--- license: mit language: - en pretty_name: Speech Brown size_categories: - 10K.svg)](https://arxiv.org/abs/2412.13071) [![GitHub](https://img.shields.io/badge/GitHub-Code-181717?logo=github)](https://github.com/language-modeling-lab/CLASP) ## Dataset Summary **Speech Brown** is a comprehensive, synthetic, and diverse paired speech-text dataset in 15 categories, covering a wide range of topics from fiction to religion. This dataset consists of over 55,000 sentence-level samples. To train the [CLASP](https://huggingface.co/llm-lab/CLASP) model, we created this dataset based on the Brown Corpus. The synthetic speech was generated using the [NVIDIA Tacotron 2](https://pytorch.org/hub/nvidia_deeplearningexamples_tacotron2/) text-to-speech model. For more information about our proposed model, please refer to this [paper](https://arxiv.org/abs/2412.13071). The dataset generation pipeline, along with code and usage instructions, is available on this [GitHub page](https://github.com/language-modeling-lab/CLASP). ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64ba58d377dd483716aba098/5dy1Cb3-ZmGytf3QbQN9a.png) ## Dataset Statistics 1. Total size: Approximately 30 GB. 2. Number of samples: 55,173 pairs of speech and text. 3. Average tokens per sample: 19.00. 4. Maximum tokens in a sample: 48. 5. Average characters per sample: 96.72. 6. Number of unique tokens: 50,667 7. Categories: 15 categories consist of `adventure`, `belles_lettres`, `editorial`, `fiction`, `government`, `hobbies`, `humor`, `learned`, `lore`, `mystery`, `news`, `religion`, `reviews`, `romance`, `science_fiction`. ## Dataset Structure To ensure ease of use, the dataset is partitioned into 10 parts. Each part can be used independently if it meets the requirements of your task and model. ### Metadata Files 1. **global_metadata**: A JSON file containing metadata for all 55,173 samples. 2. **localized_metadata**: A JSON file containing metadata for all samples, categorized into the 10 dataset partitions. ### Metadata Fields 1. **id**: The unique identifier for the sample. 2. **audio_file_path**: The file path for the audio in the dataset. 3. **category**: The category of the sample's text. 4. **text**: The corresponding text of the audio file. ## Usage Instructions To use this dataset, download the parts and metadata files as follows: #### Option 1: Manual Download Visit the [dataset repository](https://huggingface.co/datasets/llm-lab/SpeechBrown/tree/main) and download all `dataset_partX.zip` files and the `global_metadata.json` file. #### Option 2: Programmatic Download Use the `huggingface_hub` library to download the files programmatically: ```python from huggingface_hub import hf_hub_download from zipfile import ZipFile import os import json # Download dataset parts zip_file_path1 = hf_hub_download(repo_id="llm-lab/SpeechBrown", filename="dataset_part1.zip", repo_type="dataset") zip_file_path2 = hf_hub_download(repo_id="llm-lab/SpeechBrown", filename="dataset_part2.zip", repo_type="dataset") # Download other parts... # Download metadata metadata_file_path = hf_hub_download(repo_id="llm-lab/SpeechBrown", filename="global_metadata.json", repo_type="dataset") for i in range(1, 11): with ZipFile(f'dataset_part{i}.zip', 'r') as zip_ref: zip_ref.extractall(f'dataset_part{i}') os.remove(f'dataset_part{i}.zip') with open('global_metadata.json', 'r') as f: metadata = json.load(f) metadata.keys() ``` ## Citations If you find our paper, code, data, or models useful, please cite the paper: ``` @misc{abootorabi2024claspcontrastivelanguagespeechpretraining, title={CLASP: Contrastive Language-Speech Pretraining for Multilingual Multimodal Information Retrieval}, author={Mohammad Mahdi Abootorabi and Ehsaneddin Asgari}, year={2024}, eprint={2412.13071}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2412.13071}, } ``` ## Contact If you have questions, please email mahdi.abootorabi2@gmail.com or asgari@berkeley.edu.