import argparse import json import shutil from pathlib import Path from typing import TypedDict from datasets import DatasetDict, load_dataset OUT_DIR = Path(__file__).parent / "data" METADATA_PATH = OUT_DIR / "metadata.json" class ConllExample(TypedDict): tokens: list[str] ner_tags: list[str] chunk_tags: list[str] pos_tags: list[str] class LabelMaps(TypedDict): ner_tags: list[str] chunk_tags: list[str] pos_tags: list[str] def ids_to_strings(example: dict, label_maps: LabelMaps) -> ConllExample: return { "tokens": example["tokens"], "ner_tags": [label_maps["ner_tags"][i] for i in example["ner_tags"]], "chunk_tags": [label_maps["chunk_tags"][i] for i in example["chunk_tags"]], "pos_tags": [label_maps["pos_tags"][i] for i in example["pos_tags"]], } def extract_label_maps(data: DatasetDict) -> LabelMaps: feats = data["train"].features return { "ner_tags": feats["ner_tags"].feature.names, "chunk_tags": feats["chunk_tags"].feature.names, "pos_tags": feats["pos_tags"].feature.names, } def extract_metadata(data: DatasetDict, label_maps: LabelMaps) -> dict: num_rows = {split_name: int(split.num_rows) for split_name, split in data.items()} features = {name: repr(feature) for name, feature in data["train"].features.items()} return {"num_rows": num_rows, "features": features, "label_maps": label_maps} def main() -> None: """Load CoNLL-03 with datasets v3, save as Parquet and add metadata. Run: python preprocess.py --out-dir data """ ap = argparse.ArgumentParser() ap.add_argument("--out-dir", type=Path, help="Output directory for Parquet files") ap.add_argument("--metadata-path", type=Path, help="Path for metadata.json") args = ap.parse_args() out_dir = args.out_dir or OUT_DIR metadata_path = args.metadata_path or METADATA_PATH out_dir.mkdir(parents=True, exist_ok=True) cache_path = Path(__file__).parent / "tmp" # using datasets v3.6 data = load_dataset("conll2003", cache_dir=str(cache_path)) split_map = {"train": "train", "validation": "validation", "test": "test"} if "validation" not in data and "valid" in data: split_map["validation"] = "valid" label_maps = extract_label_maps(data) meta = extract_metadata(data, label_maps) for split, split_name in split_map.items(): if split_name not in data: continue out_path = out_dir / f"{split}.parquet" ds_str = data[split_name].map(ids_to_strings, fn_kwargs={"label_maps": label_maps}) if "id" in ds_str.column_names: ds_str = ds_str.remove_columns("id") ds_str.to_parquet(str(out_path)) metadata_path.write_text(json.dumps(meta, indent=2), encoding="utf-8") if cache_path.exists(): shutil.rmtree(cache_path) if __name__ == "__main__": main()