Update README.md
Browse files
README.md
CHANGED
@@ -73,12 +73,16 @@ def score_fn(score):
|
|
73 |
def preprocess(example, tokenizer, score_fn):
|
74 |
# Get number of moves made in the game.
|
75 |
max_ply = len(example['moves'])
|
76 |
-
pick_random_move = random.randint(0, max_ply-
|
77 |
|
78 |
# Get the FEN, move and score for our random choice.
|
79 |
fen = example['fens'][pick_random_move]
|
80 |
-
|
81 |
-
|
|
|
|
|
|
|
|
|
82 |
|
83 |
# Transform data into the format of your choice.
|
84 |
example['fens'] = tokenizer(fen)
|
@@ -132,8 +136,12 @@ def preprocess(example, tokenizer, score_fn):
|
|
132 |
|
133 |
# Get the FEN, move and score for our random choice.
|
134 |
fen = example['fens'][pick_random_move]
|
135 |
-
|
136 |
-
|
|
|
|
|
|
|
|
|
137 |
|
138 |
# Transform data into the format of your choice.
|
139 |
example['fens'] = tokenizer(fen)
|
@@ -159,12 +167,9 @@ dataset = dataset.map(preprocess, fn_kwargs={'tokenizer': tokenizer,
|
|
159 |
# PyTorch dataloader
|
160 |
dataloader = DataLoader(dataset, batch_size=1, num_workers=1)
|
161 |
|
162 |
-
|
163 |
n = 0
|
164 |
for batch in dataloader:
|
165 |
-
|
166 |
# do stuff
|
167 |
-
|
168 |
print(batch)
|
169 |
break
|
170 |
|
|
|
73 |
def preprocess(example, tokenizer, score_fn):
|
74 |
# Get number of moves made in the game.
|
75 |
max_ply = len(example['moves'])
|
76 |
+
pick_random_move = random.randint(0, max_ply-2)
|
77 |
|
78 |
# Get the FEN, move and score for our random choice.
|
79 |
fen = example['fens'][pick_random_move]
|
80 |
+
|
81 |
+
# We add +1 to the index to select the next candidate move.
|
82 |
+
# Same with the score, which is the evaluation of this move.
|
83 |
+
# Please read the section about the data format clearly!
|
84 |
+
move = example['moves'][pick_random_move + 1]
|
85 |
+
score = example['scores'][pick_random_move + 1]
|
86 |
|
87 |
# Transform data into the format of your choice.
|
88 |
example['fens'] = tokenizer(fen)
|
|
|
136 |
|
137 |
# Get the FEN, move and score for our random choice.
|
138 |
fen = example['fens'][pick_random_move]
|
139 |
+
|
140 |
+
# We add +1 to the index to select the next candidate move.
|
141 |
+
# Same with the score, which is the evaluation of this move.
|
142 |
+
# Please read the section about the data format clearly!
|
143 |
+
move = example['moves'][pick_random_move + 1]
|
144 |
+
score = example['scores'][pick_random_move + 1]
|
145 |
|
146 |
# Transform data into the format of your choice.
|
147 |
example['fens'] = tokenizer(fen)
|
|
|
167 |
# PyTorch dataloader
|
168 |
dataloader = DataLoader(dataset, batch_size=1, num_workers=1)
|
169 |
|
|
|
170 |
n = 0
|
171 |
for batch in dataloader:
|
|
|
172 |
# do stuff
|
|
|
173 |
print(batch)
|
174 |
break
|
175 |
|