Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
10K - 100K
ArXiv:
Tags:
question-generation
License:
File size: 5,283 Bytes
a8807ea d22f92b a8807ea d22f92b 041b16b c3841e6 041b16b d22f92b 8605ac5 a8807ea f8e6d3e 1000cca f8e6d3e 1000cca 1589ced f8e6d3e 93add4d f8e6d3e a8807ea c32e7dd 3ad0eec d22f92b 041b16b d22f92b aababdb d22f92b 8a49aa7 a8807ea d22f92b a8807ea d22f92b 077f703 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
""" python -c "from datasets import load_dataset;load_dataset('.')" """
import json
from itertools import chain
import datasets
logger = datasets.logging.get_logger(__name__)
_VERSION = "1.0.0"
_CITATION = """
@inproceedings{ushio-etal-2022-generative,
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
author = "Ushio, Asahi and
Alva-Manchego, Fernando and
Camacho-Collados, Jose",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, U.A.E.",
publisher = "Association for Computational Linguistics",
}
"""
_DESCRIPTION = """[SQuAD Shifts](https://modestyachts.github.io/squadshifts-website/index.html) dataset for question generation (QG) task."""
_URL = 'https://huggingface.co/datasets/lmqg/qg_squadshifts/raw/main/data/processed'
_FILES = {
str(datasets.Split.TEST): {
'new_wiki': [f'{_URL}/new_wiki.test{i:02d}.jsonl' for i in range(3)],
'nyt': [f'{_URL}/nyt.test{i:02d}.jsonl' for i in range(4)],
'reddit': [f'{_URL}/reddit.test{i:02d}.jsonl' for i in range(4)],
'amazon': [f'{_URL}/amazon.test{i:02d}.jsonl' for i in range(4)]
},
str(datasets.Split.TRAIN): {
'new_wiki': [f'{_URL}/new_wiki.train{i:02d}.jsonl' for i in range(2)],
'nyt': [f'{_URL}/nyt.train{i:02d}.jsonl' for i in range(3)],
'reddit': [f'{_URL}/reddit.train{i:02d}.jsonl' for i in range(3)],
'amazon': [f'{_URL}/amazon.train{i:02d}.jsonl' for i in range(3)]
},
str(datasets.Split.VALIDATION): {
'new_wiki': [f'{_URL}/new_wiki.validation{i:02d}.jsonl' for i in range(1)],
'nyt': [f'{_URL}/nyt.validation{i:02d}.jsonl' for i in range(2)],
'reddit': [f'{_URL}/reddit.validation{i:02d}.jsonl' for i in range(2)],
'amazon': [f'{_URL}/amazon.validation{i:02d}.jsonl' for i in range(2)]
},
}
# _FILES = {
# str(datasets.Split.TEST): {
# 'new_wiki': [f'{_URL}/new_wiki.test.jsonl'],
# 'nyt': [f'{_URL}/nyt.test.jsonl'],
# 'reddit': [f'{_URL}/reddit.test.jsonl'],
# 'amazon': [f'{_URL}/amazon.test.jsonl']
# },
# str(datasets.Split.TRAIN): {
# 'new_wiki': [f'{_URL}/new_wiki.train.jsonl'],
# 'nyt': [f'{_URL}/nyt.train.jsonl'],
# 'reddit': [f'{_URL}/reddit.train.jsonl'],
# 'amazon': [f'{_URL}/amazon.train.jsonl']
# },
# str(datasets.Split.VALIDATION): {
# 'new_wiki': [f'{_URL}/new_wiki.validation.jsonl'],
# 'nyt': [f'{_URL}/nyt.validation.jsonl'],
# 'reddit': [f'{_URL}/reddit.validation.jsonl'],
# 'amazon': [f'{_URL}/amazon.validation.jsonl']
# },
# }
_DOMAIN = list(_FILES[list(_FILES.keys())[0]].keys())
class QGSQuADShiftsConfig(datasets.BuilderConfig):
"""BuilderConfig for SquadQG"""
def __init__(self, **kwargs):
"""BuilderConfig for SquadQG.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(QGSQuADShiftsConfig, self).__init__(**kwargs)
class QGSQuADShifts(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [QGSQuADShiftsConfig(name="all", version=datasets.Version(_VERSION), description="All domain.")]
BUILDER_CONFIGS += [QGSQuADShiftsConfig(name=i, version=datasets.Version(_VERSION), description=f"Domain {i}") for i in sorted(_DOMAIN)]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"answer": datasets.Value("string"),
"question": datasets.Value("string"),
"sentence": datasets.Value("string"),
"paragraph": datasets.Value("string"),
"sentence_answer": datasets.Value("string"),
"paragraph_answer": datasets.Value("string"),
"paragraph_sentence": datasets.Value("string"),
"paragraph_id": datasets.Value("string")
}
),
supervised_keys=None,
homepage="https://github.com/asahi417/lm-question-generation"
)
def _split_generators(self, dl_manager):
if self.config.name == 'all':
downloaded_file = dl_manager.download_and_extract({k: list(chain(*list(v.values()))) for k, v in _FILES.items()})
else:
downloaded_file = dl_manager.download_and_extract({k: v[self.config.name] for k, v in _FILES.items()})
return [datasets.SplitGenerator(name=k, gen_kwargs={"filepaths": downloaded_file[k]}) for k in _FILES.keys()]
def _generate_examples(self, filepaths):
_key = 0
for filepath in filepaths:
logger.info("generating examples from = %s", filepath)
with open(filepath, encoding="utf-8") as f:
_list = f.read().split('\n')
if _list[-1] == '':
_list = _list[:-1]
for i in _list:
data = json.loads(i)
yield _key, data
_key += 1
|