lorenzoscottb commited on
Commit
bc87400
·
1 Parent(s): a9ae30f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +49 -0
README.md CHANGED
@@ -1,3 +1,52 @@
1
  ---
2
  license: cc-by-2.0
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: cc-by-2.0
3
+ task_categories:
4
+ - text-classification
5
+ language:
6
+ - en
7
+ size_categories:
8
+ - 100K<n<1M
9
  ---
10
+
11
+ # PLANE Out-of-Distribution Sets
12
+
13
+ PLANE (phrase-level adjective-noun entailment) is a benchmark to test models on fine-grained compositional inference.
14
+ The current dataset contains five sampled splits, used in the supervised experiments of [Bertolini et al., 22](https://aclanthology.org/2022.coling-1.359/).
15
+
16
+ ## Data Structure
17
+
18
+ The data are organised around the five `Train/test_split#`, each containing a training and test set of circa 60K and 2K.
19
+
20
+ ### Features
21
+
22
+ Each entrance has 6 features: `seq, label, Adj_Class, Adj, Nn, Hy`
23
+ - `seq`:test sequense
24
+ - `label`: ground truth (1:entail, 0:no-entailment)
25
+ - `Adj_Class`: the class of the sequence adjectives
26
+ - `Adj`: the adjective of the sequence (I:intersective, S:subsective, O:intensional)
27
+ - `N`n: the noun
28
+ - `Hy`: the noun's hypericum
29
+
30
+ ### Trained Model
31
+
32
+ You can find a pre-trend BERT model (on the 2nd out-of-distribution split) [here](https://huggingface.co/lorenzoscottb/bert-base-cased-PLANE-ood-2?text=A+fake+smile+is+a+smile).
33
+
34
+ ### Cite
35
+
36
+ If you use PLANE for your work, please cite the main COLING 2022 paper.
37
+ ```
38
+ @inproceedings{bertolini-etal-2022-testing,
39
+ title = "Testing Large Language Models on Compositionality and Inference with Phrase-Level Adjective-Noun Entailment",
40
+ author = "Bertolini, Lorenzo and
41
+ Weeds, Julie and
42
+ Weir, David",
43
+ booktitle = "Proceedings of the 29th International Conference on Computational Linguistics",
44
+ month = oct,
45
+ year = "2022",
46
+ address = "Gyeongju, Republic of Korea",
47
+ publisher = "International Committee on Computational Linguistics",
48
+ url = "https://aclanthology.org/2022.coling-1.359",
49
+ pages = "4084--4100",
50
+ }
51
+
52
+ ```