Datasets:
Tasks:
Text Generation
Sub-tasks:
language-modeling
Languages:
English
Size:
10K - 100K
ArXiv:
Tags:
question-generation
License:
update
Browse files- .gitignore +1 -0
- data/processed/books.dev.jsonl +0 -0
- data/processed/books.test.jsonl +0 -0
- data/processed/books.train.jsonl +0 -0
- data/processed/electronics.dev.jsonl +0 -0
- data/processed/electronics.test.jsonl +0 -0
- data/processed/electronics.train.jsonl +0 -0
- data/processed/grocery.dev.jsonl +0 -0
- data/processed/grocery.test.jsonl +0 -0
- data/processed/grocery.train.jsonl +0 -0
- data/processed/movies.dev.jsonl +0 -0
- data/processed/movies.test.jsonl +0 -0
- data/processed/movies.train.jsonl +0 -0
- data/processed/restaurants.dev.jsonl +0 -0
- data/processed/restaurants.test.jsonl +0 -0
- data/processed/restaurants.train.jsonl +0 -0
- data/processed/tripadvisor.dev.jsonl +0 -0
- data/processed/tripadvisor.test.jsonl +0 -0
- data/processed/tripadvisor.train.jsonl +0 -0
- process.py +114 -0
- qg_subjqa.py +69 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
SubjQA
|
data/processed/books.dev.jsonl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
data/processed/books.test.jsonl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
data/processed/books.train.jsonl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
data/processed/electronics.dev.jsonl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
data/processed/electronics.test.jsonl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
data/processed/electronics.train.jsonl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
data/processed/grocery.dev.jsonl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
data/processed/grocery.test.jsonl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
data/processed/grocery.train.jsonl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
data/processed/movies.dev.jsonl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
data/processed/movies.test.jsonl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
data/processed/movies.train.jsonl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
data/processed/restaurants.dev.jsonl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
data/processed/restaurants.test.jsonl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
data/processed/restaurants.train.jsonl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
data/processed/tripadvisor.dev.jsonl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
data/processed/tripadvisor.test.jsonl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
data/processed/tripadvisor.train.jsonl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
process.py
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" Script to process raw SQuAD file for Question Generation format
|
2 |
+
You need to run `python -m spacy download en_core_web_sm`.
|
3 |
+
Split when uploading to dataset hub by
|
4 |
+
```
|
5 |
+
gsplit -l 600 -d --additional-suffix=.jsonl test.jsonl test
|
6 |
+
gsplit -l 600 -d --additional-suffix=.jsonl train.jsonl train
|
7 |
+
gsplit -l 600 -d --additional-suffix=.jsonl valid.jsonl valid
|
8 |
+
```
|
9 |
+
"""
|
10 |
+
import json
|
11 |
+
import os
|
12 |
+
import re
|
13 |
+
from tqdm import tqdm
|
14 |
+
from itertools import chain
|
15 |
+
|
16 |
+
import pandas as pd
|
17 |
+
import spacy
|
18 |
+
|
19 |
+
|
20 |
+
SPLITTER = spacy.load('en_core_web_sm')
|
21 |
+
HIGHLIGHT_TOKEN = '<hl>'
|
22 |
+
|
23 |
+
|
24 |
+
def get_sentence(document: str):
|
25 |
+
return [str(s) for s in SPLITTER(document).sents]
|
26 |
+
|
27 |
+
|
28 |
+
def process_single_data(question, paragraph, answer):
|
29 |
+
""" Convert single raw json data into QG format """
|
30 |
+
example = {'question': question, 'paragraph': paragraph, 'answer': answer}
|
31 |
+
start = example['paragraph'].find(example['answer'])
|
32 |
+
end = start + len(answer)
|
33 |
+
assert paragraph[start:end] == answer
|
34 |
+
# get sentence
|
35 |
+
before_tmp = get_sentence(example['paragraph'][:start])
|
36 |
+
if len(before_tmp) == 0:
|
37 |
+
before = ''
|
38 |
+
before_sentence = ''
|
39 |
+
else:
|
40 |
+
if before_tmp[-1].endswith('.'):
|
41 |
+
before = ' '.join(before_tmp)
|
42 |
+
before_sentence = ''
|
43 |
+
else:
|
44 |
+
before = ' '.join(before_tmp[:-1])
|
45 |
+
before_sentence = before_tmp[-1]
|
46 |
+
before_sentence = before_sentence if before_sentence.endswith(' ') else '{} '.format(before_sentence)
|
47 |
+
after_tmp = get_sentence(example['paragraph'][start + len(example['answer']):])
|
48 |
+
if len(after_tmp) == 0:
|
49 |
+
after = ''
|
50 |
+
after_sentence = ''
|
51 |
+
else:
|
52 |
+
after = ' '.join(after_tmp[1:])
|
53 |
+
after_sentence = after_tmp[0]
|
54 |
+
after_sentence = after_sentence if after_sentence.startswith(' ') else ' {}'.format(after_sentence)
|
55 |
+
example['sentence'] = '{}{}{}'.format(before_sentence, example['answer'], after_sentence)
|
56 |
+
|
57 |
+
# get paragraph_sentence
|
58 |
+
before = '' if before == '' else '{} '.format(before)
|
59 |
+
after = '' if after == '' else ' {}'.format(after)
|
60 |
+
source_text = '{0}{1} {2} {1}{3}'.format(before, HIGHLIGHT_TOKEN, example['sentence'], after)
|
61 |
+
example['paragraph_sentence'] = re.sub(r'\s+', ' ', source_text)
|
62 |
+
|
63 |
+
# get paragraph_answer
|
64 |
+
source_text = '{0}{1} {2} {1}{3}'.format(
|
65 |
+
example['paragraph'][:start], HIGHLIGHT_TOKEN, example['answer'],
|
66 |
+
example['paragraph'][start + len(example['answer']):])
|
67 |
+
example['paragraph_answer'] = re.sub(r'\s+', ' ', source_text)
|
68 |
+
|
69 |
+
# get sentence_answer
|
70 |
+
if len(before_tmp) == 0 or before_tmp[-1].endswith('.'):
|
71 |
+
before = ''
|
72 |
+
else:
|
73 |
+
before = before_tmp[-1] if before_tmp[-1].endswith(' ') else '{} '.format(before_tmp[-1])
|
74 |
+
if len(after_tmp) == 0:
|
75 |
+
after = ''
|
76 |
+
else:
|
77 |
+
after = after_tmp[0] if after_tmp[0].startswith(' ') else ' {}'.format(after_tmp[0])
|
78 |
+
source_text = '{0}{1} {2} {1}{3}'.format(before, HIGHLIGHT_TOKEN, example['answer'], after)
|
79 |
+
example['sentence_answer'] = re.sub(r'\s+', ' ', source_text)
|
80 |
+
|
81 |
+
return example
|
82 |
+
|
83 |
+
|
84 |
+
if __name__ == '__main__':
|
85 |
+
os.makedirs('./data/processed', exist_ok=True)
|
86 |
+
for i in ["books", "electronics", "grocery", "movies", "restaurants", "tripadvisor"]:
|
87 |
+
for s in ["dev.csv", "test.csv", "train.csv"]:
|
88 |
+
df = pd.read_csv(f'SubjQA/SubjQA/{i}/splits/{s}')
|
89 |
+
df = df[[x != 'ANSWERNOTFOUND' for x in df['human_ans_spans']]]
|
90 |
+
df['review'] = [x.replace('ANSWERNOTFOUND', '') for x in df['review']]
|
91 |
+
output = []
|
92 |
+
for _, _g in df.groupby('q_review_id'):
|
93 |
+
if any(i == 'ANSWERNOTFOUND' for i in _g['human_ans_spans']):
|
94 |
+
continue
|
95 |
+
# if len(_g["human_ans_spans"].unique()) != 1:
|
96 |
+
# continue
|
97 |
+
# _df = _g.iloc[0]
|
98 |
+
_len = [len(i) for i in _g["human_ans_spans"]]
|
99 |
+
_df = _g.iloc[_len.index(max(_len))]
|
100 |
+
start, end = eval(_df['human_ans_indices'])
|
101 |
+
# if re.sub(r'[\s\W]', '', _df['review'][start:end]) != re.sub(r'[\s\W]', '', _df["human_ans_spans"]):
|
102 |
+
# input(f"{_df['review'][start:end]} != {_df['human_ans_spans']}")
|
103 |
+
# continue
|
104 |
+
out = process_single_data(question=re.sub(r'\s+\?', '?', _df['question']),
|
105 |
+
answer=_df['review'][start:end],
|
106 |
+
paragraph=_df['review'])
|
107 |
+
out['question_subj_level'] = int(_df['question_subj_level'])
|
108 |
+
out['answer_subj_level'] = int(_df['answer_subj_level'])
|
109 |
+
out['paragraph_id'] = _df['review_id']
|
110 |
+
output.append(out)
|
111 |
+
with open(f'./data/processed/{i}.{s.replace(".csv", ".jsonl")}', 'w') as f:
|
112 |
+
f.write('\n'.join([json.dumps(i) for i in output]))
|
113 |
+
|
114 |
+
|
qg_subjqa.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import datasets
|
3 |
+
|
4 |
+
logger = datasets.logging.get_logger(__name__)
|
5 |
+
_DESCRIPTION = """[SubjQA](https://github.com/megagonlabs/SubjQA) dataset for question generation (QG) task."""
|
6 |
+
_URL = 'https://huggingface.co/datasets/asahi417/qg_subjqa/raw/main/data/processed'
|
7 |
+
_DOMAINS = ["books", "electronics", "grocery", "movies", "restaurants", "tripadvisor"]
|
8 |
+
|
9 |
+
|
10 |
+
class QGSubjQAConfig(datasets.BuilderConfig):
|
11 |
+
"""BuilderConfig for SquadQG"""
|
12 |
+
|
13 |
+
def __init__(self, **kwargs):
|
14 |
+
"""BuilderConfig for SquadQG.
|
15 |
+
Args:
|
16 |
+
**kwargs: keyword arguments forwarded to super.
|
17 |
+
"""
|
18 |
+
super(QGSubjQAConfig, self).__init__(**kwargs)
|
19 |
+
|
20 |
+
|
21 |
+
class QGSubjQA(datasets.GeneratorBasedBuilder):
|
22 |
+
|
23 |
+
BUILDER_CONFIGS = [QGSubjQAConfig(name=i, description="SubjQA from domain of `{}`.".format(i)) for i in _DOMAINS]
|
24 |
+
|
25 |
+
def _info(self):
|
26 |
+
return datasets.DatasetInfo(
|
27 |
+
description=_DESCRIPTION,
|
28 |
+
features=datasets.Features(
|
29 |
+
{
|
30 |
+
"answer": datasets.Value("string"),
|
31 |
+
"question": datasets.Value("string"),
|
32 |
+
"sentence": datasets.Value("string"),
|
33 |
+
"paragraph": datasets.Value("string"),
|
34 |
+
"sentence_answer": datasets.Value("string"),
|
35 |
+
"paragraph_answer": datasets.Value("string"),
|
36 |
+
"paragraph_sentence": datasets.Value("string"),
|
37 |
+
"paragraph_id": datasets.Value("string"),
|
38 |
+
"question_subj_level": datasets.Value("int32"),
|
39 |
+
"answer_subj_level": datasets.Value("int32")
|
40 |
+
}
|
41 |
+
),
|
42 |
+
supervised_keys=None,
|
43 |
+
homepage="https://github.com/asahi417/lm-question-generation"
|
44 |
+
)
|
45 |
+
|
46 |
+
def _split_generators(self, dl_manager):
|
47 |
+
downloaded_file = dl_manager.download_and_extract({
|
48 |
+
'train': f"{_URL}/{self.config.name}.train.jsonl",
|
49 |
+
'dev': f"{_URL}/{self.config.name}.dev.jsonl",
|
50 |
+
'test': f"{_URL}/{self.config.name}.test.jsonl"
|
51 |
+
})
|
52 |
+
return [
|
53 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepaths": downloaded_file["train"]}),
|
54 |
+
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepaths": downloaded_file["dev"]}),
|
55 |
+
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepaths": downloaded_file["test"]}),
|
56 |
+
]
|
57 |
+
|
58 |
+
def _generate_examples(self, filepaths):
|
59 |
+
_key = 0
|
60 |
+
for filepath in filepaths:
|
61 |
+
logger.info("generating examples from = %s", filepath)
|
62 |
+
with open(filepath, encoding="utf-8") as f:
|
63 |
+
_list = f.read().split('\n')
|
64 |
+
if _list[-1] == '':
|
65 |
+
_list = _list[:-1]
|
66 |
+
for i in _list:
|
67 |
+
data = json.loads(i)
|
68 |
+
yield _key, data
|
69 |
+
_key += 1
|