenizer:
|
106 |
-
def __init__(self):
|
107 |
-
pass
|
108 |
-
def __call__(self, example):
|
109 |
-
return example
|
110 |
-
|
111 |
-
|
112 |
-
# Transform Stockfish score and terminal outcomes.
|
113 |
-
def score_fn(score):
|
114 |
-
return score
|
115 |
-
|
116 |
-
def preprocess(example, tokenizer, score_fn):
|
117 |
-
# Get number of moves made in the game.
|
118 |
-
max_ply = len(example['moves'])
|
119 |
-
pick_random_move = random.randint(0, max_ply-1)
|
120 |
-
|
121 |
-
# Get the FEN, move and score for our random choice.
|
122 |
-
fen = example['fens'][pick_random_move]
|
123 |
-
move = example['moves'][pick_random_move]
|
124 |
-
score = example['scores'][pick_random_move]
|
125 |
-
|
126 |
-
# Transform data into the format of your choice.
|
127 |
-
example['fens'] = tokenizer(fen)
|
128 |
-
example['moves'] = tokenizer(move)
|
129 |
-
example['scores'] = score_fn(score)
|
130 |
-
return example
|
131 |
-
|
132 |
-
tokenizer = Tokenizer()
|
133 |
-
```
|
134 |
<br>
|
135 |
<br>
|
136 |
<br>
|
@@ -188,7 +149,7 @@ dataset = dataset.map(preprocess, fn_kwargs={'tokenizer': tokenizer,
|
|
188 |
'score_fn': score_fn})
|
189 |
|
190 |
# PyTorch dataloader
|
191 |
-
dataloader = DataLoader(dataset, batch_size=
|
192 |
|
193 |
|
194 |
n = 0
|
@@ -196,8 +157,6 @@ for batch in dataloader:
|
|
196 |
|
197 |
# do stuff
|
198 |
|
199 |
-
|
200 |
-
|
201 |
-
if n == 50:
|
202 |
-
break
|
203 |
```
|
|
|
34 |
<br>
|
35 |
|
36 |
### 2. Data Format
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
A single sample from the dataset contains one complete chess game as a dictionary. The dictionary keys are as follows:
|
38 |
|
39 |
1. `example['fens']` --- A list of FENs in a slightly stripped format, missing the halfmove clock and fullmove number (see [definitions on wiki](https://en.wikipedia.org/wiki/Forsyth%E2%80%93Edwards_Notation#Definition)). The starting positions have been excluded (no player made a move yet).
|
|
|
92 |
dataset = dataset.map(preprocess, fn_kwargs={'tokenizer': tokenizer,
|
93 |
'score_fn': score_fn})
|
94 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
<br>
|
96 |
<br>
|
97 |
<br>
|
|
|
149 |
'score_fn': score_fn})
|
150 |
|
151 |
# PyTorch dataloader
|
152 |
+
dataloader = DataLoader(dataset, batch_size=1, num_workers=1)
|
153 |
|
154 |
|
155 |
n = 0
|
|
|
157 |
|
158 |
# do stuff
|
159 |
|
160 |
+
print(batch)
|
161 |
+
break
|
|
|
|
|
162 |
```
|